Substrate prediction of Ixodes ricinus salivary lipocalins differentially expressed during Borrelia afzelii infection

. 2016 Sep 01 ; 6 () : 32372. [epub] 20160901

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27584086

Evolution has provided ticks with an arsenal of bioactive saliva molecules that counteract host defense mechanisms. This salivary pharmacopoeia enables blood-feeding while enabling pathogen transmission. High-throughput sequencing of tick salivary glands has thus become a major focus, revealing large expansion within protein encoding gene families. Among these are lipocalins, ubiquitous barrel-shaped proteins that sequester small, typically hydrophobic molecules. This study was initiated by mining the Ixodes ricinus salivary gland transcriptome for specific, uncharacterized lipocalins: three were identified. Differential expression of these I. ricinus lipocalins during feeding at distinct developmental stages and in response to Borrelia afzelii infection suggests a role in transmission of this Lyme disease spirochete. A phylogenetic analysis using 803 sequences places the three I. ricinus lipocalins with tick lipocalins that sequester monoamines, leukotrienes and fatty acids. Both structural analysis and biophysical simulations generated robust predictions showing these I. ricinus lipocalins have the potential to bind monoamines similar to other tick species previously reported. The multidisciplinary approach employed in this study characterized unique lipocalins that play a role in tick blood-feeding and transmission of the most important tick-borne pathogen in North America and Eurasia.

Zobrazit více v PubMed

Ganfornina M. D., Gutiérrez G., Bastiani M. & Diego S. A Phylogenetic Analysis of the Lipocalin Protein Family. Mol. Biol. Evol. 17, 114–126 (2000). PubMed

Gutiérrez G., Ganfornina M. D. & Sánchez D. Evolution of the lipocalin family as inferred from a protein sequence phylogeny. Biochim. Biophys. Acta 1482, 35–45 (2000). PubMed

Nath A. & Subbiah K. Maximizing lipocalin prediction through balanced and diversified training set and decision fusion. Comput. Biol. Chem. 59, Part A, 101–110 (2015). PubMed

Lakshmi B., Mishra M., Srinivasan N. & Archunan G. Structure-Based Phylogenetic Analysis of the Lipocalin Superfamily. PLoS ONE 10, e0135507 (2015). PubMed PMC

Sánchez D., Ganfornina M. D., Gutiérrez G. & Marín A. Exon-Intron Structure and Evolution of the Lipocalin Gene Family. Mol. Biol. Evol. 20, 775–783 (2003). PubMed

Flower D. R. The lipocalin protein family: structure and function. Biochem. J. 318, 1–14 (1996). PubMed PMC

Nunn M. A. et al.. Complement Inhibitor of C5 Activation from the Soft Tick Ornithodoros moubata. The Journal of Immunology 174, 2084–2091 (2005). PubMed

Niemi M. H. et al.. Dimerization of lipocalin allergens. Scientific Reports 5, 13841 (2015). PubMed PMC

Wikel S. Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment. Frontiers in Microbiology 4, 337–346 (2013). PubMed PMC

Francischetti I. M. B., Sá-Nunes A., Mans B. J., Santos I. M. & Ribeiro J. M. C. The role of saliva in tick feeding. Front. Biosci. 14, 2051–2088 (2010). PubMed PMC

Gulia-Nuss M. et al.. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat. Commun. 7 (2016). PubMed PMC

Mans B. J. et al.. Ancestral reconstruction of tick lineages. Ticks and Tick-borne Diseases 7, 509–535 (2016). PubMed

Mans B. J. & Neitz A. W. Exon-intron structure of outlier tick lipocalins indicate a monophyletic origin within the larger lipocalin family. Insect Biochem. Mol. Biol. 34, 585–594 (2004). PubMed

McNally K. L. et al.. Differential salivary gland transcript expression profile in Ixodes scapularis nymphs upon feeding or flavivirus infection. Ticks and Tick-borne Diseases 3, 18–26 (2012). PubMed PMC

Berman H. M. et al.. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000). PubMed PMC

Paesen G. C., Adams P. L., Nuttall P. A. & Stuart D. L. Tick histamine-binding proteins: lipocalins with a second binding cavity. Biochim. Biophys. Acta 1482, 92–101 (2000). PubMed

