Nanomechanical mechanisms of Lyme disease spirochete motility enhancement in extracellular matrix

. 2021 Mar 01 ; 4 (1) : 268. [epub] 20210301

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33649506

Grantová podpora
V 584 Austrian Science Fund FWF - Austria

Odkazy

PubMed 33649506
PubMed Central PMC7921401
DOI 10.1038/s42003-021-01783-1
PII: 10.1038/s42003-021-01783-1
Knihovny.cz E-zdroje

As opposed to pathogens passively circulating in the body fluids of their host, pathogenic species within the Spirochetes phylum are able to actively coordinate their movement in the host to cause systemic infections. Based on the unique morphology and high motility of spirochetes, we hypothesized that their surface adhesive molecules might be suitably adapted to aid in their dissemination strategies. Designing a system that mimics natural environmental signals, which many spirochetes face during their infectious cycle, we observed that a subset of their surface proteins, particularly Decorin binding protein (Dbp) A/B, can strongly enhance the motility of spirochetes in the extracellular matrix of the host. Using single-molecule force spectroscopy, we disentangled the mechanistic details of DbpA/B and decorin/laminin interactions. Our results show that spirochetes are able to leverage a wide variety of adhesion strategies through force-tuning transient molecular binding to extracellular matrix components, which concertedly enhance spirochetal dissemination through the host.

Zobrazit více v PubMed

Klemm P, Schembri MA. Bacterial adhesins: function and structure. Int. J. Med. Microbiol. 2000;290:27–35. doi: 10.1016/S1438-4221(00)80102-2. PubMed DOI

Charon NW, Goldstein SF. Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. Annu. Rev. Genet. 2002;36:47–73. doi: 10.1146/annurev.genet.36.041602.134359. PubMed DOI

Hyde, J. A. Borrelia burgdorferi keeps moving and carries on: a review of borrelial dissemination and invasion. Front. Immunol. 8, 114 (2017). PubMed PMC

Brissette CA, Bykowski T, Cooley AE, Bowman A, Stevenson B. Borrelia burgdorferi RevA antigen binds host fibronectin. Infect. Immun. 2009;77:2802–2812. doi: 10.1128/IAI.00227-09. PubMed DOI PMC

Probert WS, Johnson BJ. Identification of a 47 kDa fibronectin-binding protein expressed by Borrelia burgdorferi isolate B31. Mol. Microbiol. 1998;30:1003–1015. doi: 10.1046/j.1365-2958.1998.01127.x. PubMed DOI

Salo J, Loimaranta V, Lahdenne P, Viljanen MK, Hytönen J. Decorin binding by DbpA and B of Borrelia garinii, Borrelia afzelii, and Borrelia burgdorferi sensu stricto. J. Infect. Dis. 2011;204:65–73. doi: 10.1093/infdis/jir207. PubMed DOI PMC

Imai DM, et al. The early dissemination defect attributed to disruption of decorin-binding proteins Is abolished in chronic murine Lyme borreliosis. Infect. Immun. 2013;81:1663–1673. doi: 10.1128/IAI.01359-12. PubMed DOI PMC

Weening EH, et al. Borrelia burgdorferi lacking DbpBA exhibits an early survival defect during experimental infection. Infect. Immun. 2008;76:5694–5705. doi: 10.1128/IAI.00690-08. PubMed DOI PMC

Byram R, et al. Borrelia burgdorferi RevA significantly affects pathogenicity and host response in the mouse model of Lyme Disease. Infect. Immun. 2015;83:3675–3683. doi: 10.1128/IAI.00530-15. PubMed DOI PMC

Seshu J, et al. Inactivation of the fibronectin-binding adhesin gene bbk32 significantly attenuates the infectivity potential of Borrelia burgdorferi. Mol. Microbiol. 2006;59:1591–1601. doi: 10.1111/j.1365-2958.2005.05042.x. PubMed DOI

Zhang K, Li C. Measuring Borrelia burgdorferi motility and chemotaxis. Methods Mol. Biol. 2018;1690:313–317. doi: 10.1007/978-1-4939-7383-5_23. PubMed DOI

Bhide MR, et al. Sensitivity of Borrelia genospecies to serum complement from different animals and human: a host—pathogen relationship. FEMS Immunol. Med. Microbiol. 2005;43:165–172. doi: 10.1016/j.femsim.2004.07.012. PubMed DOI

Perner J, et al. Acquisition of exogenous haem is essential for tick reproduction. Elife. 2016;5:e12318. doi: 10.7554/eLife.12318. PubMed DOI PMC

