Host tropism determination by convergent evolution of immunological evasion in the Lyme disease system
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R21 AI144891
NIAID NIH HHS - United States
R01 AI121401
NIAID NIH HHS - United States
R21 AI146381
NIAID NIH HHS - United States
U01 CK000509
NCEZID CDC HHS - United States
T32 HL007974
NHLBI NIH HHS - United States
PubMed
34324600
PubMed Central
PMC8354441
DOI
10.1371/journal.ppat.1009801
PII: PPATHOGENS-D-21-00923
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny genetika metabolismus MeSH
- biologická evoluce MeSH
- Borrelia burgdorferi genetika růst a vývoj imunologie MeSH
- druhová specificita MeSH
- imunitní únik fyziologie MeSH
- interakce hostitele a patogenu fyziologie MeSH
- klíšťata MeSH
- komplement - faktor H metabolismus MeSH
- křepelky a křepelovití MeSH
- lidé MeSH
- lymeská nemoc imunologie přenos MeSH
- myši MeSH
- tropismus virů fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- bakteriální proteiny MeSH
- cold shock protein CS7.4, Bacteria MeSH Prohlížeč
- komplement - faktor H MeSH
Pathogens possess the ability to adapt and survive in some host species but not in others-an ecological trait known as host tropism. Transmitted through ticks and carried mainly by mammals and birds, the Lyme disease (LD) bacterium is a well-suited model to study such tropism. Three main causative agents of LD, Borrelia burgdorferi, B. afzelii, and B. garinii, vary in host ranges through mechanisms eluding characterization. By feeding ticks infected with different Borrelia species, utilizing feeding chambers and live mice and quail, we found species-level differences in bacterial transmission. These differences localize on the tick blood meal, and specifically complement, a defense in vertebrate blood, and a polymorphic bacterial protein, CspA, which inactivates complement by binding to a host complement inhibitor, Factor H (FH). CspA selectively confers bacterial transmission to vertebrates that produce FH capable of allele-specific recognition. CspA is the only member of the Pfam54 gene family to exhibit host-specific FH-binding. Phylogenetic analyses revealed convergent evolution as the driver of such uniqueness, and that FH-binding likely emerged during the last glacial maximum. Our results identify a determinant of host tropism in Lyme disease infection, thus defining an evolutionary mechanism that shapes host-pathogen associations.
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Czech Academy of Sciences České Budějovice Czech Republic
Zobrazit více v PubMed
Kilpatrick AM, Altizer S. Disease Ecology. Nature Education Knowledge. 2010;3(10):55.
Killilea ME, Swei A, Lane RS, Briggs CJ, Ostfeld RS. Spatial dynamics of lyme disease: a review. Ecohealth. 2008;5(2):167–95. doi: 10.1007/s10393-008-0171-3 PubMed DOI
Douam F, Gaska JM, Winer BY, Ding Q, von Schaewen M, Ploss A. Genetic Dissection of the Host Tropism of Human-Tropic Pathogens. Annual review of genetics. 2015;49:21–45. doi: 10.1146/annurev-genet-112414-054823 PubMed DOI PMC
Kurtenbach K, Hanincova K, Tsao JI, Margos G, Fish D, Ogden NH. Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nature reviews Microbiology. 2006;4(9):660–9. doi: 10.1038/nrmicro1475 PubMed DOI
Steere AC, Strle F, Wormser GP, Hu LT, Branda JA, Hovius JW, et al.. Lyme borreliosis. Nature reviews Disease primers. 2016;2:16090. doi: 10.1038/nrdp.2016.90 PubMed DOI PMC
Radolf JD, Caimano MJ, Stevenson B, Hu LT. Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nature reviews Microbiology. 2012;10(2):87–99. doi: 10.1038/nrmicro2714 PubMed DOI PMC
Brisson D, Drecktrah D, Eggers CH, Samuels DS. Genetics of Borrelia burgdorferi. Annual review of genetics. 2012;46:515–36. doi: 10.1146/annurev-genet-011112-112140 PubMed DOI PMC
