Natural selection and recombination at host-interacting lipoprotein loci drive genome diversification of Lyme disease and related bacteria
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 AI175417
NIAID NIH HHS - United States
R21 AI139782
NIAID NIH HHS - United States
U19AI110820
HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
R21AI139782
HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
R01AI175417
HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
HHS | NIH | NIAID | Division of Intramural Research (DIR, NIAID)
Steven and Alexandra Cohen Foundation (Steven & Alexandra Cohen Foundation)
PubMed
39145656
PubMed Central
PMC11389397
DOI
10.1128/mbio.01749-24
Knihovny.cz E-zdroje
- Klíčová slova
- Borrelia burgdorferi, Lyme disease, evolution, genome diversification, plasmids, recombination,
- MeSH
- Borrelia burgdorferi komplex genetika klasifikace MeSH
- Borrelia burgdorferi genetika klasifikace MeSH
- Borrelia genetika klasifikace MeSH
- fylogeneze * MeSH
- genetická variace MeSH
- genom bakteriální * MeSH
- interakce mikroorganismu a hostitele genetika MeSH
- klíště mikrobiologie MeSH
- lidé MeSH
- lipoproteiny * genetika MeSH
- lymeská nemoc * mikrobiologie přenos MeSH
- molekulární evoluce MeSH
- plazmidy genetika MeSH
- rekombinace genetická * MeSH
- sekvenování celého genomu MeSH
- selekce (genetika) * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Severní Amerika MeSH
- Názvy látek
- lipoproteiny * MeSH
UNLABELLED: Lyme disease, caused by spirochetes in the Borrelia burgdorferi sensu lato clade within the Borrelia genus, is transmitted by Ixodes ticks and is currently the most prevalent and rapidly expanding tick-borne disease in Europe and North America. We report complete genome sequences of 47 isolates that encompass all established species in this clade while highlighting the diversity of the widespread human pathogenic species B. burgdorferi. A similar set of plasmids has been maintained throughout Borrelia divergence, indicating that they are a key adaptive feature of this genus. Phylogenetic reconstruction of all sequenced Borrelia genomes revealed the original divergence of Eurasian and North American lineages and subsequent dispersals that introduced B. garinii, B. bavariensis, B. lusitaniae, B. valaisiana, and B. afzelii from East Asia to Europe and B. burgdorferi and B. finlandensis from North America to Europe. Molecular phylogenies of the universally present core replicons (chromosome and cp26 and lp54 plasmids) are highly consistent, revealing a strong clonal structure. Nonetheless, numerous inconsistencies between the genome and gene phylogenies indicate species dispersal, genetic exchanges, and rapid sequence evolution at plasmid-borne loci, including key host-interacting lipoprotein genes. While localized recombination occurs uniformly on the main chromosome at a rate comparable to mutation, lipoprotein-encoding loci are recombination hotspots on the plasmids, suggesting adaptive maintenance of recombinant alleles at loci directly interacting with the host. We conclude that within- and between-species recombination facilitates adaptive sequence evolution of host-interacting lipoprotein loci and contributes to human virulence despite a genome-wide clonal structure of its natural populations. IMPORTANCE: Lyme disease (also called Lyme borreliosis in Europe), a condition caused by spirochete bacteria of the genus Borrelia, transmitted by hard-bodied Ixodes ticks, is currently the most prevalent and rapidly expanding tick-borne disease in the United States and Europe. Borrelia interspecies and intraspecies genome comparisons of Lyme disease-related bacteria are essential to reconstruct their evolutionary origins, track epidemiological spread, identify molecular mechanisms of human pathogenicity, and design molecular and ecological approaches to disease prevention, diagnosis, and treatment. These Lyme disease-associated bacteria harbor complex genomes that encode many genes that do not have homologs in other organisms and are distributed across multiple linear and circular plasmids. The functional significance of most of the plasmid-borne genes and the multipartite genome organization itself remains unknown. Here we sequenced, assembled, and analyzed whole genomes of 47 Borrelia isolates from around the world, including multiple isolates of the human pathogenic species. Our analysis elucidates the evolutionary origins, historical migration, and sources of genomic variability of these clinically important pathogens. We have developed web-based software tools (BorreliaBase.org) to facilitate dissemination and continued comparative analysis of Borrelia genomes to identify determinants of human pathogenicity.
Biology Centre Czech Academy of Sciences Institute of Parasitology České Budějovice Czech Republic
Centre for Vector and Infectious Diseases Research Águas de Moura Portugal
Graduate Center and Hunter College City University of New York New York New York USA
National Institute of Allergy and Infectious Diseases Bethesda Maryland USA
National Institute of Infectious Diseases Tokyo Japan
New England BioLabs Ipswich Massachusetts USA
New Jersey Medical School Newark New Jersey USA
University of Maryland School of Medicine Baltimore Maryland USA
University of Utah School of Medicine and School of Biological Sciences Salt Lake City Utah USA
Zobrazit více v PubMed
Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreås L, Reysenbach A-L, Smith VH, Staley JT. 2006. Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112. doi:10.1038/nrmicro1341 PubMed DOI
Rocha EPC. 2018. Neutral theory, microbial practice: challenges in bacterial population genetics. Mol Biol Evol 35:1338–1347. doi:10.1093/molbev/msy078 PubMed DOI
Charlesworth J, Eyre-Walker A. 2006. The rate of adaptive evolution in enteric bacteria. Mol Biol Evol 23:1348–1356. doi:10.1093/molbev/msk025 PubMed DOI
Guttman DS, Dykhuizen DE. 1994. Detecting selective sweeps in naturally occurring Escherichia coli. Genetics 138:993–1003. doi:10.1093/genetics/138.4.993 PubMed DOI PMC
Milkman R, Bridges MM. 1990. Molecular evolution of the Escherichia coli chromosome. III. Clonal frames. Genetics 126:505–517. doi:10.1093/genetics/126.3.505 PubMed DOI PMC
Smith JM, Smith NH, O’Rourke M, Spratt BG. 1993. How clonal are bacteria? Proc Natl Acad Sci U S A 90:4384–4388. doi:10.1073/pnas.90.10.4384 PubMed DOI PMC
CDC . 2016. Data and statistics. Lyme Disease. CDC. Available from: http://www.cdc.gov/lyme/stats/index.html. Retrieved 30 Mar 2016.