Preston S. G. et al.. Novel Immunomodulators from Hard Ticks Selectively Reprogramme Human Dendritic Cell Responses. PLoS Pathog. 9, e1003450 (2013). PubMed PMC

Hepburn N. J. et al.. In Vivo Characterization and Therapeutic Efficacy of a C5-specific Inhibitor from the Soft Tick Ornithodoros moubata. J. Biol. Chem. 282, 8292–8299 (2007). PubMed

Barratt-Due A. et al.. Ornithodoros moubata complement inhibitor (OmCI) is an equally effective C5 inhibitor in pig and human. J. Immunol. 187, 4913–4919 (2011). PubMed PMC

Mans B. J. & Ribeiro J. M. C. A novel clade of cysteinyl leukotriene scavengers in soft ticks. Insect Biochem. Mol. Biol. 38, 862–870 (2008). PubMed PMC

Mans B. J. & Ribeiro J. M. C. Function, mechanism and evolution of the moubatin-clade of soft tick lipocalins. Insect Biochem. Mol. Biol. 38, 841–852 (2008). PubMed PMC

Beaufays J. r. m. et al.. Ir-LBP, an Ixodes ricinus Tick Salivary LTB4-Binding Lipocalin, Interferes with Host Neutrophil Function. PLoS ONE 3, e3987 (2008). PubMed PMC

Borhani D. & Shaw D. The future of molecular dynamics simulations in drug discovery. J. Comput. Aided Mol. Des. 26, 15–26 (2012). PubMed PMC

Borrelli K. W., Vitalis A., Alcantara R. & Guallar V. PELE: Protein energy landscape exploration. A novel Monte Carlo based technique. J. Chem. Theory Comput. 1, 1304–1311 (2005). PubMed

Valdés J. Antihistamine response: a dynamically refined function at the host-tick interface. Parasit. Vectors 7, 491–503 (2014). PubMed PMC

Schwarz A. et al.. De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies. The FASEB Journal 27, 4745–4756 (2013). PubMed PMC

Bateman A. et al.. The Pfam protein families database. Nucleic Acids Res. 28, 263–266 (2000). PubMed PMC

Finn R. D. et al.. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014). PubMed PMC

Mans B. J., Ribeiro J. M. C. & Andersen J. F. Structure, Function, and Evolution of Biogenic Amine-binding Proteins in Soft Ticks. J. Biol. Chem. 283, 18721–18733 (2008). PubMed PMC

Rost B. & Sander C. Structure prediction of proteins—where are we now? Curr. Opin. Biotechnol. 5, 372–380 (1994). PubMed

Beaufays J. et al.. Ixodes ricinus Tick Lipocalins: Identification, Cloning, Phylogenetic Analysis and Biochemical Characterization. PLoS ONE 3, e3941 (2008). PubMed PMC

Ayllón N. et al.. Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis. PLoS Genet. 11, e1005120 (2015). PubMed PMC

Cabezas-Cruz A. et al.. Anaplasma phagocytophilum increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector Ixodes scapularis. Epigenetics 11, 303–319 (2016). PubMed PMC

Löytynoja A., Vilella A. J. & Goldman N. Accurate extension of multiple sequence alignments using a phylogeny-aware graph algorithm. Bioinformatics 28, 1684–1691 (2012). PubMed PMC

Moult J., Fidelis K., Kryshtafovych A., Schwede T. & Tramontano A. Critical assessment of methods of protein structure prediction (CASP) — round x. Proteins: Struct., Funct., Bioinf. 82, 1–6 (2014). PubMed PMC

Huber R. et al.. Molecular structure of the bilin binding protein (BBP) from Pieris brassicae after refinement at 2.0 Å resolution. J. Mol. Biol. 198, 499–513 (1987). PubMed

Cohen J. Statistical power analysis for the behavioral sciences. (Erlbaum, 1988).

Paesen G. C., Adams P. L., Harlos K., Nuttall P. A. & Stuart D. I. Tick histamine-binding proteins: isolation, cloning, and three-dimensional structure. Mol. Cell 3, 661–671 (1999). PubMed

Janiak C. A critical account on [small pi]-[small pi] stacking in metal complexes with aromatic nitrogen-containing ligands. Journal of the Chemical Society, Dalton Transactions, 3885–3896 (2000).