Kurokawa C, Lynn GE, Pedra JHF, Pal U, Narasimhan S, Fikrig E. Interactions between Borrelia burgdorferi and ticks. Nature reviews Microbiology. 2020;18(10):587–600. doi: 10.1038/s41579-020-0400-5 PubMed DOI PMC
Tufts DM, Hart TM, Chen GF, Kolokotronis SO, Diuk-Wasser MA, Lin YP. Outer surface protein polymorphisms linked to host-spirochete association in Lyme borreliae. Molecular microbiology. 2019; 111(4): 868–82. doi: 10.1111/mmi.14209 PubMed DOI PMC
Lin YP, Diuk-Wasser MA, Stevenson B, Kraiczy P. Complement Evasion Contributes to Lyme Borreliae-Host Associations. Trends in parasitology. 2020;36(7):634–45. doi: 10.1016/j.pt.2020.04.011 PubMed DOI PMC
Zhou W, Brisson D. Interactions between host immune response and antigenic variation that control Borrelia burgdorferi population dynamics. Microbiology (Reading). 2017;163(8):1179–88. doi: 10.1099/mic.0.000513 PubMed DOI PMC
Gomez-Chamorro A, Battilotti F, Cayol C, Mappes T, Koskela E, Boulanger N, et al.. Susceptibility to infection with Borrelia afzelii and TLR2 polymorphism in a wild reservoir host. Scientific reports. 2019;9(1):6711. doi: 10.1038/s41598-019-43160-3 PubMed DOI PMC
Zipfel PF, Skerka C. Complement regulators and inhibitory proteins. Nature reviews Immunology. 2009;9(10):729–40. doi: 10.1038/nri2620 PubMed DOI
Blom AM. The role of complement inhibitors beyond controlling inflammation. Journal of internal medicine. 2017;282(2):116–28. doi: 10.1111/joim.12606 PubMed DOI
Jozsi M, Zipfel PF. Factor H family proteins and human diseases. Trends in immunology. 2008;29(8):380–7. doi: 10.1016/j.it.2008.04.008 PubMed DOI
Ermert D, Ram S, Laabei M. The hijackers guide to escaping complement: Lessons learned from pathogens. Molecular immunology. 2019;114:49–61. doi: 10.1016/j.molimm.2019.07.018 PubMed DOI
Dulipati V, Meri S, Panelius J. Complement evasion strategies of Borrelia burgdorferi sensu lato. FEBS letters. 2020;594(16):2645–56. doi: 10.1002/1873-3468.13894 PubMed DOI
Skare JT, Garcia BL. Complement Evasion by Lyme Disease Spirochetes. Trends in microbiology. 2020; 28(11): 889–899. doi: 10.1016/j.tim.2020.05.004 PubMed DOI PMC
Lin YP, Frye AM, Nowak TA, Kraiczy P. New Insights Into CRASP-Mediated Complement Evasion in the Lyme Disease Enzootic Cycle. Frontiers in cellular and infection microbiology. 2020;10:1. doi: 10.3389/fcimb.2020.00001 PubMed DOI PMC
Kraiczy P, Stevenson B. Complement regulator-acquiring surface proteins of Borrelia burgdorferi: Structure, function and regulation of gene expression. Ticks and tick-borne diseases. 2013;4(1–2):26–34. doi: 10.1016/j.ttbdis.2012.10.039 PubMed DOI PMC
Hart T, Nguyen NTT, Nowak NA, Zhang F, Linhardt RJ, Diuk-Wasser M, et al.. Polymorphic factor H-binding activity of CspA protects Lyme borreliae from the host complement in feeding ticks to facilitate tick-to-host transmission. PLoS pathogens. 2018;14(5):e1007106. doi: 10.1371/journal.ppat.1007106 PubMed DOI PMC
Kraiczy P, Hellwage J, Skerka C, Becker H, Kirschfink M, Simon MM, et al.. Complement resistance of Borrelia burgdorferi correlates with the expression of BbCRASP-1, a novel linear plasmid-encoded surface protein that interacts with human factor H and FHL-1 and is unrelated to Erp proteins. The Journal of biological chemistry. 2004;279(4):2421–9. doi: 10.1074/jbc.M308343200 PubMed DOI
Bykowski T, Woodman ME, Cooley AE, Brissette CA, Brade V, Wallich R, et al.. Coordinated expression of Borrelia burgdorferi complement regulator-acquiring surface proteins during the Lyme disease spirochete’s mammal-tick infection cycle. Infection and immunity. 2007;75(9):4227–36. doi: 10.1128/IAI.00604-07 PubMed DOI PMC