Schwartz AM, Hinckley AF, Mead PS, Hook SA, Kugeler KJ. 2017. Surveillance for Lyme disease - United States, 2008-2015. MMWR Surveill Summ 66:1–12. doi:10.15585/mmwr.ss6622a1 PubMed DOI PMC
Nelson CA, Saha S, Kugeler KJ, Delorey MJ, Shankar MB, Hinckley AF, Mead PS. 2015. Incidence of clinician-diagnosed Lyme disease, United States, 2005–2010. Emerg Infect Dis 21:1625–1631. doi:10.3201/eid2109.150417 PubMed DOI PMC
Rizzoli A, Hauffe H, Carpi G, Vourc H G, Neteler M, Rosa R. 2011. Lyme borreliosis in Europe. Euro Surveill 16:19906. doi:10.2807/ese.16.27.19906-en PubMed DOI
Kugeler KJ, Schwartz AM, Delorey MJ, Mead PS, Hinckley AF. 2021. Estimating the frequency of Lyme disease diagnoses, United States, 2010-2018. Emerg Infect Dis 27:616–619. doi:10.3201/eid2702.202731 PubMed DOI PMC
Schwartz AM, Kugeler KJ, Nelson CA, Marx GE, Hinckley AF. 2021. Use of commercial claims data for evaluating trends in Lyme disease diagnoses, United States, 2010-2018. Emerg Infect Dis 27:499–507. doi:10.3201/eid2702.202728 PubMed DOI PMC
Adeolu M, Gupta RS. 2014. A phylogenomic and molecular marker based proposal for the division of the genus Borrelia into two genera: the emended genus Borrelia containing only the members of the relapsing fever Borrelia, and the genus Borreliella gen. nov. containing the members of the Lyme disease Borrelia (Borrelia burgdorferi sensu lato complex). Antonie Van Leeuwenhoek 105:1049–1072. doi:10.1007/s10482-014-0164-x PubMed DOI
Barbour AG, Qiu W. 2019. Borreliella, p 1–22. In Bergey’s manual of systematics of archaea and bacteria. John Wiley & Sons, Inc., in association with Bergey’s Manual Trust.
Margos G, Marosevic D, Cutler S, Derdakova M, Diuk-Wasser M, Emler S, Fish D, Gray J, Hunfeldt K-P, Jaulhac B, et al. . 2017. There is inadequate evidence to support the division of the genus Borrelia. Int J Syst Evol Microbiol 67:1081–1084. doi:10.1099/ijsem.0.001717 PubMed DOI
Margos G, Castillo-Ramirez S, Cutler S, Dessau RB, Eikeland R, Estrada-Peña A, Gofton A, Graña-Miraglia L, Hunfeld K-P, Krause A, Lienhard R, Lindgren P-E, Oskam C, Rudolf I, Schwartz I, Sing A, Stevenson B, Wormser GP, Fingerle V. 2020. Rejection of the name Borreliella and all proposed species comb. nov. placed therein. Int J Syst Evol Microbiol 70:3577–3581. doi:10.1099/ijsem.0.004149 PubMed DOI
Gupta RS. 2019. Distinction between Borrelia and Borreliella is more robustly supported by molecular and phenotypic characteristics than all other neighbouring prokaryotic genera: response to Margos’ et al. “The genus Borrelia reloaded” (PLoS ONE 13(12): e0208432) PLoS ONE 14:e0221397. doi:10.1371/journal.pone.0221397 PubMed DOI PMC
Barbour AG, Adeolu M, Gupta RS. 2017. Division of the genus Borrelia into two genera (corresponding to Lyme disease and relapsing fever groups) reflects their genetic and phenotypic distinctiveness and will lead to a better understanding of these two groups of microbes (Margos et al. (2016) There is inadequate evidence to support the division of the genus Borrelia. Int J Syst Evol Microbiol 67:2058–2067. doi:10.1099/ijsem.0.001815 PubMed DOI
Margos G, Fingerle V, Cutler S, Gofton A, Stevenson B, Estrada-Peña A. 2020. Controversies in bacterial taxonomy: the example of the genus Borrelia. Ticks Tick Borne Dis 11:101335. doi:10.1016/j.ttbdis.2019.101335 PubMed DOI
Muñoz-Leal S, Ramirez DG, Luz HR, Faccini JLH, Labruna MB. 2020. “Candidatus Borrelia ibitipoquensis,” a Borrelia valaisiana-related genospecies characterized from Ixodes paranaensis in Brazil. Microb Ecol 80:682–689. doi:10.1007/s00248-020-01512-x PubMed DOI
Weck BC, Serpa MCA, Labruna MB, Muñoz-Leal S. 2022. A novel genospecies of Borrelia burgdorferi sensu lato associated with cricetid rodents in Brazil. Microorganisms 10:204. doi:10.3390/microorganisms10020204 PubMed DOI PMC
Coipan EC, Jahfari S, Fonville M, Oei GA, Spanjaard L, Takumi K, Hovius JWR, Sprong H. 2016. Imbalanced presence of Borrelia burgdorferi s.l. multilocus sequence types in clinical manifestations of Lyme borreliosis. Infect Genet Evol 42:66–76. doi:10.1016/j.meegid.2016.04.019 PubMed DOI
de Carvalho IL, Fonseca JE, Marques JG, Ullmann A, Hojgaard A, Zeidner N, Núncio MS. 2008. Vasculitis-like syndrome associated with Borrelia lusitaniae infection. Clin Rheumatol 27:1587–1591. doi:10.1007/s10067-008-1012-z PubMed DOI
Collares-Pereira M, Couceiro S, Franca I, Kurtenbach K, Schäfer SM, Vitorino L, Gonçalves L, Baptista S, Vieira ML, Cunha C. 2004. First isolation of Borrelia lusitaniae from a human patient. J Clin Microbiol 42:1316–1318. doi:10.1128/JCM.42.3.1316-1318.2004 PubMed DOI PMC
Pritt BS, Mead PS, Johnson DKH, Neitzel DF, Respicio-Kingry LB, Davis JP, Schiffman E, Sloan LM, Schriefer ME, Replogle AJ, Paskewitz SM, Ray JA, Bjork J, Steward CR, Deedon A, Lee X, Kingry LC, Miller TK, Feist MA, Theel ES, Patel R, Irish CL, Petersen JM. 2016. Identification of a novel pathogenic Borrelia species causing Lyme borreliosis with unusually high spirochaetaemia: a descriptive study. Lancet Infect Dis 16:556–564. doi:10.1016/S1473-3099(15)00464-8 PubMed DOI PMC
da Franca I, Santos L, Mesquita T, Collares-Pereira M, Baptista S, Vieira L, Viana I, Vale E, Prates C. 2005. Lyme borreliosis in Portugal caused by Borrelia lusitaniae? Clinical report on the first patient with a positive skin isolate. Wien Klin Wochenschr 117:429–432. doi:10.1007/s00508-005-0386-z PubMed DOI
Radolf JD, Strle K, Lemieux JE, Strle F. 2021. Lyme disease in humans, p 703–753. In Lyme disease and relapsing fever spirochetes: genomics, molecular biology, host interactions and disease pathogenesis. Caister Academic Press.
Spielman A, Wilson ML, Levine JF, Piesman J. 1985. Ecology of Ixodes dammini-borne human babesiosis and Lyme disease. Annu Rev Entomol 30:439–460. doi:10.1146/annurev.en.30.010185.002255 PubMed DOI
Ostfeld R. 2010. Lyme disease: the ecology of a complex system. Oxford University Press.
Kilpatrick AM, Dobson ADM, Levi T, Salkeld DJ, Swei A, Ginsberg HS, Kjemtrup A, Padgett KA, Jensen PM, Fish D, Ogden NH, Diuk-Wasser MA. 2017. Lyme disease ecology in a changing world: consensus, uncertainty and critical gaps for improving control. Philos Trans R Soc Lond B Biol Sci 372:20160117. doi:10.1098/rstb.2016.0117 PubMed DOI PMC
Kurtenbach K, Hanincová K, Tsao JI, Margos G, Fish D, Ogden NH. 2006. Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nat Rev Microbiol 4:660–669. doi:10.1038/nrmicro1475 PubMed DOI
Barbour AG, Fish D. 1993. The biological and social phenomenon of Lyme disease. Science 260:1610–1616. doi:10.1126/science.8503006 PubMed DOI
Ostfeld RS, Brunner JL. 2015. Climate change and Ixodes tick-borne diseases of humans. Philos Trans R Soc Lond B Biol Sci 370:20140051. doi:10.1098/rstb.2014.0051 PubMed DOI PMC
Rudenko N, Golovchenko M, Grubhoffer L, Oliver JH. 2011. Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick Borne Dis 2:123–128. doi:10.1016/j.ttbdis.2011.04.002 PubMed DOI PMC
Ogden NH, Mechai S, Margos G. 2013. Changing geographic ranges of ticks and tick-borne pathogens: drivers, mechanisms and consequences for pathogen diversity. Front Cell Infect Microbiol 3:46. doi:10.3389/fcimb.2013.00046 PubMed DOI PMC
Blanchard L, Jones-Diette J, Lorenc T, Sutcliffe K, Sowden A, Thomas J. 2022. Comparison of national surveillance systems for Lyme disease in humans in Europe and North America: a policy review. BMC Public Health 22:1307. doi:10.1186/s12889-022-13669-w PubMed DOI PMC
Fraser CM, Casjens S, Huang WM, Sutton GG, Clayton R, Lathigra R, White O, Ketchum KA, Dodson R, Hickey EK, et al. . 1997. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390:580–586. doi:10.1038/37551 PubMed DOI
Casjens S, Palmer N, van Vugt R, Huang WM, Stevenson B, Rosa P, Lathigra R, Sutton G, Peterson J, Dodson RJ, Haft D, Hickey E, Gwinn M, White O, Fraser CM. 2000. A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 35:490–516. doi:10.1046/j.1365-2958.2000.01698.x PubMed DOI
Schutzer SE, Fraser-Liggett CM, Casjens SR, Qiu W-G, Dunn JJ, Mongodin EF, Luft BJ. 2011. Whole-genome sequences of thirteen isolates of Borrelia burgdorferi. J Bacteriol 193:1018–1020. doi:10.1128/JB.01158-10 PubMed DOI PMC
Margos G, Hepner S, Mang C, Marosevic D, Reynolds SE, Krebs S, Sing A, Derdakova M, Reiter MA, Fingerle V. 2017. Lost in plasmids: next generation sequencing and the complex genome of the tick-borne pathogen Borrelia burgdorferi. BMC Genomics 18:422. doi:10.1186/s12864-017-3804-5 PubMed DOI PMC
Kingry LC, Batra D, Replogle A, Rowe LA, Pritt BS, Petersen JM. 2016. Whole genome sequence and comparative genomics of the novel Lyme borreliosis causing pathogen, Borrelia mayonii. PLoS ONE 11:e0168994. doi:10.1371/journal.pone.0168994 PubMed DOI PMC
Glöckner G, Schulte-Spechtel U, Schilhabel M, Felder M, Sühnel J, Wilske B, Platzer M. 2006. Comparative genome analysis: selection pressure on the Borrelia vls cassettes is essential for infectivity. BMC Genomics 7:211. doi:10.1186/1471-2164-7-211 PubMed DOI PMC
Glöckner G, Lehmann R, Romualdi A, Pradella S, Schulte-Spechtel U, Schilhabel M, Wilske B, Sühnel J, Platzer M. 2004. Comparative analysis of the Borrelia garinii genome. Nucleic Acids Res 32:6038–6046. doi:10.1093/nar/gkh953 PubMed DOI PMC
Mongodin EF, Casjens SR, Bruno JF, Xu Y, Drabek EF, Riley DR, Cantarel BL, Pagan PE, Hernandez YA, Vargas LC, Dunn JJ, Schutzer SE, Fraser CM, Qiu W-G, Luft BJ. 2013. Inter- and intra-specific pan-genomes of Borrelia burgdorferi sensu lato: genome stability and adaptive radiation. BMC Genomics 14:693. doi:10.1186/1471-2164-14-693 PubMed DOI PMC
Casjens SR, Gilcrease EB, Vujadinovic M, Mongodin EF, Luft BJ, Schutzer SE, Fraser CM, Qiu W-G. 2017. Plasmid diversity and phylogenetic consistency in the Lyme disease agent Borrelia burgdorferi. BMC Genomics 18:165. doi:10.1186/s12864-017-3553-5 PubMed DOI PMC
Hepner S, Kuleshov K, Tooming-Kunderud A, Alig N, Gofton A, Casjens S, Rollins RE, Dangel A, Mourkas E, Sheppard SK, Wieser A, Hübner J, Sing A, Fingerle V, Margos G. 2023. A high fidelity approach to assembling the complex Borrelia genome. BMC Genomics 24:401. doi:10.1186/s12864-023-09500-4 PubMed DOI PMC
Schwartz I, Margos G, Casjens SR, Qiu W-G, Eggers CH. 2021. Multipartite genome of Lyme disease Borrelia: structure, variation and prophages. In Lyme disease and relapsing fever spirochetes: genomics, molecular biology, host interactions and disease pathogenesis. Caister Academic Press. PubMed
Casjens SR, Mongodin EF, Qiu W-G, Luft BJ, Schutzer SE, Gilcrease EB, Huang WM, Vujadinovic M, Aron JK, Vargas LC, Freeman S, Radune D, Weidman JF, Dimitrov GI, Khouri HM, Sosa JE, Halpin RA, Dunn JJ, Fraser CM. 2012. Genome stability of Lyme disease spirochetes: comparative genomics of Borrelia burgdorferi plasmids. PLoS ONE 7:e33280. doi:10.1371/journal.pone.0033280 PubMed DOI PMC
Casjens SR, Di L, Akther S, Mongodin EF, Luft BJ, Schutzer SE, Fraser CM, Qiu W-G. 2018. Primordial origin and diversification of plasmids in Lyme disease agent bacteria. BMC Genomics 19:218. doi:10.1186/s12864-018-4597-x PubMed DOI PMC
Mechai S, Margos G, Feil EJ, Lindsay LR, Ogden NH. 2015. Complex population structure of Borrelia burgdorferi in southeastern and south central Canada as revealed by phylogeographic analysis. Appl Environ Microbiol 81:1309–1318. doi:10.1128/AEM.03730-14 PubMed DOI PMC
