Single-step generation of metal-plasma polymer multicore@shell nanoparticles from the gas phase

. 2017 Aug 17 ; 7 (1) : 8514. [epub] 20170817

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28819149
Odkazy

PubMed 28819149
PubMed Central PMC5561131
DOI 10.1038/s41598-017-08274-6
PII: 10.1038/s41598-017-08274-6
Knihovny.cz E-zdroje

Nanoparticles composed of multiple silver cores and a plasma polymer shell (multicore@shell) were prepared in a single step with a gas aggregation cluster source operating with Ar/hexamethyldisiloxane mixtures and optionally oxygen. The size distribution of the metal inclusions as well as the chemical composition and the thickness of the shells were found to be controlled by the composition of the working gas mixture. Shell matrices ranging from organosilicon plasma polymer to nearly stoichiometric SiO2 were obtained. The method allows facile fabrication of multicore@shell nanoparticles with tailored functional properties, as demonstrated here with the optical response.

Zobrazit více v PubMed

Binns C. Nanoclusters deposited on surfaces. Surf. Sci. Rep. 2001;44:1–49. doi: 10.1016/S0167-5729(01)00015-2. DOI

Cassidy C, et al. Inoculation of silicon nanoparticles with silver atoms. Sci. Rep. 2013;3:3083. doi: 10.1038/srep03083. PubMed DOI PMC

Kortshagen UR, et al. Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications. Chem. Rev. 2016;116:11061–11127. doi: 10.1021/acs.chemrev.6b00039. PubMed DOI

Wegner K, Piseri P, Tafreshi HV, Milani P. Cluster beam deposition: a tool for nanoscale science and technology. J. Phys. D. Appl. Phys. 2006;39:R439–R459. doi: 10.1088/0022-3727/39/22/R02. DOI

Solař P, et al. Nylon-sputtered plasma polymer particles produced by a semi-hollow cathode gas aggregation source. Vacuum. 2015;111:124–130. doi: 10.1016/j.vacuum.2014.09.023. DOI

Haberland H, Karrais M, Mall M, Thurner Y. Thin films from energetic cluster impact: A feasibility study. J. Vac. Sci. Technol. A. 1992;10:3266–3271. doi: 10.1116/1.577853. DOI

Datta D, Bhattacharyya SR, Shyjumon I, Ghose D, Hippler R. Production and deposition of energetic metal nanocluster ions of silver on Si substrates. Surf. Coatings Technol. 2009;203:2452–2457. doi: 10.1016/j.surfcoat.2009.02.114. DOI

Kylián O, et al. Deposition of Pt nanoclusters by means of gas aggregation cluster source. Mater. Lett. 2012;79:229–231. doi: 10.1016/j.matlet.2012.04.022. DOI

Zhao J, et al. Formation Mechanism of Fe Nanocubes by Magnetron Sputtering Inert Gas Condensation. ACS Nano. 2016;10:4684–4694. doi: 10.1021/acsnano.6b01024. PubMed DOI

Belić D, Chantry RL, Li ZY, Brown SA. Ag-Au nanoclusters: Structure and phase segregation. Appl. Phys. Lett. 2011;99:171914. doi: 10.1063/1.3656244. DOI

Velázquez-Palenzuela A, et al. The enhanced activity of mass-selected PtxGd nanoparticles for oxygen electroreduction. J. Catal. 2015;328:297–307. doi: 10.1016/j.jcat.2014.12.012. DOI

Chen B, ten Brink GH, Palasantzas G, Kooi BJ. Size-dependent and tunable crystallization of GeSbTe phase-change nanoparticles. Sci. Rep. 2016;6:39546. doi: 10.1038/srep39546. PubMed DOI PMC

Vernieres, J. et al. Gas Phase Synthesis of Multifunctional Fe-Based Nanocubes. Adv. Funct. Mater. 1605328, doi:10.1002/adfm.201605328 (2017).

Xu Y-H, Wang J-P. Direct Gas-Phase Synthesis of Heterostructured Nanoparticles through Phase Separation and Surface Segregation. Adv. Mater. 2008;20:994–999. doi: 10.1002/adma.200602895. DOI

Tchaplyguine M, Andersson T, Zhang C, Björneholm O. Core-shell structure disclosed in self-assembled Cu-Ag nanoalloy particles. J. Chem. Phys. 2013;138:104303. doi: 10.1063/1.4794045. PubMed DOI

Llamosa D, et al. The ultimate step towards a tailored engineering of core@shell and core@shell@shell nanoparticles. Nanoscale. 2014;6:13483–13486. doi: 10.1039/C4NR02913E. PubMed DOI

Caillard A, et al. PdPt catalyst synthesized using a gas aggregation source and magnetron sputtering for fuel cell electrodes. J. Phys. D. Appl. Phys. 2015;48:475302. doi: 10.1088/0022-3727/48/47/475302. DOI

Mayoral A, Llamosa D, Huttel Y. A novel Co@Au structure formed in bimetallic core@shell nanoparticles. Chem. Commun. 2015;51:8442–8445. doi: 10.1039/C5CC00774G. PubMed DOI

