Invasive potential of Borrelia burgdorferi sensu stricto ospC type L strains increases the possible disease risk to humans in the regions of their distribution
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25430588
PubMed Central
PMC4254199
DOI
10.1186/s13071-014-0538-y
PII: s13071-014-0538-y
Knihovny.cz E-zdroje
- MeSH
- antigeny bakteriální genetika metabolismus MeSH
- Borrelia burgdorferi klasifikace fyziologie MeSH
- lidé MeSH
- lymeská nemoc epidemiologie mikrobiologie MeSH
- myši MeSH
- proteiny vnější bakteriální membrány genetika metabolismus MeSH
- regulace genové exprese u bakterií fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa epidemiologie MeSH
- jihovýchod USA epidemiologie MeSH
- Názvy látek
- antigeny bakteriální MeSH
- OspC protein MeSH Prohlížeč
- proteiny vnější bakteriální membrány MeSH
BACKGROUND: Analysis of Borrelia burgdorferi ospC types from the southeastern U.S.A. supported the common belief that various ospC types are geographically restricted and host specific. Being widely distributed in the region, the southeastern population of B. burgdorferi is represented by a surprisingly small number of ospC types. Types B, G and H are dominant or common and are invasive, while scarce type L, restricted mostly to the southeastern U.S.A., is believed to rarely if ever cause human Lyme disease. OspC type B and L strains are represented in the region at the same rate, however their distribution among tick vectors and vertebrate hosts is unequal. FINDINGS: Direct diagnostics was used to analyze the ability of B. burgdorferi ospC type L strains to disseminate into host tissues. Mice were infected by subcutaneous injections of B. burgdorferi strains of various ospC types with different invasive capability. Spirochete levels were examined in ear, heart, bladder and joint tissues. Noninfected I. ricinus larvae were fed on infected mice until repletion. Infection rates were determined in molted nymphs. Infected nymphs were then fed on naïve mice, and spirochete transmission from infected nymphs to mice was confirmed. CONCLUSIONS: B. burgdorferi ospC type L strains from the southeastern U.S.A. have comparable potential to disseminate into host tissues as ospC types strains commonly associated with human Lyme disease in endemic European and North American regions. We found no difference in the invasive ability of ospC type B and L strains originated either from tick vectors or vertebrate hosts.
Biology Centre AS CR Institute of Parasitology Ceske Budejovice 37005 Czech Republic
University of South Bohemia Ceske Budejovice 37005 Czech Republic
Zobrazit více v PubMed
Baranton G, Marti Ras N, Postic D. Molecular epidemiology of the aetiological agents of Lyme borreliosis. Wien Klin Wochenschr. 1998;110:850–855. PubMed
Dykhuizen DE, Brisson D, Sandigursky S, Wormser GP, Nowakowski J, Nadelman RB, Schwartz I. The propensity of different Borrelia burgdorferi sensu stricto genotypes to cause disseminated infections in humans. Am J Trop Med Hyg. 2008;78:806–810. PubMed PMC
Oliver JH., Jr Lyme borreliosis in the southern United States: a review. J Parasitol. 1996;82:926–935. doi: 10.2307/3284201. PubMed DOI
Lane RS, Piesman J, Burgdorfer W. Lyme borreliosis: relation of its causative agent to its vectors and hosts in North America and Europe. Annu Rev Entomol. 1991;36:587–609. doi: 10.1146/annurev.en.36.010191.003103. PubMed DOI
Rudenko N, Golovchenko M, Hönig V, Mallátová N, Krbková L, Mikulásek P, Fedorova N, Belfiore NM, Grubhoffer L, Lane RS, Oliver JH., Jr Detection of Borrelia burgdorferi sensu stricto ospC alleles associated with human Lyme borreliosis worldwide in non-human-biting tick Ixodes affinis and rodent hosts in southeastern United States. Appl Environ Microbiol. 2013;79:1444–1453. doi: 10.1128/AEM.02749-12. PubMed DOI PMC
Seinost G, Dykhuizen DE, Dattwyler RJ, Golde WT, Dunn JJ, Wang IN, Wormser GP, Schriefer ME, Luft BJ. Four clones of Borrelia burgdorferi sensu stricto cause invasive infection in humans. Infect Immun. 1999;67:3518–3524. PubMed PMC
Qiu WG, Bruno JF, McCaig WD, Xu Y, Livey I, Schriefer ME, Luft BJ. Wide distribution of a high-virulence Borrelia burgdorferi clone in Europe and North America. Emerg Infect Dis. 2008;14:1097–1104. doi: 10.3201/eid/1407.070880. PubMed DOI PMC
Brisson D, Baxamusa N, Schwartz I, Wormser GP. Biodiversity of Borrelia burgdorferi strains in tissues of Lyme disease patients. PLoS One. 2011;6:e22926. doi: 10.1371/journal.pone.0022926. PubMed DOI PMC
Rudenko N, Golovchenko M, Grubhoffer L, Oliver JH., Jr The rare ospC allele L of Borrelia burgdorferi sensu stricto, commonly found among samples collected in a coastal plain area of the southeastern United States, is associated with Ixodes affinis ticks and local rodent hosts Peromyscus gossypinus and Sigmodon hispidus. Appl Environ Microbiol. 2013;79:1403–1406. doi: 10.1128/AEM.03362-12. PubMed DOI PMC
Ruzić-Sabljić E, Zore A, Strle F. Characterization of Borrelia burgdorferi sensu lato isolates by pulsed-field gel electrophoresis after MluI restriction of genomic DNA. Res Microbiol. 2008;159:441–448. doi: 10.1016/j.resmic.2008.05.005. PubMed DOI
Rudenko N, Golovchenko M, Grubhoffer L, Oliver HJ., Jr Borrelia carolinensis sp. nov., a new (14th) member of the Borrelia burgdorferi sensu lato complex from the southeastern region of the United States. J Clin Microbiol. 2009;47:134–141. doi: 10.1128/JCM.01183-08. PubMed DOI PMC
Rudenko N, Golovchenko M, Lin T, Gao L, Grubhoffer L, Oliver HJ., Jr Delineation of a new species of the Borrelia burgdorferi sensu lato complex, Borrelia americana sp. nov. J Clin Microbiol. 2009;47:3875–3880. doi: 10.1128/JCM.01050-09. PubMed DOI PMC
Schwaiger M, Péter O, Cassinotti P. Routine diagnosis of Borrelia burgdorferi (sensu lato) infections using a real-time PCR assay. Clin Microbiol Infect. 2001;7:461–469. doi: 10.1046/j.1198-743x.2001.00282.x. PubMed DOI
Dai J, Wang P, Adusumilli S, Booth CJ, Narasimhan S, Anguita J, Fikrig E. Antibodies against a tick protein, Salp15, protect mice from the Lyme disease agent. Cell Host Microbe. 2009;6:482–492. doi: 10.1016/j.chom.2009.10.006. PubMed DOI PMC
Steere A. Lyme disease. N Engl J Med. 1998;321:586–596. doi: 10.1056/NEJM198908313210906. PubMed DOI
Oschmann P, Dorndorf W, Hornig C, Schäfer C, Wellensiek HJ, Pflughaupt KW. Stages and syndromes of neuroborreliosis. J Neurol. 1998;245:262–272. doi: 10.1007/s004150050216. PubMed DOI
Concurrent Infection of the Human Brain with Multiple Borrelia Species
Tracking of Borrelia afzelii Transmission from Infected Ixodes ricinus Nymphs to Mice