Hoen AG, Margos G, Bent SJ, Diuk-Wasser MA, Barbour A, Kurtenbach K, Fish D. 2009. Phylogeography of Borrelia burgdorferi in the eastern United States reflects multiple independent Lyme disease emergence events. Proc Natl Acad Sci U S A 106:15013–15018. doi:10.1073/pnas.0903810106 PubMed DOI PMC
Margos G, Gatewood AG, Aanensen DM, Hanincová K, Terekhova D, Vollmer SA, Cornet M, Piesman J, Donaghy M, Bormane A, Hurn MA, Feil EJ, Fish D, Casjens S, Wormser GP, Schwartz I, Kurtenbach K. 2008. MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi. Proc Natl Acad Sci U S A 105:8730–8735. doi:10.1073/pnas.0800323105 PubMed DOI PMC
Qiu W-G, Schutzer SE, Bruno JF, Attie O, Xu Y, Dunn JJ, Fraser CM, Casjens SR, Luft BJ. 2004. Genetic exchange and plasmid transfers in Borrelia burgdorferi sensu stricto revealed by three-way genome comparisons and multilocus sequence typing. Proc Natl Acad Sci U S A 101:14150–14155. doi:10.1073/pnas.0402745101 PubMed DOI PMC
Vitorino LR, Margos G, Feil EJ, Collares-Pereira M, Zé-Zé L, Kurtenbach K. 2008. Fine-scale phylogeographic structure of Borrelia lusitaniae revealed by multilocus sequence typing. PLoS One 3:e4002. doi:10.1371/journal.pone.0004002 PubMed DOI PMC
Qiu W-G, Martin CL. 2014. Evolutionary genomics of Borrelia burgdorferi sensu lato: findings, hypotheses, and the rise of hybrids. Infect Genet Evol 27:576–593. doi:10.1016/j.meegid.2014.03.025 PubMed DOI PMC
Margos G, Vollmer SA, Ogden NH, Fish D. 2011. Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato. Infect Genet Evol 11:1545–1563. doi:10.1016/j.meegid.2011.07.022 PubMed DOI PMC
Wang I-N, Dykhuizen DE, Qiu W, Dunn JJ, Bosler EM, Luft BJ. 1999. Genetic diversity of ospC in a local population of Borrelia burgdorferi sensu stricto. Genetics 151:15–30. doi:10.1093/genetics/151.1.15 PubMed DOI PMC
Qiu W-G, Dykhuizen DE, Acosta MS, Luft BJ. 2002. Geographic uniformity of the Lyme disease spirochete (Borrelia burgdorferi) and its shared history with tick vector (Ixodes scapularis) in the northeastern United States. Genetics 160:833–849. doi:10.1093/genetics/160.3.833 PubMed DOI PMC
Di L, Wan Z, Akther S, Ying C, Larracuente A, Li L, Di C, Nunez R, Cucura DM, Goddard NL, Krampis K, Qiu W-G. 2018. Genotyping and quantifying Lyme pathogen strains by deep sequencing of the outer surface protein C (ospC) locus. J Clin Microbiol 56:e00940-18. doi:10.1128/JCM.00940-18 PubMed DOI PMC
Walter KS, Carpi G, Caccone A, Diuk-Wasser MA. 2017. Genomic insights into the ancient spread of Lyme disease across North America. Nat Ecol Evol 1:1569–1576. doi:10.1038/s41559-017-0282-8 PubMed DOI PMC
Huang W, Ojaimi C, Fallon JT, Travisany D, Maass A, Ivanova L, Tomova A, González-Acuña D, Godfrey HP, Cabello FC. 2015. Genome sequence of Borrelia chilensis VA1, a South American member of the Lyme Borreliosis group. Genome Announc 3:e01535-14. doi:10.1128/genomeA.01535-14 PubMed DOI PMC
Casjens SR, Mongodin EF, Qiu W-G, Dunn JJ, Luft BJ, Fraser-Liggett CM, Schutzer SE. 2011. Whole-genome sequences of two Borrelia afzelii and two Borrelia garinii Lyme disease agent isolates. J Bacteriol 193:6995–6996. doi:10.1128/JB.05951-11 PubMed DOI PMC
Casjens SR, Fraser-Liggett CM, Mongodin EF, Qiu W-G, Dunn JJ, Luft BJ, Schutzer SE. 2011. Whole genome sequence of an unusual Borrelia burgdorferi sensu lato isolate. J Bacteriol 193:1489–1490. doi:10.1128/JB.01521-10 PubMed DOI PMC
Margos G, Fedorova N, Becker NS, Kleinjan JE, Marosevic D, Krebs S, Hui L, Fingerle V, Lane RS. 2020. Borrelia maritima sp. nov., a novel species of the Borrelia burgdorferi sensu lato complex, occupying a basal position to North American species. Int J Syst Evol Microbiol 70:849–856. doi:10.1099/ijsem.0.003833 PubMed DOI
Margos G, Becker NS, Fingerle V, Sing A, Ramos JA, Carvalho I de, Norte AC. 2019. Core genome phylogenetic analysis of the avian associated Borrelia turdi indicates a close relationship to Borrelia garinii. Mol Phylogenet Evol 131:93–98. doi:10.1016/j.ympev.2018.10.044 PubMed DOI
Qiu W-G, Bruno JF, McCaig WD, Xu Y, Livey I, Schriefer ME, Luft BJ. 2008. Wide distribution of a high-virulence Borrelia burgdorferi clone in Europe and North America. Emerg Infect Dis 14:1097–1104. doi:10.3201/eid1407.070880 PubMed DOI PMC
Barbour AG, Travinsky B. 2010. Evolution and distribution of the ospC gene, a transferable serotype determinant of Borrelia burgdorferi. mBio 1:e00153-10. doi:10.1128/mBio.00153-10 PubMed DOI PMC
Di L, Pagan PE, Packer D, Martin CL, Akther S, Ramrattan G, Mongodin EF, Fraser CM, Schutzer SE, Luft BJ, Casjens SR, Qiu W-G. 2014. BorreliaBase: a phylogeny-centered browser of Borrelia genomes. BMC Bioinformatics 15:233. doi:10.1186/1471-2105-15-233 PubMed DOI PMC
Oren A, Garrity GM, Parker CT, Chuvochina M, Trujillo ME. 2020. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 70:3956–4042. doi:10.1099/ijsem.0.003789 PubMed DOI
Kuleshov KV, Margos G, Fingerle V, Koetsveld J, Goptar IA, Markelov ML, Kolyasnikova NM, Sarksyan DS, Kirdyashkina NP, Shipulin GA, Hovius JW, Platonov AE. 2020. Whole genome sequencing of Borrelia miyamotoi isolate Izh-4: reference for a complex bacterial genome. BMC Genomics 21:16. doi:10.1186/s12864-019-6388-4 PubMed DOI PMC
Kneubehl AR, Krishnavajhala A, Leal SM, Replogle AJ, Kingry LC, Bermúdez SE, Labruna MB, Lopez JE. 2022. Comparative genomics of the Western Hemisphere soft tick-borne relapsing fever borreliae highlights extensive plasmid diversity. BMC Genomics 23:410. doi:10.1186/s12864-022-08523-7 PubMed DOI PMC