Wallich R, Pattathu J, Kitiratschky V, Brenner C, Zipfel PF, Brade V, et al.. Identification and functional characterization of complement regulator-acquiring surface protein 1 of the Lyme disease spirochetes Borrelia afzelii and Borrelia garinii. Infection and immunity. 2005;73(4):2351–9. doi: 10.1128/IAI.73.4.2351-2359.2005 PubMed DOI PMC
Hammerschmidt C, Koenigs A, Siegel C, Hallstrom T, Skerka C, Wallich R, et al.. Versatile roles of CspA orthologs in complement inactivation of serum-resistant Lyme disease spirochetes. Infection and immunity. 2014;82(1):380–92. doi: 10.1128/IAI.01094-13 PubMed DOI PMC
Marcinkiewicz AL, Dupuis AP 2nd, Zamba-Campero M, Nowak N, Kraiczy P, Ram S, et al.. Blood treatment of Lyme borreliae demonstrates the mechanism of CspZ-mediated complement evasion to promote systemic infection in vertebrate hosts. Cellular microbiology. 2019;21(2):e12998. doi: 10.1111/cmi.12998 PubMed DOI PMC
Isogai E, Tanaka S, Braga IS 3rd, Itakura C, Isogai H, Kimura K, et al.. Experimental Borrelia garinii infection of Japanese quail. Infection and immunity. 1994;62(8):3580–2. doi: 10.1128/iai.62.8.3580-3582.1994 PubMed DOI PMC
Frye AM, Hart TM, Tufts DM, Ram S, Diuk-Wasser MA, Kraiczy P, et al.. A soft tick Ornithodoros moubata salivary protein OmCI is a potent inhibitor to prevent avian complement activation. Ticks and tick-borne diseases. 2020;11(2):101354. doi: 10.1016/j.ttbdis.2019.101354 PubMed DOI PMC
Hart T, Yang X, Pal U, Lin YP. Identification of Lyme borreliae proteins promoting vertebrate host blood-specific spirochete survival in Ixodes scapularis nymphs using artificial feeding chambers. Ticks and tick-borne diseases. 2018;9(5):1057–1063. doi: 10.1016/j.ttbdis.2018.03.033 PubMed DOI PMC
Finnie JA, Stewart RB, Aston WP. A comparison of cobra venom factor-induced depletion of serum C3 in eight different strains of mice. Dev Comp Immunol. 1981;5(4):697–701. doi: 10.1016/s0145-305x(81)80045-6 PubMed DOI
Hallstrom T, Siegel C, Morgelin M, Kraiczy P, Skerka C, Zipfel PF. CspA from Borrelia burgdorferi inhibits the terminal complement pathway. mBio. 2013;4(4):e00481–13. doi: 10.1128/mBio.00481-13 PubMed DOI PMC
Wywial E, Haven J, Casjens SR, Hernandez YA, Singh S, Mongodin EF, et al.. Fast, adaptive evolution at a bacterial host-resistance locus: the PFam54 gene array in Borrelia burgdorferi. Gene. 2009;445(1–2):26–37. doi: 10.1016/j.gene.2009.05.017 PubMed DOI PMC
Qiu WG, Martin CL. Evolutionary genomics of Borrelia burgdorferi sensu lato: findings, hypotheses, and the rise of hybrids. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases. 2014;27:576–93. doi: 10.1016/j.meegid.2014.03.025 PubMed DOI PMC
Walter KS, Carpi G, Caccone A, Diuk-Wasser MA. Genomic insights into the ancient spread of Lyme disease across North America. Nat Ecol Evol. 2017;1(10):1569–76. doi: 10.1038/s41559-017-0282-8 PubMed DOI PMC
O’Keeffe KR, Oppler ZJ, Brisson D. Evolutionary ecology of Lyme Borrelia. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases. 2020:104570. doi: 10.1016/j.meegid.2020.104570 PubMed DOI PMC
Kurtenbach K, De Michelis S, Etti S, Schafer SM, Sewell HS, Brade V, et al.. Host association of Borrelia burgdorferi sensu lato—the key role of host complement. Trends in microbiology. 2002;10(2):74–9. doi: 10.1016/s0966-842x(01)02298-3 PubMed DOI
Ginsberg HS, Buckley PA, Balmforth MG, Zhioua E, Mitra S, Buckley FG. Reservoir competence of native North American birds for the lyme disease spirochete, Borrelia burgdorfieri. Journal of medical entomology. 2005;42(3):445–9. doi: 10.1603/0022-2585(2005)042[0445:RCONNA]2.0.CO;2 PubMed DOI
