Detection of Borrelia burgdorferi sensu stricto ospC alleles associated with human lyme borreliosis worldwide in non-human-biting tick Ixodes affinis and rodent hosts in Southeastern United States
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, P.H.S.
Grantová podpora
R37 AI024899
NIAID NIH HHS - United States
U50/CCU410282
PHS HHS - United States
R37AI-24899
NIAID NIH HHS - United States
PubMed
23263953
PubMed Central
PMC3591949
DOI
10.1128/aem.02749-12
PII: AEM.02749-12
Knihovny.cz E-zdroje
- MeSH
- alely * MeSH
- antigeny bakteriální genetika MeSH
- Borrelia burgdorferi genetika izolace a purifikace MeSH
- DNA bakterií chemie genetika MeSH
- genetická variace MeSH
- genotyp MeSH
- hlodavci mikrobiologie MeSH
- klíště mikrobiologie MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- proteiny vnější bakteriální membrány genetika MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Geografické názvy
- Evropa MeSH
- Severní Amerika MeSH
- Názvy látek
- antigeny bakteriální MeSH
- DNA bakterií MeSH
- OspC protein MeSH Prohlížeč
- proteiny vnější bakteriální membrány MeSH
Comparative analysis of ospC genes from 127 Borrelia burgdorferi sensu stricto strains collected in European and North American regions where Lyme disease is endemic and where it is not endemic revealed a close relatedness of geographically distinct populations. ospC alleles A, B, and L were detected on both continents in vectors and hosts, including humans. Six ospC alleles, A, B, L, Q, R, and V, were prevalent in Europe; 4 of them were detected in samples of human origin. Ten ospC alleles, A, B, D, E3, F, G, H, H3, I3, and M, were identified in the far-western United States. Four ospC alleles, B, G, H, and L, were abundant in the southeastern United States. Here we present the first expanded analysis of ospC alleles of B. burgdorferi strains from the southeastern United States with respect to their relatedness to strains from other North American and European localities. We demonstrate that ospC genotypes commonly associated with human Lyme disease in European and North American regions where the disease is endemic were detected in B. burgdorferi strains isolated from the non-human-biting tick Ixodes affinis and rodent hosts in the southeastern United States. We discovered that some ospC alleles previously known only from Europe are widely distributed in the southeastern United States, a finding that confirms the hypothesis of transoceanic migration of Borrelia species.
Zobrazit více v PubMed
Kurtenbach K, Hanincová K, Tsao JI, Margos G, Fish D, Ogden NH. 2006. Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nat. Rev. Microbiol. 4:660–669 PubMed
Oliver JH., Jr 1996. Lyme borreliosis in the southern United States: a review. J. Parasitol. 82:926–935 PubMed
Comstedt P, Bergström S, Olsen B, Garpmo U, Marjavaara L, Mejlon H, Barbour AG, Bunikis J. 2006. Migratory passerine birds as reservoirs of Lyme borreliosis in Europe. Emerg. Infect. Dis. 12:1087–1095 PubMed PMC
Olsen B, Duffy DC, Jaenson TG, Gylfe A, Bonnedahl J, Bergström S. 1995. Transhemispheric exchange of Lyme disease spirochetes by seabirds. J. Clin. Microbiol. 33:3270–3274 PubMed PMC
Poupon M-A, Lommano E, Humair PF, Douet V, Rais O, Schaad M, Jenni L, Gern L. 2006. Prevalence of Borrelia burgdorferi sensu lato in ticks collected from migratory birds in Switzerland. Appl. Environ. Microbiol. 72:976–979 PubMed PMC
Foretz M, Postic D, Baranton G. 1997. Phylogenetic analysis of Borrelia burgdorferi sensu stricto by arbitrarily primed PCR and pulsed-field gel electrophoresis. Int. J. Syst. Bacteriol. 47:11–18 PubMed
Marti Ras N, Postic D, Foretz M, Baranton G. 1997. Borrelia burgdorferi sensu stricto, a bacterial species “made in the USA”? Int. J. Syst. Bacteriol. 47:1112–1117 PubMed
Postic D, Ras NM, Lane RS, Humair P, Wittenbrink MM, Baranton G. 1999. Common ancestry of Borrelia burgdorferi sensu lato strains from North America and Europe. J. Clin. Microbiol. 37:3010–3012 PubMed PMC
Qiu WG, Bruno JF, McCaig WD, Xu Y, Livey I, Schriefer ME, Luft BJ. 2008. Wide distribution of a high-virulence Borrelia burgdorferi clone in Europe and North America. Emerg. Infect. Dis. 14:1097–1104 PubMed PMC
Girard YA, Fedorova N, Lane RS. 2011. Genetic diversity of Borrelia burgdorferi and detection of B. bissettii-like DNA in serum of north-coastal California residents. J. Clin. Microbiol. 49:945–954 PubMed PMC
Rudenko N, Golovchenko M, Grubhoffer L, Oliver JH., Jr 2011. Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick Borne Dis. 2:123–128 PubMed PMC
Rudenko N, Golovchenko M, Mokrácek A, Piskunová N, Ruzek D, Mallatová N, Grubhoffer L. 2008. Detection of Borrelia bissettii in cardiac valve tissue of a patient with endocarditis and aortic valve stenosis in the Czech Republic. J. Clin. Microbiol. 46:3540–3543 PubMed PMC
Rudenko N, Golovchenko M, Rùzek D, Piskunova N, Mallátová N, Grubhoffer L. 2009. Molecular detection of Borrelia bissettii DNA in serum samples from patients in the Czech Republic with suspected borreliosis. FEMS Microbiol. Lett. 292:274–281 PubMed
Liveris D, Gazumyan A, Schwartz I. 1995. Molecular typing of Borrelia burgdorferi sensu lato by PCR-restriction fragment length polymorphism analysis. J. Clin. Microbiol. 33:589–595 PubMed PMC
Liveris D, Varde S, Iyer R, Koenig S, Bittker S, Cooper D, McKenna D, Nowakowski J, Nadelman RB, Wormser GP, Schwartz I. 1999. Genetic diversity of Borrelia burgdorferi in Lyme disease patients as determined by culture versus direct PCR with clinical specimens. J. Clin. Microbiol. 37:565–569 PubMed PMC
Wang IN, Dykhuizen DE, Qiu W, Dunn JJ, Bosler EM, Luft BJ. 1999. Genetic diversity of ospC in a local population of Borrelia burgdorferi sensu stricto. Genetics 151:15–30 PubMed PMC
Brisson D, Dykhuizen DE. 2004. OspC diversity in Borrelia burgdorferi: different hosts are different niches. Genetics 168:713–722 PubMed PMC
Alghaferi MY, Anderson JM, Park J, Auwaerter PG, Aucott JN, Norris DE, Dumler JS. 2005. Borrelia burgdorferi ospC heterogeneity among human and murine isolates from a defined region of northern Maryland and southern Pennsylvania: lack of correlation with invasive and noninvasive genotypes. J. Clin. Microbiol. 43:1879–1884 PubMed PMC
Brisson D, Baxamusa N, Schwartz I, Wormser GP. 2011. Biodiversity of Borrelia burgdorferi strains in tissues of Lyme disease patients. PLoS One 6:e22926 doi:10.1371/journal.pone.0022926 PubMed DOI PMC
Dykhuizen DE, Brisson D, Sandigursky S, Wormser GP, Nowakowski J, Nadelman RB, Schwartz I. 2008. The propensity of different Borrelia burgdorferi sensu stricto genotypes to cause disseminated infections in humans. Am. J. Trop. Med. Hyg. 78:806–810 PubMed PMC
Ivanova L, Christova I, Neves V, Aroso M, Meirelles L, Brisson D, Gomes-Solecki M. 2009. Comprehensive seroprofiling of sixteen B. burgdorferi OspC: implications for Lyme disease diagnostics design. Clin. Immunol. 132:393–400 PubMed PMC
Seinost G, Dykhuizen DE, Dattwyler RJ, Golde WT, Dunn JJ, Wang IN, Wormser GP, Schriefer ME, Luft BJ. 1999. Four clones of Borrelia burgdorferi sensu stricto cause invasive infection in humans. Infect. Immun. 67:3518–3524 PubMed PMC
Wang G, Ojaimi C, Iyer R, Saksenberg V, McClain SA, Wormser GP, Schwartz I. 2001. Impact of genotypic variation of Borrelia burgdorferi sensu stricto on kinetics of dissemination and severity of disease in C3H/HeJ mice. Infect. Immun. 69:4303–4312 PubMed PMC
Wang G, Ojaimi C, Wu H, Saksenberg V, Iyer R, Liveris D, McClain SA, Wormser GP, Schwartz I. 2002. Disease severity in a murine model of Lyme borreliosis is associated with the genotype of the infecting Borrelia burgdorferi sensu stricto strain. J. Infect. Dis. 186:782–791 PubMed PMC
Anderson JF. 1988. Mammalian and avian reservoirs for Borrelia burgdorferi. Ann. N. Y. Acad. Sci. 539:180–191 PubMed
Anderson JF. 1989. Ecology of Lyme disease. Conn. Med. 53:343–346 PubMed
Gern L. 2008. Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis: life in the wilds. Parasite 15:244–247 PubMed
Lane RS, Piesman J, Burgdorfer W. 1991. Lyme borreliosis: relation of its causative agent to its vectors and hosts in North America and Europe. Annu. Rev. Entomol. 36:587–609 PubMed
Qiu WG, Bosler EM, Campbell JR, Ugine GD, Wang IN, Luft BJ, Dykhuizen DE. 1997. A population genetic study of Borrelia burgdorferi sensu stricto from eastern Long Island, New York, suggested frequency-dependent selection, gene flow and host adaptation. Hereditas 127:203–216 PubMed
Theisen M, Borre M, Mathiesen MJ, Mikkelsen B, Lebech AM, Hansen K. 1995. Evolution of the Borrelia burgdorferi outer surface protein OspC. J. Bactriol. 177:3036–3044 PubMed PMC
Wang G, van Dam AP, Dankert J. 1999. Evidence for frequent ospC gene transfer between Borrelia valaisiana sp. nov. and other Lyme disease spirochetes. FEMS Microbiol. Lett. 177:289–296 PubMed
Bunikis J, Garpmo U, Tsao J, Berglund J, Fish D, Barbour AG. 2004. Sequence typing reveals extensive strain diversity of the Lyme borreliosis agents Borrelia burgdorferi in North America and Borrelia afzelii in Europe. Microbiology 150:1741–1755 PubMed
Qiu WG, Dykhuizen DE, Acosta MS, Luft BJ. 2002. Geographic uniformity of the Lyme disease spirochete (Borrelia burgdorferi) and its shared history with tick vector (Ixodes scapularis) in the Northeastern United States. Genetics 160:833–849 PubMed PMC
Barbour AG, Fish D. 1993. The biological and social phenomenon of Lyme disease. Science 260:1610–1616 PubMed
O'Connell S. 2011. Lyme borreliosis and other ixodid tick-borne diseases—a European perspective, p. 405–435 In Critical needs and gaps in understanding prevention, amelioration, and resolution of Lyme and other tick-borne diseases: the short-term and long-term outcomes. National Academies Press, Washington, DC PubMed