Didelot X, Lawson D, Darling A, Falush D. 2010. Inference of homologous recombination in bacteria using whole-genome sequences. Genetics 186:1435–1449. doi:10.1534/genetics.110.120121 PubMed DOI PMC
Marttinen P, Hanage WP, Croucher NJ, Connor TR, Harris SR, Bentley SD, Corander J. 2012. Detection of recombination events in bacterial genomes from large population samples. Nucleic Acids Res 40:e6. doi:10.1093/nar/gkr928 PubMed DOI PMC
Ansari MA, Didelot X. 2014. Inference of the properties of the recombination process from whole bacterial genomes. Genetics 196:253–265. doi:10.1534/genetics.113.157172 PubMed DOI PMC
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, Whitwham A, Keane T, McCarthy SA, Davies RM, Li H. 2021. Twelve years of SAMtools and BCFtools. Gigascience 10:giab008. doi:10.1093/gigascience/giab008 PubMed DOI PMC
Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595. doi:10.1093/bioinformatics/btp698 PubMed DOI PMC
McVean G, Awadalla P, Fearnhead P. 2002. A coalescent-based method for detecting and estimating recombination from gene sequences. Genetics 160:1231–1241. doi:10.1093/genetics/160.3.1231 PubMed DOI PMC
Dowdell AS, Murphy MD, Azodi C, Swanson SK, Florens L, Chen S, Zückert WR. 2017. Comprehensive spatial analysis of the Borrelia burgdorferi lipoproteome reveals a compartmentalization bias toward the bacterial surface. J Bacteriol 199:e00658-16. doi:10.1128/JB.00658-16 PubMed DOI PMC
Haven J, Vargas LC, Mongodin EF, Xue V, Hernandez Y, Pagan P, Fraser-Liggett CM, Schutzer SE, Luft BJ, Casjens SR, Qiu W-G. 2011. Pervasive recombination and sympatric genome diversification driven by frequency-dependent selection in Borrelia burgdorferi, the Lyme disease bacterium. Genetics 189:951–966. doi:10.1534/genetics.111.130773 PubMed DOI PMC
Tilly K, Bestor A, Rosa PA. 2013. Lipoprotein succession in Borrelia burgdorferi: similar but distinct roles for OspC and VlsE at different stages of mammalian infection. Mol Microbiol 89:216–227. doi:10.1111/mmi.12271 PubMed DOI PMC
Didelot X, Wilson DJ. 2015. ClonalFrameML: efficient inference of recombination in whole bacterial genomes. PLOS Comput Biol 11:e1004041. doi:10.1371/journal.pcbi.1004041 PubMed DOI PMC
Becker NS, Margos G, Blum H, Krebs S, Graf A, Lane RS, Castillo-Ramírez S, Sing A, Fingerle V. 2016. Recurrent evolution of host and vector association in bacteria of the Borrelia burgdorferi sensu lato species complex. BMC Genomics 17:734. doi:10.1186/s12864-016-3016-4 PubMed DOI PMC
Fraser C, Hanage WP, Spratt BG. 2007. Recombination and the nature of bacterial speciation. Science 315:476–480. doi:10.1126/science.1127573 PubMed DOI PMC
Pease JB, Hahn MW. 2015. Detection and polarization of introgression in a five-taxon phylogeny. Syst Biol 64:651–662. doi:10.1093/sysbio/syv023 PubMed DOI
Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, Patterson N, Li H, Zhai W, Fritz MH-Y, et al. . 2010. A draft sequence of the neandertal genome. Science 328:710–722. doi:10.1126/science.1188021 PubMed DOI PMC
Guttman DS, Dykhuizen DE. 1994. Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science 266:1380–1383. doi:10.1126/science.7973728 PubMed DOI
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274. doi:10.1093/molbev/msu300 PubMed DOI PMC
Rollins RE, Sato K, Nakao M, Tawfeeq MT, Herrera-Mesías F, Pereira RJ, Kovalev S, Margos G, Fingerle V, Kawabata H, Becker NS. 2023. Out of Asia? Expansion of Eurasian Lyme borreliosis causing genospecies display unique evolutionary trajectories. Mol Ecol 32:786–799. doi:10.1111/mec.16805 PubMed DOI
Margos G, Chu C-Y, Takano A, Jiang B-G, Liu W, Kurtenbach K, Masuzawa T, Fingerle V, Cao W-C, Kawabata H. 2015. Borrelia yangtzensis sp. nov., a rodent-associated species in Asia, is related to Borrelia valaisiana. Int J Syst Evol Microbiol 65:3836–3840. doi:10.1099/ijsem.0.000491 PubMed DOI
Norte AC, Boyer PH, Castillo-Ramirez S, Chvostáč M, Brahami MO, Rollins RE, Woudenberg T, Didyk YM, Derdakova M, Núncio MS, Carvalho I de, Margos G, Fingerle V. 2021. The population structure of Borrelia lusitaniae is reflected by a population division of its Ixodes vector. Microorganisms 9:933. doi:10.3390/microorganisms9050933 PubMed DOI PMC
Flouri T, Huang J, Jiao X, Kapli P, Rannala B, Yang Z. 2022. Bayesian phylogenetic inference using relaxed-clocks and the multispecies coalescent. Mol Biol Evol 39:msac161. doi:10.1093/molbev/msac161 PubMed DOI PMC
Edwards SV, Potter S, Schmitt CJ, Bragg JG, Moritz C. 2016. Reticulation, divergence, and the phylogeography-phylogenetics continuum. Proc Natl Acad Sci U S A 113:8025–8032. doi:10.1073/pnas.1601066113 PubMed DOI PMC
Flouri T, Jiao X, Rannala B, Yang Z. 2018. Species tree inference with BPP using genomic sequences and the multispecies coalescent. Mol Biol Evol 35:2585–2593. doi:10.1093/molbev/msy147 PubMed DOI PMC
Matzke NJ. 2014. Model selection in historical biogeography reveals that founder-event speciation is a crucial process in Island Clades. Syst Biol 63:951–970. doi:10.1093/sysbio/syu056 PubMed DOI
Castillo-Ramírez S, Fingerle V, Jungnick S, Straubinger RK, Krebs S, Blum H, Meinel DM, Hofmann H, Guertler P, Sing A, Margos G. 2016. Trans-Atlantic exchanges have shaped the population structure of the Lyme disease agent Borrelia burgdorferi sensu stricto. Sci Rep 6:22794. doi:10.1038/srep22794 PubMed DOI PMC