Heylen D, Adriaensen F, Van Dongen S, Sprong H, Matthysen E. Ecological factors that determine Ixodes ricinus tick burdens in the great tit (Parus major), an avian reservoir of Borrelia burgdorferi s.l. International journal for parasitology. 2013;43(8):603–11. doi: 10.1016/j.ijpara.2013.02.007 PubMed DOI
Heylen DJA, Muller W, Vermeulen A, Sprong H, Matthysen E. Virulence of recurrent infestations with Borrelia-infected ticks in a Borrelia-amplifying bird. Scientific reports. 2015;5:16150. doi: 10.1038/srep16150 PubMed DOI PMC
Heylen D, Fonville M, van Leeuwen AD, Sprong H. Co-infections and transmission dynamics in a tick-borne bacterium community exposed to songbirds. Environ Microbiol. 2016;18(3):988–96. doi: 10.1111/1462-2920.13164 PubMed DOI
Heylen DJ, Sprong H, Krawczyk A, Van Houtte N, Genne D, Gomez-Chamorro A, et al.. Inefficient co-feeding transmission of Borrelia afzelii in two common European songbirds. Scientific reports. 2017;7:39596. doi: 10.1038/srep39596 PubMed DOI PMC
Norte AC, Lopes de Carvalho I, Nuncio MS, Araujo PM, Matthysen E, Albino Ramos J, et al.. Getting under the birds’ skin: tissue tropism of Borrelia burgdorferi s.l. in naturally and experimentally infected avian hosts. Microb Ecol. 2020;79(3):756–69. doi: 10.1007/s00248-019-01442-3 PubMed DOI
Norte AC, Costantini D, Araujo PM, Eens M, Ramos JA, Heylen D. Experimental infection by microparasites affects the oxidative balance in their avian reservoir host the blackbird Turdus merula. Ticks and tick-borne diseases. 2018;9(3):720–9. doi: 10.1016/j.ttbdis.2018.02.009 PubMed DOI
Richter D, Spielman A, Komar N, Matuschka FR. Competence of American robins as reservoir hosts for Lyme disease spirochetes. Emerging infectious diseases. 2000;6(2):133–8. doi: 10.3201/eid0602.000205 PubMed DOI PMC
Piesman J, Dolan MC, Schriefer ME, Burkot TR. Ability of experimentally infected chickens to infect ticks with the Lyme disease spirochete, Borrelia burgdorferi. The American journal of tropical medicine and hygiene. 1996;54(3):294–8. doi: 10.4269/ajtmh.1996.54.294 PubMed DOI
Olsen B, Gylfe A, Bergstrom S. Canary finches (Serinus canaria) as an avian infection model for Lyme borreliosis. Microbial pathogenesis. 1996;20(6):319–24. doi: 10.1006/mpat.1996.0030 PubMed DOI
Burgess EC. Experimental inoculation of mallard ducks (Anas platyrhynchos platyrhynchos) with Borrelia burgdorferi. Journal of wildlife diseases. 1989;25(1):99–102. doi: 10.7589/0090-3558-25.1.99 PubMed DOI
Hoogstraal H, Kaiser MN, Traylor MA, Guindy E, Gaber S. Ticks (Ixodidae) on birds migrating from Europe and Asia to Africa 1959–61. Bull World Health Organ. 1963;28(2):235–62. PubMed PMC
Anderson JF, Magnarelli LA. Epizootiology of Lyme disease-causing borreliae. Clinics in dermatology. 1993;11(3):339–51. doi: 10.1016/0738-081x(93)90088-t PubMed DOI
Kurtenbach K, Peacey M, Rijpkema SG, Hoodless AN, Nuttall PA, Randolph SE. Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Applied and environmental microbiology. 1998;64(4):1169–74. doi: 10.1128/AEM.64.4.1169-1174.1998 PubMed DOI PMC
Moraru GM, Goddard J, Paddock CD, Varela-Stokes A. Experimental infection of cotton rats and bobwhite quail with Rickettsia parkeri. Parasites & vectors. 2013;6:70. doi: 10.1186/1756-3305-6-70 PubMed DOI PMC
Kurtenbach K, Carey D, Hoodless AN, Nuttall PA, Randolph SE. Competence of pheasants as reservoirs for Lyme disease spirochetes. Journal of medical entomology. 1998;35(1):77–81. doi: 10.1093/jmedent/35.1.77 PubMed DOI
Kurtenbach K, Sewell HS, Ogden NH, Randolph SE, Nuttall PA. Serum complement sensitivity as a key factor in Lyme disease ecology. Infection and immunity. 1998;66(3):1248–51. doi: 10.1128/IAI.66.3.1248-1251.1998 PubMed DOI PMC