Elsukova A, et al. Structure, morphology, and aging of Ag-Fe dumbbell nanoparticles. Phys. status solidi. 2011;208:2437–2442. doi: 10.1002/pssa.201127104. DOI

Grammatikopoulos P, et al. Kinetic trapping through coalescence and the formation of patterned Ag–Cu nanoparticles. Nanoscale. 2016;8:9780–9790. doi: 10.1039/C5NR08256K. PubMed DOI

Li X, Niitsoo O, Couzis A. Electrostatically assisted fabrication of silver–dielectric core/shell nanoparticles thin film capacitor with uniform metal nanoparticle distribution and controlled spacing. J. Colloid Interface Sci. 2016;465:333–341. doi: 10.1016/j.jcis.2015.11.035. PubMed DOI

Wang Y, et al. Fabrication and high-performance microwave absorption of Ni@SnO2@PPy Core-Shell composite. Synth. Met. 2016;220:347–355. doi: 10.1016/j.synthmet.2016.07.005. DOI

Zhou W, et al. Dielectric properties and thermal conductivity of core-shell structured Ni@NiO/poly(vinylidene fluoride) composites. J. Alloys Compd. 2017;693:1–8. doi: 10.1016/j.jallcom.2016.09.178. DOI

Chaudhary RP, Mohanty SK, Koymen AR. Novel method for synthesis of Fe core and C shell magnetic nanoparticles. Carbon N. Y. 2014;79:67–73. doi: 10.1016/j.carbon.2014.07.043. DOI

Lei P, Girshick SL. PEGylation of gold-decorated silica nanoparticles in the aerosol phase. Nanotechnology. 2013;24:335602. doi: 10.1088/0957-4484/24/33/335602. PubMed DOI

Kylián O, Choukourov A, Biederman H. Nanostructured plasma polymers. Thin Solid Films. 2013;548:1–17. doi: 10.1016/j.tsf.2013.09.003. DOI

Biederman, H. Plasma Polymer Films. (Imperial College Press, 2004).

Kuzminova A, et al. From super-hydrophilic to super-hydrophobic surfaces using plasma polymerization combined with gas aggregation source of nanoparticles. Vacuum. 2014;110:58–61. doi: 10.1016/j.vacuum.2014.08.014. DOI

Shelemin a, et al. Preparation of biomimetic nano-structured films with multi-scale roughness. J. Phys. D. Appl. Phys. 2016;49:254001. doi: 10.1088/0022-3727/49/25/254001. DOI

Arkill KP, Mantell JM, Plant SR, Verkade P, Palmer RE. Using size-selected gold clusters on graphene oxide films to aid cryo-transmission electron tomography alignment. Sci. Rep. 2015;5:9234. doi: 10.1038/srep09234. PubMed DOI PMC

Kratochvíl J, Kuzminova A, Kylián O, Biederman H. Comparison of magnetron sputtering and gas aggregation nanoparticle source used for fabrication of silver nanoparticle films. Surf. Coatings Technol. 2015;275:296–302. doi: 10.1016/j.surfcoat.2015.05.003. DOI

Takele H, et al. Tuning of electrical and structural properties of metal-polymer nanocomposite films prepared by co-evaporation technique. Appl. Phys. A. 2008;92:345–350. doi: 10.1007/s00339-008-4524-0. DOI

Despax B, Raynaud P. Deposition of ‘Polysiloxane’ Thin Films Containing Silver Particles by an RF Asymmetrical Discharge. Plasma Process. Polym. 2007;4:127–134. doi: 10.1002/ppap.200600083. DOI

Saulou C, et al. Plasma deposition of organosilicon polymer thin films with embedded nanosilver for prevention of microbial adhesion. Appl. Surf. Sci. 2009;256:S35–S39. doi: 10.1016/j.apsusc.2009.04.118. DOI

Peter T, et al. Metal/polymer nanocomposite thin films prepared by plasma polymerization and high pressure magnetron sputtering. Surf. Coatings Technol. 2011;205:S38–S41. doi: 10.1016/j.surfcoat.2010.12.045. DOI

Alissawi N, et al. Plasma-polymerized HMDSO coatings to adjust the silver ion release properties of Ag/polymer nanocomposites. J. Nanoparticle Res. 2013;15:2080. doi: 10.1007/s11051-013-2080-9. DOI

Benelmekki M, et al. A facile single-step synthesis of ternary multicore magneto-plasmonic nanoparticles. Nanoscale. 2014;6:3532. doi: 10.1039/C3NR06114K. PubMed DOI

Benelmekki M, et al. On the formation of ternary metallic-dielectric multicore-shell nanoparticles by inert-gas condensation method. Mater. Chem. Phys. 2015;151:275–281. doi: 10.1016/j.matchemphys.2014.11.066. DOI

Kilicaslan A, et al. Optical emission spectroscopy of microwave-plasmas at atmospheric pressure applied to the growth of organosilicon and organotitanium nanopowders. J. Appl. Phys. 2014;115:113301. doi: 10.1063/1.4868899. DOI

Maicu M, et al. Synthesis and deposition of metal nanoparticles by gas condensation process. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 2014;32:02B113. doi: 10.1116/1.4859260. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...