Zhong J, Skouloubris S, Dai Q, Myllykallio H, Barbour AG. 2006. Function and evolution of plasmid-borne genes for pyrimidine biosynthesis in Borrelia spp. J Bacteriol 188:909–918. doi:10.1128/JB.188.3.909-918.2006 PubMed DOI PMC
Wywial E, Haven J, Casjens SR, Hernandez YA, Singh S, Mongodin EF, Fraser-Liggett CM, Luft BJ, Schutzer SE, Qiu W-G. 2009. Fast, adaptive evolution at a bacterial host-resistance locus: the PFam54 gene array in Borrelia burgdorferi. Gene 445:26–37. doi:10.1016/j.gene.2009.05.017 PubMed DOI PMC
Marconi RT, Casjens S, Munderloh UG, Samuels DS. 1996. Analysis of linear plasmid dimers in Borrelia burgdorferi sensu lato isolates: implications concerning the potential mechanism of linear plasmid replication. J Bacteriol 178:3357–3361. doi:10.1128/jb.178.11.3357-3361.1996 PubMed DOI PMC
Skare JT, Champion CI, Mirzabekov TA, Shang ES, Blanco DR, Erdjument-Bromage H, Tempst P, Kagan BL, Miller JN, Lovett MA. 1996. Porin activity of the native and recombinant outer membrane protein Oms28 of Borrelia burgdorferi. J Bacteriol 178:4909–4918. doi:10.1128/jb.178.16.4909-4918.1996 PubMed DOI PMC
Raibaud S, Schwarz-Linek U, Kim JH, Jenkins HT, Baines ER, Gurusiddappa S, Höök M, Potts JR. 2005. Borrelia burgdorferi binds fibronectin through a tandem beta-zipper, a common mechanism of fibronectin binding in staphylococci, streptococci, and spirochetes. J Biol Chem 280:18803–18809. doi:10.1074/jbc.M501731200 PubMed DOI
Probert WS, Johnson BJ. 1998. Identification of a 47 kDa fibronectin-binding protein expressed by Borrelia burgdorferi isolate B31. Mol Microbiol 30:1003–1015. doi:10.1046/j.1365-2958.1998.01127.x PubMed DOI
Becker NS, Rollins RE, Nosenko K, Paulus A, Martin S, Krebs S, Takano A, Sato K, Kovalev SY, Kawabata H, Fingerle V, Margos G. 2020. High conservation combined with high plasticity: genomics and evolution of Borrelia bavariensis. BMC Genomics 21:702. doi:10.1186/s12864-020-07054-3 PubMed DOI PMC
Norris SJ. 2014. vls antigenic variation systems of Lyme disease Borrelia: eluding host immunity through both random, segmental gene conversion and framework heterogeneity. Microbiol Spectr 2:MDNA3-0038-2014. doi:10.1128/microbiolspec.MDNA3-0038-2014 PubMed DOI PMC
Carrasco SE, Troxell B, Yang Y, Brandt SL, Li H, Sandusky GE, Condon KW, Serezani CH, Yang XF. 2015. Outer surface protein OspC is an antiphagocytic factor that protects Borrelia burgdorferi from phagocytosis by macrophages. Infect Immun 83:4848–4860. doi:10.1128/IAI.01215-15 PubMed DOI PMC
Caine JA, Lin Y-P, Kessler JR, Sato H, Leong JM, Coburn J. 2017. Borrelia burgdorferi outer surface protein C (OspC) binds complement component C4b and confers bloodstream survival. Cell Microbiol 19:e12786. doi:10.1111/cmi.12786 PubMed DOI PMC
Caine JA, Coburn J. 2016. Multifunctional and redundant roles of Borrelia burgdorferi outer surface proteins in tissue adhesion, colonization, and complement evasion. Front Immunol 7:442. doi:10.3389/fimmu.2016.00442 PubMed DOI PMC
Önder Ö, Humphrey PT, McOmber B, Korobova F, Francella N, Greenbaum DC, Brisson D. 2012. OspC is potent plasminogen receptor on surface of Borrelia burgdorferi. J Biol Chem 287:16860–16868. doi:10.1074/jbc.M111.290775 PubMed DOI PMC
Bhatia B, Hillman C, Carracoi V, Cheff BN, Tilly K, Rosa PA. 2018. Infection history of the blood-meal host dictates pathogenic potential of the Lyme disease spirochete within the feeding tick vector. PLoS Pathog 14:e1006959. doi:10.1371/journal.ppat.1006959 PubMed DOI PMC
Seinost G, Dykhuizen DE, Dattwyler RJ, Golde WT, Dunn JJ, Wang IN, Wormser GP, Schriefer ME, Luft BJ. 1999. Four clones of Borrelia burgdorferi sensu stricto cause invasive infection in humans. Infect Immun 67:3518–3524. doi:10.1128/IAI.67.7.3518-3524.1999 PubMed DOI PMC
Dykhuizen DE, Brisson D, Sandigursky S, Wormser GP, Nowakowski J, Nadelman RB, Schwartz I. 2008. The propensity of different Borrelia burgdorferi sensu stricto genotypes to cause disseminated infections in humans. Am J Trop Med Hyg 78:806–810. doi:10.4269/ajtmh.2008.78.806 PubMed DOI PMC
Attie O, Bruno JF, Xu Y, Qiu D, Luft BJ, Qiu W-G. 2007. Co-evolution of the outer surface protein C gene (ospC) and intraspecific lineages of Borrelia burgdorferi sensu stricto in the northeastern United States. Infect Genet Evol 7:1–12. doi:10.1016/j.meegid.2006.02.008 PubMed DOI
Salo J, Loimaranta V, Lahdenne P, Viljanen MK, Hytönen J. 2011. Decorin binding by DbpA and B of Borrelia garinii, Borrelia afzelii, and Borrelia burgdorferi sensu stricto. J Infect Dis 204:65–73. doi:10.1093/infdis/jir207 PubMed DOI PMC
Lin Y-P, Benoit V, Yang X, Martínez-Herranz R, Pal U, Leong JM. 2014. Strain-specific variation of the decorin-binding adhesin DbpA influences the tissue tropism of the lyme disease spirochete. PLoS Pathog 10:e1004238. doi:10.1371/journal.ppat.1004238 PubMed DOI PMC
Hallström T, Siegel C, Mörgelin M, Kraiczy P, Skerka C, Zipfel PF. 2013. CspA from Borrelia burgdorferi inhibits the terminal complement pathway. mBio 4:e00481-13. doi:10.1128/mBio.00481-13 PubMed DOI PMC
Bykowski T, Woodman ME, Cooley AE, Brissette CA, Wallich R, Brade V, Kraiczy P, Stevenson B. 2008. Borrelia burgdorferi complement regulator-acquiring surface proteins (BbCRASPs): expression patterns during the mammal-tick infection cycle. Int J Med Microbiol 298:249–256. doi:10.1016/j.ijmm.2007.10.002 PubMed DOI PMC
Hart TM, Dupuis AP, Tufts DM, Blom AM, Starkey SR, Rego ROM, Ram S, Kraiczy P, Kramer LD, Diuk-Wasser MA, Kolokotronis S-O, Lin Y-P. 2021. Host tropism determination by convergent evolution of immunological evasion in the Lyme disease system. PLoS Pathog 17:e1009801. doi:10.1371/journal.ppat.1009801 PubMed DOI PMC