Bernard Q, Grillon A, Lenormand C, Ehret-Sabatier L, Boulanger N. Skin Interface, a Key Player for Borrelia Multiplication and Persistence in Lyme Borreliosis. Trends in parasitology. 2020;36(3):304–14. doi: 10.1016/j.pt.2019.12.017 PubMed DOI
Strobel L, Johswich KO. Anticoagulants impact on innate immune responses and bacterial survival in whole blood models of Neisseria meningitidis infection. Scientific reports. 2018;8(1):10225. doi: 10.1038/s41598-018-28583-8 PubMed DOI PMC
Mollnes TE, Brekke OL, Fung M, Fure H, Christiansen D, Bergseth G, et al.. Essential role of the C5a receptor in E coli-induced oxidative burst and phagocytosis revealed by a novel lepirudin-based human whole blood model of inflammation. Blood. 2002;100(5):1869–77. PubMed
Logue GL. Effect of heparin on complement activation and lysis of paroxysmal nocturnal hemoglobinuria (PNH) red cells. Blood. 1977;50(2):239–47. PubMed
Pospisilova T, Urbanova V, Hes O, Kopacek P, Hajdusek O, Sima R. Tracking of Borrelia afzelii Transmission from Infected Ixodes ricinus Nymphs to Mice. Infection and immunity. 2019;87(6): e00896–18. doi: 10.1128/IAI.00896-18 PubMed DOI PMC
Sertour N, Cotte V, Garnier M, Malandrin L, Ferquel E, Choumet V. Infection Kinetics and Tropism of Borrelia burgdorferi sensu lato in Mouse After Natural (via Ticks) or Artificial (Needle) Infection Depends on the Bacterial Strain. Frontiers in microbiology. 2018;9:1722. doi: 10.3389/fmicb.2018.01722 PubMed DOI PMC
Dolan MC, Piesman J, Mbow ML, Maupin GO, Peter O, Brossard M, et al.. Vector competence of Ixodes scapularis and Ixodes ricinus (Acari: Ixodidae) for three genospecies of Borrelia burgdorferi. Journal of medical entomology. 1998;35(4):465–70. doi: 10.1093/jmedent/35.4.465 PubMed DOI
Eisen L. Vector competence studies with hard ticks and Borrelia burgdorferi sensu lato spirochetes: A review. Ticks and tick-borne diseases. 2020;11(3):101359. doi: 10.1016/j.ttbdis.2019.101359 PubMed DOI PMC
Rosa PA, Tilly K, Stewart PE. The burgeoning molecular genetics of the Lyme disease spirochaete. Nature reviews Microbiology. 2005;3(2):129–43. doi: 10.1038/nrmicro1086 PubMed DOI
Lawrenz MB, Wooten RM, Zachary JF, Drouin SM, Weis JJ, Wetsel RA, et al.. Effect of complement component C3 deficiency on experimental Lyme borreliosis in mice. Infection and immunity. 2003;71(8):4432–40. doi: 10.1128/IAI.71.8.4432-4440.2003 PubMed DOI PMC
van Burgel ND, Balmus NC, Fikrig E, van Dam AP. Infectivity of Borrelia burgdorferi sensu lato is unaltered in C3-deficient mice. Ticks and tick-borne diseases. 2011;2(1):20–6. doi: 10.1016/j.ttbdis.2010.10.003 PubMed DOI
Ricklin D, Reis ES, Lambris JD. Complement in disease: a defence system turning offensive. Nat Rev Nephrol. 2016;12(7):383–401. doi: 10.1038/nrneph.2016.70 PubMed DOI PMC
Woodman ME, Cooley AE, Miller JC, Lazarus JJ, Tucker K, Bykowski T, et al.. Borrelia burgdorferi binding of host complement regulator factor H is not required for efficient mammalian infection. Infection and immunity. 2007;75(6):3131–9. doi: 10.1128/IAI.01923-06 PubMed DOI PMC
Tyson K, Elkins C, Patterson H, Fikrig E, de Silva A. Biochemical and functional characterization of Salp20, an Ixodes scapularis tick salivary protein that inhibits the complement pathway. Insect Mol Biol. 2007;16(4):469–79. doi: 10.1111/j.1365-2583.2007.00742.x PubMed DOI
Schuijt TJ, Hovius JW, van Burgel ND, Ramamoorthi N, Fikrig E, van Dam AP. The tick salivary protein Salp15 inhibits the killing of serum-sensitive Borrelia burgdorferi sensu lato isolates. Infection and immunity. 2008;76(7):2888–94. doi: 10.1128/IAI.00232-08 PubMed DOI PMC
Schuijt TJ, Coumou J, Narasimhan S, Dai J, Deponte K, Wouters D, et al.. A tick mannose-binding lectin inhibitor interferes with the vertebrate complement cascade to enhance transmission of the lyme disease agent. Cell host & microbe. 2011;10(2):136–46. doi: 10.1016/j.chom.2011.06.010 PubMed DOI PMC