Untalan P. M., Guerrero F. D., Haines L. R. & Pearson T. W. Proteome analysis of abundantly expressed proteins from unfed larvae of the cattle tick, Boophilus microplus. Insect Biochem. Mol. Biol. 35, 141–151 (2005). PubMed

Sangamnatdej S., Paesen G. C., Slovak M. & Nuttall P. A. A high affinity serotonin- and histamine-binding lipocalin from tick saliva. Insect Mol. Biol. 11, 79–86 (2002). PubMed

Wilhelmsson P. et al.. Prevalence, diversity, and load of Borrelia species in ticks that have fed on humans in regions of Sweden and Åland Islands, Finland with different Lyme borreliosis incidences. PLoS ONE 8, e81433 (2013). PubMed PMC

van der Heijden M. W., van der Kleij, H. P. M., Rocken M. & Redegeld F. A. in Mast cells (ed Bos J. D. ) 237–261 (CRC Press, 2005).

Gouveia-Oliveira R., Sackett P. W. & Pedersen A. G. MaxAlign: maximizing usable data in an alignment. BMC Bioinformatics 8, 312 (2007). PubMed PMC

Katoh K. & Frith M. C. Adding unaligned sequences into an existing alignment using MAFFT and LAST. Bioinformatics 28, 3144–3146 (2012). PubMed PMC

Penn O. et al.. GUIDANCE: a web server for assessing alignment confidence scores. Nucleic Acids Res. 38, W23–W28 (2010). PubMed PMC

Katoh K. & Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9, 286–298 (2008). PubMed

Larkin M. A. et al.. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007). PubMed

Tamura K., Stecher G., Peterson D., Filipski A. & Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013). PubMed PMC

Whelan S. & Goldman N. A General Empirical Model of Protein Evolution Derived from Multiple Protein Families Using a Maximum-Likelihood Approach. Mol. Biol. Evol. 18, 691–699 (2001). PubMed

Jones D. T., Taylor W. R. & Thornton J. M. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8, 275–282 (1992). PubMed

Raman S. et al.. Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins 77, 89–99 (2009). PubMed PMC

Li X., Jacobson M. P., Zhu K., Zhao S. & Friesner R. A. Assignment of polar states for protein amino acid residues using an interaction cluster decomposition algorithm and its application to high resolution protein structure modeling. Proteins: Struct., Funct., Bioinf. 66, 824–837 (2007). PubMed

Atilgan A. R. et al.. Anisotropy of Fluctuation Dynamics of Proteins with an Elastic Network Model. Biophys. J. 80, 505–515 (2001). PubMed PMC

Oliveira A. et al.. Kinetics and computational studies of ligand migration in nitrophorin 7 and its Δ1–3 mutant. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1834, 1711–1721 (2013). PubMed

Lim S. M. et al.. Structural and dynamic insights into substrate binding and catalysis of human lipocalin prostaglandin D synthase. J. Lipid Res. 54, 1630–1643 (2013). PubMed PMC

Jacobson M. P., Friesner R. A., Xiang Z. & Honig B. On the Role of the Crystal Environment in Determining Protein Side-chain Conformations. J. Mol. Biol. 320, 597–608 (2002). PubMed

Still W. C., Tempczyk A., Hawley R. C. & Hendrickson T. Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 112, 6127–6129 (1990).

Jorgensen W. L. & Tirado-Rives J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657–1666 (1988). PubMed

Caleman C. et al.. Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant. J. Chem. Theory Comput. 8, 61–74 (2012). PubMed PMC

Humphrey W., Dalke A. & Schulten K. VMD - Visual Molecular Dynamics. J. Mol. Graph. 14, 33–38 (1996). PubMed

Läärä E. Statistics: reasoning on uncertainty, and the insignificance of testing null. Ann. Zool. Fenn. 46, 138–157 (2009).

Zuur A. F., Ieno E. N. & Elphick C. S. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1, 3–14 (2010).

R: A Language and Environment for Statistical Computing (Vienna, Austria, 2013).

Urbanová V. et al.. IrFC - An Ixodes ricinus injury-responsive molecule related to Limulus Factor C. Dev. Comp. Immunol. 46, 439–447 (2014). PubMed

Golovchenko M. et al.. Invasive potential of Borrelia burgdorferi sensu stricto ospC type L strains increases the possible disease risk to humans in the regions of their distribution. Parasit. Vectors 7, 538 (2014). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace