Single-step generation of metal-plasma polymer multicore@shell nanoparticles from the gas phase
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28819149
PubMed Central
PMC5561131
DOI
10.1038/s41598-017-08274-6
PII: 10.1038/s41598-017-08274-6
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Nanoparticles composed of multiple silver cores and a plasma polymer shell (multicore@shell) were prepared in a single step with a gas aggregation cluster source operating with Ar/hexamethyldisiloxane mixtures and optionally oxygen. The size distribution of the metal inclusions as well as the chemical composition and the thickness of the shells were found to be controlled by the composition of the working gas mixture. Shell matrices ranging from organosilicon plasma polymer to nearly stoichiometric SiO2 were obtained. The method allows facile fabrication of multicore@shell nanoparticles with tailored functional properties, as demonstrated here with the optical response.
Zobrazit více v PubMed
Binns C. Nanoclusters deposited on surfaces. Surf. Sci. Rep. 2001;44:1–49. doi: 10.1016/S0167-5729(01)00015-2. DOI
Cassidy C, et al. Inoculation of silicon nanoparticles with silver atoms. Sci. Rep. 2013;3:3083. doi: 10.1038/srep03083. PubMed DOI PMC
Kortshagen UR, et al. Nonthermal Plasma Synthesis of Nanocrystals: Fundamental Principles, Materials, and Applications. Chem. Rev. 2016;116:11061–11127. doi: 10.1021/acs.chemrev.6b00039. PubMed DOI
Wegner K, Piseri P, Tafreshi HV, Milani P. Cluster beam deposition: a tool for nanoscale science and technology. J. Phys. D. Appl. Phys. 2006;39:R439–R459. doi: 10.1088/0022-3727/39/22/R02. DOI
Solař P, et al. Nylon-sputtered plasma polymer particles produced by a semi-hollow cathode gas aggregation source. Vacuum. 2015;111:124–130. doi: 10.1016/j.vacuum.2014.09.023. DOI
Haberland H, Karrais M, Mall M, Thurner Y. Thin films from energetic cluster impact: A feasibility study. J. Vac. Sci. Technol. A. 1992;10:3266–3271. doi: 10.1116/1.577853. DOI
Datta D, Bhattacharyya SR, Shyjumon I, Ghose D, Hippler R. Production and deposition of energetic metal nanocluster ions of silver on Si substrates. Surf. Coatings Technol. 2009;203:2452–2457. doi: 10.1016/j.surfcoat.2009.02.114. DOI
Kylián O, et al. Deposition of Pt nanoclusters by means of gas aggregation cluster source. Mater. Lett. 2012;79:229–231. doi: 10.1016/j.matlet.2012.04.022. DOI
Zhao J, et al. Formation Mechanism of Fe Nanocubes by Magnetron Sputtering Inert Gas Condensation. ACS Nano. 2016;10:4684–4694. doi: 10.1021/acsnano.6b01024. PubMed DOI
Belić D, Chantry RL, Li ZY, Brown SA. Ag-Au nanoclusters: Structure and phase segregation. Appl. Phys. Lett. 2011;99:171914. doi: 10.1063/1.3656244. DOI
Velázquez-Palenzuela A, et al. The enhanced activity of mass-selected PtxGd nanoparticles for oxygen electroreduction. J. Catal. 2015;328:297–307. doi: 10.1016/j.jcat.2014.12.012. DOI
Chen B, ten Brink GH, Palasantzas G, Kooi BJ. Size-dependent and tunable crystallization of GeSbTe phase-change nanoparticles. Sci. Rep. 2016;6:39546. doi: 10.1038/srep39546. PubMed DOI PMC
Vernieres, J. et al. Gas Phase Synthesis of Multifunctional Fe-Based Nanocubes. Adv. Funct. Mater. 1605328, doi:10.1002/adfm.201605328 (2017).
Xu Y-H, Wang J-P. Direct Gas-Phase Synthesis of Heterostructured Nanoparticles through Phase Separation and Surface Segregation. Adv. Mater. 2008;20:994–999. doi: 10.1002/adma.200602895. DOI
Tchaplyguine M, Andersson T, Zhang C, Björneholm O. Core-shell structure disclosed in self-assembled Cu-Ag nanoalloy particles. J. Chem. Phys. 2013;138:104303. doi: 10.1063/1.4794045. PubMed DOI
Llamosa D, et al. The ultimate step towards a tailored engineering of core@shell and core@shell@shell nanoparticles. Nanoscale. 2014;6:13483–13486. doi: 10.1039/C4NR02913E. PubMed DOI
Caillard A, et al. PdPt catalyst synthesized using a gas aggregation source and magnetron sputtering for fuel cell electrodes. J. Phys. D. Appl. Phys. 2015;48:475302. doi: 10.1088/0022-3727/48/47/475302. DOI
Mayoral A, Llamosa D, Huttel Y. A novel Co@Au structure formed in bimetallic core@shell nanoparticles. Chem. Commun. 2015;51:8442–8445. doi: 10.1039/C5CC00774G. PubMed DOI
Elsukova A, et al. Structure, morphology, and aging of Ag-Fe dumbbell nanoparticles. Phys. status solidi. 2011;208:2437–2442. doi: 10.1002/pssa.201127104. DOI
Grammatikopoulos P, et al. Kinetic trapping through coalescence and the formation of patterned Ag–Cu nanoparticles. Nanoscale. 2016;8:9780–9790. doi: 10.1039/C5NR08256K. PubMed DOI
Li X, Niitsoo O, Couzis A. Electrostatically assisted fabrication of silver–dielectric core/shell nanoparticles thin film capacitor with uniform metal nanoparticle distribution and controlled spacing. J. Colloid Interface Sci. 2016;465:333–341. doi: 10.1016/j.jcis.2015.11.035. PubMed DOI
Wang Y, et al. Fabrication and high-performance microwave absorption of Ni@SnO2@PPy Core-Shell composite. Synth. Met. 2016;220:347–355. doi: 10.1016/j.synthmet.2016.07.005. DOI
Zhou W, et al. Dielectric properties and thermal conductivity of core-shell structured Ni@NiO/poly(vinylidene fluoride) composites. J. Alloys Compd. 2017;693:1–8. doi: 10.1016/j.jallcom.2016.09.178. DOI
Chaudhary RP, Mohanty SK, Koymen AR. Novel method for synthesis of Fe core and C shell magnetic nanoparticles. Carbon N. Y. 2014;79:67–73. doi: 10.1016/j.carbon.2014.07.043. DOI
Lei P, Girshick SL. PEGylation of gold-decorated silica nanoparticles in the aerosol phase. Nanotechnology. 2013;24:335602. doi: 10.1088/0957-4484/24/33/335602. PubMed DOI
Kylián O, Choukourov A, Biederman H. Nanostructured plasma polymers. Thin Solid Films. 2013;548:1–17. doi: 10.1016/j.tsf.2013.09.003. DOI
Biederman, H. Plasma Polymer Films. (Imperial College Press, 2004).
Kuzminova A, et al. From super-hydrophilic to super-hydrophobic surfaces using plasma polymerization combined with gas aggregation source of nanoparticles. Vacuum. 2014;110:58–61. doi: 10.1016/j.vacuum.2014.08.014. DOI
Shelemin a, et al. Preparation of biomimetic nano-structured films with multi-scale roughness. J. Phys. D. Appl. Phys. 2016;49:254001. doi: 10.1088/0022-3727/49/25/254001. DOI
Arkill KP, Mantell JM, Plant SR, Verkade P, Palmer RE. Using size-selected gold clusters on graphene oxide films to aid cryo-transmission electron tomography alignment. Sci. Rep. 2015;5:9234. doi: 10.1038/srep09234. PubMed DOI PMC
Kratochvíl J, Kuzminova A, Kylián O, Biederman H. Comparison of magnetron sputtering and gas aggregation nanoparticle source used for fabrication of silver nanoparticle films. Surf. Coatings Technol. 2015;275:296–302. doi: 10.1016/j.surfcoat.2015.05.003. DOI
Takele H, et al. Tuning of electrical and structural properties of metal-polymer nanocomposite films prepared by co-evaporation technique. Appl. Phys. A. 2008;92:345–350. doi: 10.1007/s00339-008-4524-0. DOI
Despax B, Raynaud P. Deposition of ‘Polysiloxane’ Thin Films Containing Silver Particles by an RF Asymmetrical Discharge. Plasma Process. Polym. 2007;4:127–134. doi: 10.1002/ppap.200600083. DOI
Saulou C, et al. Plasma deposition of organosilicon polymer thin films with embedded nanosilver for prevention of microbial adhesion. Appl. Surf. Sci. 2009;256:S35–S39. doi: 10.1016/j.apsusc.2009.04.118. DOI
Peter T, et al. Metal/polymer nanocomposite thin films prepared by plasma polymerization and high pressure magnetron sputtering. Surf. Coatings Technol. 2011;205:S38–S41. doi: 10.1016/j.surfcoat.2010.12.045. DOI
Alissawi N, et al. Plasma-polymerized HMDSO coatings to adjust the silver ion release properties of Ag/polymer nanocomposites. J. Nanoparticle Res. 2013;15:2080. doi: 10.1007/s11051-013-2080-9. DOI
Benelmekki M, et al. A facile single-step synthesis of ternary multicore magneto-plasmonic nanoparticles. Nanoscale. 2014;6:3532. doi: 10.1039/C3NR06114K. PubMed DOI
Benelmekki M, et al. On the formation of ternary metallic-dielectric multicore-shell nanoparticles by inert-gas condensation method. Mater. Chem. Phys. 2015;151:275–281. doi: 10.1016/j.matchemphys.2014.11.066. DOI
Kilicaslan A, et al. Optical emission spectroscopy of microwave-plasmas at atmospheric pressure applied to the growth of organosilicon and organotitanium nanopowders. J. Appl. Phys. 2014;115:113301. doi: 10.1063/1.4868899. DOI
Maicu M, et al. Synthesis and deposition of metal nanoparticles by gas condensation process. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. 2014;32:02B113. doi: 10.1116/1.4859260. DOI