Kraiczy P, Skerka C, Brade V, Zipfel PF. Further characterization of complement regulator-acquiring surface proteins of Borrelia burgdorferi. Infection and immunity. 2001;69(12):7800–9. doi: 10.1128/IAI.69.12.7800-7809.2001 PubMed DOI PMC
Hellwage J, Meri T, Heikkila T, Alitalo A, Panelius J, Lahdenne P, et al.. The complement regulator factor H binds to the surface protein OspE of Borrelia burgdorferi. The Journal of biological chemistry. 2001;276(11):8427–35. doi: 10.1074/jbc.M007994200 PubMed DOI
Caine JA, Lin YP, Kessler JR, Sato H, Leong JM, Coburn J. Borrelia burgdorferi outer surface protein C (OspC) binds complement component C4b and confers bloodstream survival. Cellular microbiology. 2017. doi: 10.1111/cmi.12786 PubMed DOI PMC
Garcia BL, Zhi H, Wager B, Hook M, Skare JT. Borrelia burgdorferi BBK32 Inhibits the Classical Pathway by Blocking Activation of the C1 Complement Complex. PLoS pathogens. 2016;12(1):e1005404. doi: 10.1371/journal.ppat.1005404 PubMed DOI PMC
Lin YP, Tan X, Caine JA, Castellanos M, Chaconas G, Coburn J, et al.. Strain-specific joint invasion and colonization by Lyme disease spirochetes is promoted by outer surface protein C. PLoS pathogens. 2020;16(5):e1008516. doi: 10.1371/journal.ppat.1008516 PubMed DOI PMC
Lin YP, Benoit V, Yang X, Martinez-Herranz R, Pal U, Leong JM. Strain-specific variation of the decorin-binding adhesin DbpA influences the tissue tropism of the lyme disease spirochete. PLoS pathogens. 2014;10(7):e1004238. doi: 10.1371/journal.ppat.1004238 PubMed DOI PMC
Brangulis K, Akopjana I, Petrovskis I, Kazaks A, Tars K. Structural analysis of the outer surface proteins from Borrelia burgdorferi paralogous gene family 54 that are thought to be the key players in the pathogenesis of Lyme disease. Journal of structural biology. 2020;210(2):107490. doi: 10.1016/j.jsb.2020.107490 PubMed DOI
Kondrashov FA, Rogozin IB, Wolf YI, Koonin EV. Selection in the evolution of gene duplications. Genome biology. 2002;3(2):RESEARCH0008. doi: 10.1186/gb-2002-3-2-research0008 PubMed DOI PMC
Hammerschmidt C, Klevenhaus Y, Koenigs A, Hallstrom T, Fingerle V, Skerka C, et al.. BGA66 and BGA71 facilitate complement resistance of Borrelia bavariensis by inhibiting assembly of the membrane attack complex. Molecular microbiology. 2016;99(2):407–24. doi: 10.1111/mmi.13239 PubMed DOI
Tkacova Z, Pulzova LB, Mochnacova E, Jimenez-Munguia I, Bhide K, Mertinkova P, et al.. Identification of the proteins of Borrelia garinii interacting with human brain microvascular endothelial cells. Ticks and tick-borne diseases. 2020;11(4):101451. doi: 10.1016/j.ttbdis.2020.101451 PubMed DOI
Koenigs A, Hammerschmidt C, Jutras BL, Pogoryelov D, Barthel D, Skerka C, et al.. BBA70 of Borrelia burgdorferi is a novel plasminogen-binding protein. The Journal of biological chemistry. 2013;288(35):25229–43. doi: 10.1074/jbc.M112.413872 PubMed DOI PMC
Lin T, Gao L, Zhang C, Odeh E, Jacobs MB, Coutte L, et al.. Analysis of an ordered, comprehensive STM mutant library in infectious Borrelia burgdorferi: insights into the genes required for mouse infectivity. PloS one. 2012;7(10):e47532. doi: 10.1371/journal.pone.0047532 PubMed DOI PMC
Tian W, Skolnick J. How well is enzyme function conserved as a function of pairwise sequence identity? Journal of molecular biology. 2003;333(4):863–82. doi: 10.1016/j.jmb.2003.08.057 PubMed DOI
Arendt J, Reznick D. Convergence and parallelism reconsidered: what have we learned about the genetics of adaptation? Trends Ecol Evol. 2008;23(1):26–32. doi: 10.1016/j.tree.2007.09.011 PubMed DOI
Becker NS, Margos G, Blum H, Krebs S, Graf A, Lane RS, et al.. Recurrent evolution of host and vector association in bacteria of the Borrelia burgdorferi sensu lato species complex. BMC Genomics. 2016;17(1):734. doi: 10.1186/s12864-016-3016-4 PubMed DOI PMC
Mechai S, Margos G, Feil EJ, Barairo N, Lindsay LR, Michel P, et al.. Evidence for Host-Genotype Associations of Borrelia burgdorferi Sensu Stricto. PloS one. 2016;11(2):e0149345. doi: 10.1371/journal.pone.0149345 PubMed DOI PMC
Ogden NH, Feil EJ, Leighton PA, Lindsay LR, Margos G, Mechai S, et al.. Evolutionary aspects of emerging Lyme disease in Canada. Applied and environmental microbiology. 2015;81(21):7350–9. doi: 10.1128/AEM.01671-15 PubMed DOI PMC
Ogden NH, Mechai S, Margos G. Changing geographic ranges of ticks and tick-borne pathogens: drivers, mechanisms and consequences for pathogen diversity. Frontiers in cellular and infection microbiology. 2013;3:46. doi: 10.3389/fcimb.2013.00046 PubMed DOI PMC
Vollmer SA, Feil EJ, Chu CY, Raper SL, Cao WC, Kurtenbach K, et al.. Spatial spread and demographic expansion of Lyme borreliosis spirochaetes in Eurasia. Infection, genetics and evolution: journal of molecular epidemiology and evolutionary genetics in infectious diseases. 2013;14:147–55. doi: 10.1016/j.meegid.2012.11.014 PubMed DOI
Schulze-Lefert P, Panstruga R. A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends Plant Sci. 2011;16(3):117–25. doi: 10.1016/j.tplants.2011.01.001 PubMed DOI
Huyse T, Poulin R, Theron A. Speciation in parasites: a population genetics approach. Trends in parasitology. 2005;21(10):469–75. doi: 10.1016/j.pt.2005.08.009 PubMed DOI
Yokoyama Y, Lambeck K, De Deckker P, Johnston P, Fifield LK. Timing of the Last Glacial Maximum from observed sea-level minima. Nature. 2000;406(6797):713–6. doi: 10.1038/35021035 PubMed DOI
Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, et al.. The Last Glacial Maximum. Science. 2009;325(5941):710–4. doi: 10.1126/science.1172873 PubMed DOI
Moller AP, Merino S, Soler JJ, Antonov A, Badas EP, Calero-Torralbo MA, et al.. Assessing the effects of climate on host-parasite interactions: a comparative study of European birds and their parasites. PloS one. 2013;8(12):e82886. doi: 10.1371/journal.pone.0082886 PubMed DOI PMC
Brunner FS, Eizaguirre C. Can environmental change affect host/parasite-mediated speciation? Zoology (Jena). 2016;119(4):384–94. doi: 10.1016/j.zool.2016.04.001 PubMed DOI
Gehman AM, Hall RJ, Byers JE. Host and parasite thermal ecology jointly determine the effect of climate warming on epidemic dynamics. Proceedings of the National Academy of Sciences of the United States of America. 2018;115(4):744–9. doi: 10.1073/pnas.1705067115 PubMed DOI PMC
Purser JE, Norris SJ. Correlation between plasmid content and infectivity in Borrelia burgdorferi. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(25):13865–70. doi: 10.1073/pnas.97.25.13865 PubMed DOI PMC
Bunikis I, Kutschan-Bunikis S, Bonde M, Bergstrom S. Multiplex PCR as a tool for validating plasmid content of Borrelia burgdorferi. Journal of microbiological methods. 2011;86(2):243–7. doi: 10.1016/j.mimet.2011.05.004 PubMed DOI
Kern A, Zhou CW, Jia F, Xu Q, Hu LT. Live-vaccinia virus encapsulation in pH-sensitive polymer increases safety of a reservoir-targeted Lyme disease vaccine by targeting gastrointestinal release. Vaccine. 2016;34(38):4507–13. doi: 10.1016/j.vaccine.2016.07.059 PubMed DOI PMC
Coleman AS, Yang X, Kumar M, Zhang X, Promnares K, Shroder D, et al.. Borrelia burgdorferi complement regulator-acquiring surface protein 2 does not contribute to complement resistance or host infectivity. PloS one. 2008;3(8):3010e. doi: 10.1371/journal.pone.0003010 PubMed DOI PMC