Coburn J, Leong J, Chaconas G. Illuminating the roles of the Borrelia burgdorferi adhesins. Trends Microbiol. 2013;21:372–379. doi: 10.1016/j.tim.2013.06.005. PubMed DOI PMC

Florin EL, Moy VT, Gaub HE. Adhesion forces between individual ligand-receptor pairs. Science. 1994;264:415–417. doi: 10.1126/science.8153628. PubMed DOI

Hinterdorfer P, Baumgartner W, Gruber HJ, Schilcher K, Schindler H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc. Natl Acad. Sci. USA. 1996;93:3477–3481. doi: 10.1073/pnas.93.8.3477. PubMed DOI PMC

Lee GU, Chrisey LA, Colton RJ. Direct measurement of the forces between complementary strands of DNA. Science. 1994;266:771–773. doi: 10.1126/science.7973628. PubMed DOI

Dammer U, et al. Binding strength between cell adhesion proteoglycans measured by atomic force microscopy. Science. 1995;267:1173–1175. doi: 10.1126/science.7855599. PubMed DOI

Odermatt PD, et al. Overlapping and essential roles for molecular and mechanical mechanisms in mycobacterial cell division. Nat. Phys. 2020;16:57–62. doi: 10.1038/s41567-019-0679-1. PubMed DOI PMC

Doktycz MJ, et al. AFM imaging of bacteria in liquid media immobilized on gelatin coated mica surfaces. Ultramicroscopy. 2003;97:209–216. doi: 10.1016/S0304-3991(03)00045-7. PubMed DOI

Oh YJ, et al. Curli mediate bacterial adhesion to fibronectin via tensile multiple bonds. Sci. Rep. 2016;6:1–8. doi: 10.1038/s41598-016-0001-8. PubMed DOI PMC

Dufrêne YF. Atomic force microscopy, a powerful tool in microbiology. J. Bacteriol. 2002;184:5205–5213. doi: 10.1128/JB.184.19.5205-5213.2002. PubMed DOI PMC

Oh YJ, et al. Characterization of curli A production on living bacterial surfaces by scanning probe microscopy. Biophys. J. 2012;103:1666–1671. doi: 10.1016/j.bpj.2012.09.004. PubMed DOI PMC

Bell GI. Models for the specific adhesion of cells to cells. Science. 1978;200:618–627. doi: 10.1126/science.347575. PubMed DOI

Evans E, Ritchie K. Dynamic strength of molecular adhesion bonds. Biophys. J. 1997;72:1541–1555. doi: 10.1016/S0006-3495(97)78802-7. PubMed DOI PMC

Sieben C, et al. Influenza virus binds its host cell using multiple dynamic interactions. Proc. Natl Acad. Sci. USA. 2012;109:13626–13631. doi: 10.1073/pnas.1120265109. PubMed DOI PMC

Rankl C, et al. Multiple receptors involved in human rhinovirus attachment to live cells. Proc. Natl Acad. Sci. USA. 2008;105:17778–17783. doi: 10.1073/pnas.0806451105. PubMed DOI PMC

Baumgartner W, Gruber HJ, Hinterdorfer P, Drenckhahn D. Affinity of trans-interacting VE-cadherin determined by atomic force microscopy. Single Mol. 2000;1:119–122. doi: 10.1002/1438-5171(200006)1:2<119::AID-SIMO119>3.0.CO;2-K. DOI

Fritz J, Katopodis AG, Kolbinger F, Anselmetti D. Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy. Proc. Natl Acad. Sci. USA. 1998;95:12283–12288. doi: 10.1073/pnas.95.21.12283. PubMed DOI PMC

Niddam AF, et al. Plasma fibronectin stabilizes Borrelia burgdorferi–endothelial interactions under vascular shear stress by a catch-bond mechanism. Proc. Natl Acad. Sci. USA. 2017;114:E3490–E3498. doi: 10.1073/pnas.1615007114. PubMed DOI PMC

Ebady R, et al. Biomechanics of Borrelia burgdorferi vascular interactions. Cell Rep. 2016;16:2593–2604. doi: 10.1016/j.celrep.2016.08.013. PubMed DOI PMC

Harman MW, et al. The heterogeneous motility of the Lyme disease spirochete in gelatin mimics dissemination through tissue. Proc. Natl Acad. Sci. USA. 2012;109:3059–3064. doi: 10.1073/pnas.1114362109. PubMed DOI PMC

Geoghegan JA, Dufrêne YF. Mechanomicrobiology: how mechanical forces activate Staphylococcus aureus adhesion. Trends Microbiol. 2018;26:645–648. doi: 10.1016/j.tim.2018.05.004. PubMed DOI

Tilly K, Bestor A, Rosa PA. Lipoprotein succession in Borrelia burgdorferi: similar but distinct roles for OspC and VlsE at different stages of mammalian infection. Mol. Microbiol. 2013;89:216–227. doi: 10.1111/mmi.12271. PubMed DOI PMC

Beeby M, et al. Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. Proc. Natl Acad. Sci. USA. 2016;113:E1917–E1926. doi: 10.1073/pnas.1518952113. PubMed DOI PMC

Benoit VM, Fischer JR, Lin Y-P, Parveen N, Leong JM. Allelic variation of the Lyme disease spirochete adhesin DbpA influences spirochetal binding to decorin, dermatan sulfate, and mammalian cells. Infect. Immun. 2011;79:3501–3509. doi: 10.1128/IAI.00163-11. PubMed DOI PMC

Herman-Bausier, P., El-Kirat-Chatel, S., Foster, T. J., Geoghegan, J. A. & Dufrêne, Y. F. Staphylococcus aureus fibronectin-binding protein A mediates cell-cell adhesion through low-affinity homophilic bonds. mBio6, e00413–e00415 (2015). PubMed PMC

Milles LF, Schulten K, Gaub HE, Bernardi RC. Molecular mechanism of extreme mechanostability in a pathogen adhesin. Science. 2018;359:1527–1533. doi: 10.1126/science.aar2094. PubMed DOI PMC

Herman-Bausier P, et al. Staphylococcus aureus clumping factor A is a force-sensitive molecular switch that activates bacterial adhesion. Proc. Natl Acad. Sci. USA. 2018;115:5564–5569. doi: 10.1073/pnas.1718104115. PubMed DOI PMC

Malawista, S. E. & de Boisfleury Chevance, A. Clocking the Lyme spirochete. PLoS ONE3, e1633 (2008). PubMed PMC

Dufrêne YF, Persat A. Mechanomicrobiology: how bacteria sense and respond to forces. Nat. Rev. Microbiol. 2020;18:227–240. doi: 10.1038/s41579-019-0314-2. PubMed DOI

Sycuro LK, et al. Relaxation of peptidoglycan cross-linking promotes Helicobacter pylori’s helical shape and stomach colonization. Cell. 2010;141:822–833. doi: 10.1016/j.cell.2010.03.046. PubMed DOI PMC

Goldstein SF, Charon NW. Motility of the spirochete Leptospira. Cell Motil. Cytoskeleton. 1988;9:101–110. doi: 10.1002/cm.970090202. PubMed DOI

Heikkilä T, et al. Species-specific serodiagnosis of Lyme arthritis and neuroborreliosis due to Borrelia burgdorferi sensu stricto, B. afzelii, and B. garinii by using decorin binding protein A. J. Clin. Microbiol. 2002;40:453–460. doi: 10.1128/JCM.40.02.453-460.2002. PubMed DOI PMC

Fischer JR, LeBlanc KT, Leong JM. Fibronectin binding protein BBK32 of the Lyme disease spirochete promotes bacterial attachment to glycosaminoglycans. Infect. Immun. 2006;74:435–441. doi: 10.1128/IAI.74.1.435-441.2006. PubMed DOI PMC

Samuels DS. Electrotransformation of the Spirochete Borrelia burgdorferi. Methods Mol. Biol. 1995;47:253–259. PubMed PMC

Kröber T, Guerin PM. In vitro feeding assays for hard ticks. Trends Parasitol. 2007;23:445–449. doi: 10.1016/j.pt.2007.07.010. PubMed DOI

Tsao JI, et al. An ecological approach to preventing human infection: vaccinating wild mouse reservoirs intervenes in the Lyme disease cycle. Proc. Natl Acad. Sci. USA. 2004;101:18159–18164. doi: 10.1073/pnas.0405763102. PubMed DOI PMC

Indexing, I. A new method for the determination of dissociation constant (kd) on the binding of CA19-9 to its antibody in type 2diabetic patients by enzyme linked immunosorbent assay (ELISA) with some modifications.

Wildling L, et al. Linking of sensor molecules with amino groups to amino-functionalized AFM tips. Bioconjug. Chem. 2011;22:1239–1248. doi: 10.1021/bc200099t. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...