Maynard Smith J, Smith NH. 1998. Detecting recombination from gene trees. Mol Biol Evol 15:590–599. doi:10.1093/oxfordjournals.molbev.a025960 PubMed DOI
Rogers J, Fishberg A, Youngs N, Wu Y-C. 2017. Reconciliation feasibility in the presence of gene duplication, loss, and coalescence with multiple individuals per species. BMC Bioinformatics 18:292. doi:10.1186/s12859-017-1701-1 PubMed DOI PMC
Eisen JA. 1998. Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Res 8:163–167. doi:10.1101/gr.8.3.163 PubMed DOI
Kumar S, Filipski AJ, Battistuzzi FU, Kosakovsky Pond SL, Tamura K. 2012. Statistics and truth in phylogenomics. Mol Biol Evol 29:457–472. doi:10.1093/molbev/msr202 PubMed DOI PMC
Hernández Y, Bernstein R, Pagan P, Vargas L, McCaig W, Ramrattan G, Akther S, Larracuente A, Di L, Vieira FG, Qiu W-G. 2018. BpWrapper: BioPerl-based sequence and tree utilities for rapid prototyping of bioinformatics pipelines. BMC Bioinformatics 19:76. doi:10.1186/s12859-018-2074-9 PubMed DOI PMC
Di L, Akther S, Bezrucenkovas E, Ivanova L, Sulkow B, Wu B, Mneimneh S, Gomes-Solecki M, Qiu W-G. 2022. Maximum antigen diversification in a Lyme bacterial population and evolutionary strategies to overcome pathogen diversity. ISME J 16:447–464. doi:10.1038/s41396-021-01089-4 PubMed DOI PMC
Rudenko N, Golovchenko M, Hönig V, Mallátová N, Krbková L, Mikulásek P, Fedorova N, Belfiore NM, Grubhoffer L, Lane RS, Oliver Jr JH. 2013. Detection of Borrelia burgdorferi sensu stricto ospC alleles associated with human Lyme borreliosis worldwide in non-human-biting tick Ixodes affinis and rodent hosts in Southeastern United States. Appl Environ Microbiol 79:1444–1453. doi:10.1128/AEM.02749-12 PubMed DOI PMC
Travinsky B, Bunikis J, Barbour AG. 2010. Geographic differences in genetic locus linkages for Borrelia burgdorferi. Emerg Infect Dis 16:1147–1150. doi:10.3201/eid1607.091452 PubMed DOI PMC
Schulte-Spechtel U, Fingerle V, Goettner G, Rogge S, Wilske B. 2006. Molecular analysis of decorin-binding protein A (DbpA) reveals five major groups among European Borrelia burgdorferi sensu lato strains with impact for the development of serological assays and indicates lateral gene transfer of the dbpA gene. Int J Med Microbiol 296:250–266. doi:10.1016/j.ijmm.2006.01.006 PubMed DOI
Stanek G, Wormser GP, Gray J, Strle F. 2012. Lyme borreliosis. Lancet 379:461–473. doi:10.1016/S0140-6736(11)60103-7 PubMed DOI
Lemieux JE, Huang W, Hill N, Cerar T, Freimark L, Hernandez S, Luban M, Maraspin V, Bogovič P, Ogrinc K, Ruzič-Sabljič E, Lapierre P, Lasek-Nesselquist E, Singh N, Iyer R, Liveris D, Reed KD, Leong JM, Branda JA, Steere AC, Wormser GP, Strle F, Sabeti PC, Schwartz I, Strle K. 2023. Whole genome sequencing of human Borrelia burgdorferi isolates reveals linked blocks of accessory genome elements located on plasmids and associated with human dissemination. PLoS Pathog 19:e1011243. doi:10.1371/journal.ppat.1011243 PubMed DOI PMC
Margos G, Hofmann M, Casjens S, Dupraz M, Heinzinger S, Hartberger C, Hepner S, Schmeusser M, Sing A, Fingerle V, McCoy KD. 2023. Genome diversity of Borrelia garinii in marine transmission cycles does not match host associations but reflects the strains evolutionary history. Infect Genet Evol 115:105502. doi:10.1016/j.meegid.2023.105502 PubMed DOI
Tokarz R, Tagliafierro T, Sameroff S, Cucura DM, Oleynik A, Che X, Jain K, Lipkin WI. 2019. Microbiome analysis of Ixodes scapularis ticks from New York and Connecticut. Ticks Tick Borne Dis 10:894–900. doi:10.1016/j.ttbdis.2019.04.011 PubMed DOI
Takano A, Nakao M, Masuzawa T, Takada N, Yano Y, Ishiguro F, Fujita H, Ito T, Ma X, Oikawa Y, Kawamori F, Kumagai K, Mikami T, Hanaoka N, Ando S, Honda N, Taylor K, Tsubota T, Konnai S, Watanabe H, Ohnishi M, Kawabata H. 2011. Multilocus sequence typing implicates rodents as the main reservoir host of human-pathogenic Borrelia garinii in Japan. J Clin Microbiol 49:2035–2039. doi:10.1128/JCM.02544-10 PubMed DOI PMC
Marques AR, Strle F, Wormser GP. 2021. Comparison of Lyme disease in the United States and Europe. Emerg Infect Dis 27:2017–2024. doi:10.3201/eid2708.204763 PubMed DOI PMC
Jungnick S, Margos G, Rieger M, Dzaferovic E, Bent SJ, Overzier E, Silaghi C, Walder G, Wex F, Koloczek J, Sing A, Fingerle V. 2015. Borrelia burgdorferi sensu stricto and Borrelia afzelii: population structure and differential pathogenicity. Int J Med Microbiol 305:673–681. doi:10.1016/j.ijmm.2015.08.017 PubMed DOI
Wormser GP, Brisson D, Liveris D, Hanincová K, Sandigursky S, Nowakowski J, Nadelman RB, Ludin S, Schwartz I. 2008. Borrelia burgdorferi genotype predicts the capacity for hematogenous dissemination during early Lyme disease. J Infect Dis 198:1358–1364. doi:10.1086/592279 PubMed DOI PMC
Margos G, Fingerle V, Reynolds S. 2019. Borrelia bavariensis: vector switch, niche invasion, and geographical spread of a tick-borne bacterial parasite. Front Ecol Evol 7:401. doi:10.3389/fevo.2019.00401 DOI
Margos G, Sing A, Fingerle V. 2017. Published data do not support the notion that Borrelia valaisiana is human pathogenic. Infection 45:567–569. doi:10.1007/s15010-017-1032-1 PubMed DOI
Barton NH. 2009. Why sex and recombination? Cold Spring Harb Symp Quant Biol 74:187–195. doi:10.1101/sqb.2009.74.030 PubMed DOI