Derdakova M, Dudioak V, Brei B, Brownstein JS, Schwartz I, Fish D. Interaction and transmission of two Borrelia burgdorferi sensu stricto strains in a tick-rodent maintenance system. Applied and environmental microbiology. 2004;70(11):6783–8. doi: 10.1128/AEM.70.11.6783-6788.2004 PubMed DOI PMC
Rynkiewicz EC, Brown J, Tufts DM, Huang CI, Kampen H, Bent SJ, et al.. Closely-related Borrelia burgdorferi (sensu stricto) strains exhibit similar fitness in single infections and asymmetric competition in multiple infections. Parasites & vectors. 2017;10(1):64. doi: 10.1186/s13071-016-1964-9 PubMed DOI PMC
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of molecular biology. 1990;215(3):403–10. doi: 10.1016/S0022-2836(05)80360-2 PubMed DOI
Notredame C, Higgins DG, Heringa J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. Journal of molecular biology. 2000;302(1):205–17. doi: 10.1006/jmbi.2000.4042 PubMed DOI
Abascal F, Zardoya R, Telford MJ. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic acids research. 2010;38(Web Server issue):W7–13. doi: 10.1093/nar/gkq291 PubMed DOI PMC
Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, et al.. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic acids research. 2019;47(W1):W636–W41. doi: 10.1093/nar/gkz268 PubMed DOI PMC
Lin YP, Greenwood A, Nicholson LK, Sharma Y, McDonough SP, Chang YF. Fibronectin binds to and induces conformational change in a disordered region of leptospiral immunoglobulin-like protein B. The Journal of biological chemistry. 2009;284(35):23547–57. doi: 10.1074/jbc.M109.031369 PubMed DOI PMC
Benoit VM, Fischer JR, Lin YP, Parveen N, Leong JM. Allelic variation of the Lyme disease spirochete adhesin DbpA influences spirochetal binding to decorin, dermatan sulfate, and mammalian cells. Infection and immunity. 2011;79(9):3501–9. doi: 10.1128/IAI.00163-11 PubMed DOI PMC
Suchard MA, Lemey P, Baele G, Ayres DL, Drummond AJ, Rambaut A. Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evol. 2018;4(1):vey016. doi: 10.1093/ve/vey016 PubMed DOI PMC
Rambaut A. FigTree GitHub repository [Available from: http://tree.bio.ed.ac.uk/software/figtree/.
Maddison WP, Maddison D.R. Mesquite: a modular system for evolutionary analysis. Version 3.61 2019. [Available from: http://www.mesquiteproject.org.
Kishino H, Hasegawa M. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea. J Mol Evol. 1989;29(2):170–9. doi: 10.1007/BF02100115 PubMed DOI
Shimodaira H, Hasegawa, M. Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference. Molecular Biology and Evolution. 1999;16(8):1114.
Strimmer K, Rambaut A. Inferring confidence sets of possibly misspecified gene trees. Proc Biol Sci. 2002;269(1487):137–42. doi: 10.1098/rspb.2001.1862 PubMed DOI PMC
Shimodaira H. An approximately unbiased test of phylogenetic tree selection. Syst Biol. 2002;51(3):492–508. doi: 10.1080/10635150290069913 PubMed DOI
Wallace IM, O’Sullivan O, Higgins DG, Notredame C. M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic acids research. 2006;34(6):1692–9. doi: 10.1093/nar/gkl091 PubMed DOI PMC
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32(1):268–74. doi: 10.1093/molbev/msu300 PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nature methods. 2017;14(6):587–9. doi: 10.1038/nmeth.4285 PubMed DOI PMC
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Vinh LS. UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol Biol Evol. 2018;35(2):518–22. doi: 10.1093/molbev/msx281 PubMed DOI PMC
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–21. doi: 10.1093/sysbio/syq010 PubMed DOI
Benjamini YK, A. M. Yekutieli D. Adaptive linear step-up procedures that control the false discovery rate. Biometrika. 2006;93:491–507.