Piesman J, Gern L. 2004. Lyme borreliosis in Europe and North America. Parasitology 129(Suppl):S191–S220 doi:10.1017/S0031182003004694 PubMed DOI
Rudenko N, Golovchenko M, Grubhoffer L, Oliver JH., Jr 2011. Borrelia carolinensis sp. nov., a new species of Borrelia burgdorferi sensu lato complex isolated from rodents and a tick from the south-eastern USA. Int. J. Syst. Evol. Microbiol. 61:381–383 PubMed PMC
Rudenko N, Golovchenko M, Lin T, Gao L, Grubhoffer L, Oliver JH., Jr 2009. Delineation of a new species of the Borrelia burgdorferi sensu lato complex, Borrelia americana sp. nov. J. Clin. Microbiol. 47:3875–3880 PubMed PMC
Stanek G, Fingerle V, Hunfeld KP, Jaulhac B, Kaiser R, Krause A, Kristoferitsch W, O'Connell S, Ornstein K, Strle F, Gray J. 2011. Lyme borreliosis: clinical case definitions for diagnosis and management in Europe. Clin. Microbiol. Infect. 17:69–79 PubMed
Hubalek Z. 2009. Epidemiology of Lyme borreliosis. Curr. Probl. Dermatol. 37:31–50 PubMed
Steere AC, Coburn J, Glickstein L. 2004. The emergence of Lyme disease. J. Clin. Invest. 113:1093–1101 PubMed PMC
Girard YA, Travinsky B, Schotthoefer A, Fedorova N, Eisen RJ, Eisen L, Barbour AG, Lane RS. 2009. Population structure of the Lyme borreliosis spirochete Borrelia burgdorferi in the western black-legged tick (Ixodes pacificus) in Northern California. Appl. Environ. Microbiol. 75:7243–7252 PubMed PMC
Rudenko N, Golovchenko M, Grubhoffer L, Oliver JH., Jr 2009. Borrelia carolinensis sp. nov., a new (14th) member of the Borrelia burgdorferi sensu lato complex from the southeastern region of the United States. J. Clin. Microbiol. 47:134–141 PubMed PMC
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948 PubMed
Brisson D, Vandermause MF, Meece JK, Reed KD, Dykhuizen DE. 2010. Evolution of northeastern and midwestern Borrelia burgdorferi, United States. Emerg. Infect. Dis. 16:911–917 PubMed PMC
Gascuel O. 1997. BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol. Biol. Evol. 14:685–695 PubMed
Anderson JF, Magnarelli LA, Stafford KC., III 1990. Bird-feeding ticks transstadially transmit Borrelia burgdorferi that infect Syrian hamsters. J. Wildl. Dis. 26:1–10 PubMed
Danielová V, Daniel M, Schwarzová L, Materna J, Rudenko N, Golovchenko M, Holubová J, Grubhoffer L, Kilián P. 2010. Integration of a tick-borne encephalitis virus and Borrelia burgdorferi sensu lato into mountain ecosystems, following a shift in the altitudinal limit of distribution of their vector, Ixodes ricinus (Krkonose mountains, Czech Republic). Vector Borne Zoonotic Dis. 10:223–230 PubMed
Kurtenbach K, Peacey M, Rijpkema SG, Hoodless AN, Nuttall PA, Randolph SE. 1998. Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Appl. Environ. Microbiol. 64:1169–1174 PubMed PMC
Scott JD, Lee MK, Fernando K, Durden LA, Jorgensen DR, Mak S, Morshed MG. 2010. Detection of Lyme disease spirochete, Borrelia burgdorferi sensu lato, including three novel genotypes in ticks (Acari: Ixodidae) collected from songbirds (Passeriformes) across Canada. J. Vector Ecol. 35:124–139 PubMed
Brown RN, Lane RS. 1992. Lyme disease in California: a novel enzootic transmission cycle of Borrelia burgdorferi. Science 256:1439–1442 PubMed