Hill WG, Robertson A. 1966. The effect of linkage on limits to artificial selection. Genet Res 8:269–294. doi:10.1017/S0016672300010156 PubMed DOI
Muller HJ. 1964. The relation of recombination to muational advance. Mutat Res 106:2–9. doi:10.1016/0027-5107(64)90047-8 PubMed DOI
Jacquot M, Gonnet M, Ferquel E, Abrial D, Claude A, Gasqui P, Choumet V, Charras-Garrido M, Garnier M, Faure B, Sertour N, Dorr N, De Goër J, Vourc’h G, Bailly X. 2014. Comparative population genomics of the Borrelia burgdorferi species complex reveals high degree of genetic isolation among species and underscores benefits and constraints to studying intra-specific epidemiological processes. PLoS ONE 9:e94384. doi:10.1371/journal.pone.0094384 PubMed DOI PMC
Dykhuizen DE, Green L. 1991. Recombination in Escherichia coli and the definition of biological species. J Bacteriol 173:7257–7268. doi:10.1128/jb.173.22.7257-7268.1991 PubMed DOI PMC
Sellek RE, Escudero R, Gil H, Rodríguez I, Chaparro E, Pérez-Pastrana E, Vivo A, Anda P. 2002. In vitro culture of Borrelia garinii results in loss of flagella and decreased invasiveness. Infect Immun 70:4851–4858. doi:10.1128/IAI.70.9.4851-4858.2002 PubMed DOI PMC
Gautreau G, Bazin A, Gachet M, Planel R, Burlot L, Dubois M, Perrin A, Médigue C, Calteau A, Cruveiller S, Matias C, Ambroise C, Rocha EPC, Vallenet D. 2020. PPanGGOLiN: depicting microbial diversity via a partitioned pangenome graph. PLOS Comput Biol 16:e1007732. doi:10.1371/journal.pcbi.1007732 PubMed DOI PMC
Graves CJ, Ros VID, Stevenson B, Sniegowski PD, Brisson D. 2013. Natural selection promotes antigenic evolvability. PLoS Pathog 9:e1003766. doi:10.1371/journal.ppat.1003766 PubMed DOI PMC
Gatzmann F, Metzler D, Krebs S, Blum H, Sing A, Takano A, Kawabata H, Fingerle V, Margos G, Becker NS. 2015. NGS population genetics analyses reveal divergent evolution of a Lyme Borreliosis agent in Europe and Asia. Ticks Tick Borne Dis 6:344–351. doi:10.1016/j.ttbdis.2015.02.008 PubMed DOI
Oppler ZJ, O’Keeffe KR, McCoy KD, Brisson D. 2021. Evolutionary genetics of Borrelia, p 251–265. In Lyme disease and relapsing fever spirochetes: genomics, molecular biology, host interactions and disease pathogenesis. Caister Academic Press.
Tyler S, Tyson S, Dibernardo A, Drebot M, Feil EJ, Graham M, Knox NC, Lindsay LR, Margos G, Mechai S, Van Domselaar G, Thorpe HA, Ogden NH. 2018. Whole genome sequencing and phylogenetic analysis of strains of the agent of Lyme disease Borrelia burgdorferi from Canadian emergence zones. Sci Rep 8:10552. doi:10.1038/s41598-018-28908-7 PubMed DOI PMC
Chin C-S, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, Clum A, Copeland A, Huddleston J, Eichler EE, Turner SW, Korlach J. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563–569. doi:10.1038/nmeth.2474 PubMed DOI
Berlin K, Koren S, Chin C-S, Drake JP, Landolin JM, Phillippy AM. 2015. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing. Nat Biotechnol 33:623–630. doi:10.1038/nbt.3238 PubMed DOI
Schatz MC, Phillippy AM, Sommer DD, Delcher AL, Puiu D, Narzisi G, Salzberg SL, Pop M. 2013. Hawkeye and AMOS: visualizing and assessing the quality of genome assemblies. Brief Bioinform 14:213–224. doi:10.1093/bib/bbr074 PubMed DOI PMC
Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29:1072–1075. doi:10.1093/bioinformatics/btt086 PubMed DOI PMC
Li W, O’Neill KR, Haft DH, DiCuccio M, Chetvernin V, Badretdin A, Coulouris G, Chitsaz F, Derbyshire MK, Durkin AS, Gonzales NR, Gwadz M, Lanczycki CJ, Song JS, Thanki N, Wang J, Yamashita RA, Yang M, Zheng C, Marchler-Bauer A, Thibaud-Nissen F. 2021. RefSeq: expanding the Prokaryotic Genome Annotation Pipeline reach with protein family model curation. Nucleic Acids Res 49:D1020–D1028. doi:10.1093/nar/gkaa1105 PubMed DOI PMC
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, 1000 Genomes Project Analysis Group . 2011. The variant call format and VCFtools. Bioinformatics 27:2156–2158. doi:10.1093/bioinformatics/btr330 PubMed DOI PMC
Livey I, Gibbs CP, Schuster R, Dorner F. 1995. Evidence for lateral transfer and recombination in OspC variation in Lyme disease Borrelia. Mol Microbiol 18:257–269. doi:10.1111/j.1365-2958.1995.mmi_18020257.x PubMed DOI
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. doi:10.1093/molbev/mst010 PubMed DOI PMC
Yu G. 2020. Using ggtree to visualize data on tree-like structures. Curr Protoc Bioinformatics 69:e96. doi:10.1002/cpbi.96 PubMed DOI
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421. doi:10.1186/1471-2105-10-421 PubMed DOI PMC
Fu L, Niu B, Zhu Z, Wu S, Li W. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150–3152. doi:10.1093/bioinformatics/bts565 PubMed DOI PMC
Rambaut A, Drummond AJ, Xie D, Baele G, Suchard MA. 2018. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst Biol 67:901–904. doi:10.1093/sysbio/syy032 PubMed DOI PMC
Angelis K, Dos Reis M. 2015. The impact of ancestral population size and incomplete lineage sorting on Bayesian estimation of species divergence times. Curr Zool 61:874–885. doi:10.1093/czoolo/61.5.874 DOI
Guy L, Kultima JR, Andersson SGE. 2010. genoPlotR: comparative gene and genome visualization in R. Bioinformatics 26:2334–2335. doi:10.1093/bioinformatics/btq413 PubMed DOI PMC
Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340 PubMed DOI PMC
Price MN, Dehal PS, Arkin AP. 2010. FastTree 2 -- approximately maximum-likelihood trees for large alignments. PLoS ONE 5:e9490. doi:10.1371/journal.pone.0009490 PubMed DOI PMC