Lane RS, Loye JE. 1991. Lyme disease in California: interrelationship of ixodid ticks (Acari), rodents, and Borrelia burgdorferi. J. Med. Entomol. 28:719–725 PubMed
Orloski KA, Hayes EB, Campbell GL, Dennis DT. 2000. Surveillance for Lyme disease—United States, 1992-1998. MMWR CDC Surveill. Summ. 49:1–11 PubMed
Hamer SA, Hickling GJ, Sidge JL, Rosen ME, Walker ED, Tsao JI. 2011. Diverse Borrelia burgdorferi strains in a bird-tick cryptic cycle. Appl. Environ. Microbiol. 77:1999–2007 PubMed PMC
Stromdahl E, Hickling G. 2012. Beyond Lyme: aetiology of tick-borne human diseases with emphasis on the South-Eastern United States. Zoonoses Public Health 59:48–64 PubMed
Bishopp FC, Trembley HL. 1945. Distribution and hosts of certain North American ticks. J. Parasitol. 31:1–54
Humphrey PT, Caporale DA, Brisson D. 2010. Uncoordinated phylogeography of Borrelia burgdorferi and its tick vector, Ixodes scapularis. Evolution 64:2653–2663 PubMed PMC
Ogden NH, Lindsay LR, Hanincová K, Barker IK, Bigras-Poulin M, Charron DF, Heagy A, Francis CM, O'Callaghan CJ, Schwartz I, Thompson RA. 2008. Role of migratory birds in introduction and range expansion of Ixodes scapularis ticks and of Borrelia burgdorferi and Anaplasma phagocytophilum in Canada. Appl. Environ. Microbiol. 74:1780–1790 PubMed PMC
Ogden NH, Margos G, Aanensen DM, Drebot MA, Feil EJ, Hanincová K, Schwartz I, Tyler S, Lindsay LR. 2011. Investigation of genotypes of Borrelia burgdorferi in Ixodes scapularis ticks collected during surveillance in Canada. Appl. Environ. Microbiol. 77:3244–3254 PubMed PMC
Anderson JF, Magnarelli LA, LeFebvre RB, Andreadis TG, McAninch JB, Perng GC, Johnson RC. 1989. Antigenically variable Borrelia burgdorferi isolated from cottontail rabbits and Ixodes dentatus in rural and urban areas. J. Clin. Microbiol. 27:13–20 PubMed PMC
Gern L, Rouvinez E, Toutoungi LN, Godfroid E. 1997. Transmission cycles of Borrelia burgdorferi sensu lato involving Ixodes ricinus and/or I. hexagonus ticks and the European hedgehog, Erinaceus europaeus, in suburban and urban areas in Switzerland. Folia Parasitol. (Praha) 44:309–314 PubMed
Oliver JH, Jr, Chandler FW, Jr, James AM, Huey LO, Vogel GN, Sanders FH., Jr 1996. Unusual strain of Borrelia burgdorferi isolated from Ixodes dentatus in central Georgia. J. Parasitol. 82:936–940 PubMed
Oliver JH, Jr, Chandler FW, Jr, James AM, Sanders FH, Jr, Hutcheson HJ, Huey LO, McGuire BS, Lane RS. 1995. Natural occurrence and characterization of the Lyme disease spirochete, Borrelia burgdorferi, in cotton rats (Sigmodon hispidus) from Georgia and Florida. J. Parasitol. 81:30–36 PubMed
Oliver JH, Jr, Chandler FW, Jr, Luttrell MP, James AM, Stallknecht DE, McGuire BS, Hutcheson HJ, Cummins GA, Lane RS. 1993. Isolation and transmission of the Lyme disease spirochete from the southeastern United States. Proc. Natl. Acad. Sci. U. S. A. 90:7371–7375 PubMed PMC
Hanincová K, Liveris D, Sandigursky S, Wormser GP, Schwartz I. 2008. Borrelia burgdorferi sensu stricto is clonal in patients with early Lyme borreliosis. Appl. Environ. Microbiol. 74:5008–5014 PubMed PMC
Strle K, Jones KL, Drouin EE, Li X, Steere AC. 2011. Borrelia burgdorferi RST1 (OspC type A) genotype is associated with greater inflammation and more severe Lyme disease. Am. J. Pathol. 178:2726–2739 PubMed PMC
Barbour AG, Travinsky B. 2010. Evolution and distribution of the ospC gene, a transferable serotype determinant of Borrelia burgdorferi. mBio 1(4):e00153–10 doi:10.1128/mBio.00153-10 PubMed DOI PMC
Lindgren E, Jaenson TGT. 2006. Lyme borreliosis in Europe: influences of climate and climate change, epidemiology and adaptation measures, p 157–188 In Menne B, Ebi KL. (ed), Climate change and adaptation strategies for human health. Steinkopff, Darmstadt, Germany
Campbell GL, Fritz CL, Fish D, Nowakowski J, Nadelman RB, Wormser GP. 1998. Estimation of the incidence of Lyme disease. Am. J. Epidemiol. 148:1018–1026 PubMed
Rudenko N, Golovchenko M, Grubhoffer L, Oliver JH., Jr 2013. The rare ospC allele L of Borrelia burgdorferi sensu stricto, commonly found among samples collected in a coastal plain area of the southeastern United States, is associated with Ixodes affinis ticks and local rodent hosts Peromyscus gossypinus and Sigmodon hispidus. Appl. Environ. Microbiol. 79:1403–1406 PubMed PMC
Anderson JM, Norris DE. 2006. Genetic diversity of Borrelia burgdorferi sensu stricto in Peromyscus leucopus, the primary reservoir of Lyme disease in a region of endemicity in southern Maryland. Appl. Environ. Microbiol. 72:5331–5341 PubMed PMC
Harrison BA, Rayburn WH, Jr, Toliver M, Powell EE, Engber BR, Durden LA, Robbins RG, Prendergast BF, Whitt PB. 2010. Recent discovery of widespread Ixodes affinis (Acari: Ixodidae) distribution in North Carolina with implications for Lyme disease studies. J. Vector Ecol. 35:174–179 PubMed
Maggi RG, Reichelt S, Toliver M, Engber B. 2010. Borrelia species in Ixodes affinis and Ixodes scapularis ticks collected from the coastal plain of North Carolina. Ticks Tick Borne Dis. 1:168–171 PubMed
Lane RS, Quistad GB. 1998. Borreliacidal factor in the blood of the western fence lizard (Sceloporus occidentalis). J. Parasitol. 84:29–34 PubMed
Woolhouse ME, Taylor LH, Haydon DT. 2001. Population biology of multihost pathogens. Science 292:1109–1112 PubMed
Pathogenicity and virulence of Borrelia burgdorferi
Concurrent Infection of the Human Brain with Multiple Borrelia Species
Sexual Transmission of Lyme Borreliosis? The Question That Calls for an Answer
Epitope mapping of Borrelia burgdorferi OspC protein in homodimeric fold
GENBANK
AY597021, AY597028, FJ932732, FJ932733, FJ932734, FJ932736, JF723215, JF723216, JF723217, JF723218, JF723219, JF723220, JF723221, JF723222, JF723223, JF723224, JF723226, JF723228, JF723229, JF723231, JF723232, JF723233, JF723234, JF723235, JF723236, JF723237, JF723238, JF723239, JF723240, JF723241, JF723242, JF723243, JF723244, JF723245, JF723246, JF723247, JF723248, JF723249, JF723250, JF723251, JF723252, JF723253, JF723254, JF723255, JF723256, JF723257, JF723258, JF723259, JF723260, JF723261, JF723262, JF723263, JF723264, JF723265, JF723266, JF723267, JF723268, JF723269, JF723270, JF754968, JF754969, JF754971, JQ219681, JQ219682, JQ219683, JQ219684, JQ236853, JQ236854, JQ253799, JQ253800, JQ253801, JQ253802, JQ253803, JQ253804, JQ253805, JQ308215, JQ308216, JQ308217, JQ308218, JQ308219, JQ308220, JQ308221, JQ308222, JQ308223, JQ308224, JQ308225, JQ308226, JQ308227, JQ308228, JQ308229, JQ308230, JQ308231, JQ308232, JQ308233, JQ308234, JQ308235