Substrate prediction of Ixodes ricinus salivary lipocalins differentially expressed during Borrelia afzelii infection
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27584086
PubMed Central
PMC5008119
DOI
10.1038/srep32372
PII: srep32372
Knihovny.cz E-zdroje
- MeSH
- analýza rozptylu MeSH
- Borrelia burgdorferi komplex fyziologie MeSH
- fylogeneze MeSH
- infekce přenášené vektorem MeSH
- klíště růst a vývoj metabolismus mikrobiologie MeSH
- ligandy MeSH
- lipokaliny chemie klasifikace metabolismus MeSH
- lymeská nemoc mikrobiologie MeSH
- myši MeSH
- sekvence nukleotidů MeSH
- sliny metabolismus MeSH
- stadia vývoje MeSH
- terciární struktura proteinů MeSH
- vazebná místa MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ligandy MeSH
- lipokaliny MeSH
Evolution has provided ticks with an arsenal of bioactive saliva molecules that counteract host defense mechanisms. This salivary pharmacopoeia enables blood-feeding while enabling pathogen transmission. High-throughput sequencing of tick salivary glands has thus become a major focus, revealing large expansion within protein encoding gene families. Among these are lipocalins, ubiquitous barrel-shaped proteins that sequester small, typically hydrophobic molecules. This study was initiated by mining the Ixodes ricinus salivary gland transcriptome for specific, uncharacterized lipocalins: three were identified. Differential expression of these I. ricinus lipocalins during feeding at distinct developmental stages and in response to Borrelia afzelii infection suggests a role in transmission of this Lyme disease spirochete. A phylogenetic analysis using 803 sequences places the three I. ricinus lipocalins with tick lipocalins that sequester monoamines, leukotrienes and fatty acids. Both structural analysis and biophysical simulations generated robust predictions showing these I. ricinus lipocalins have the potential to bind monoamines similar to other tick species previously reported. The multidisciplinary approach employed in this study characterized unique lipocalins that play a role in tick blood-feeding and transmission of the most important tick-borne pathogen in North America and Eurasia.
Department of Virology Veterinary Research Institute Hudcova 70 CZ 62100 Brno Czech Republic
Department of Zoology University of Oxford Oxford OX1 3PS UK
Zobrazit více v PubMed
Ganfornina M. D., Gutiérrez G., Bastiani M. & Diego S. A Phylogenetic Analysis of the Lipocalin Protein Family. Mol. Biol. Evol. 17, 114–126 (2000). PubMed
Gutiérrez G., Ganfornina M. D. & Sánchez D. Evolution of the lipocalin family as inferred from a protein sequence phylogeny. Biochim. Biophys. Acta 1482, 35–45 (2000). PubMed
Nath A. & Subbiah K. Maximizing lipocalin prediction through balanced and diversified training set and decision fusion. Comput. Biol. Chem. 59, Part A, 101–110 (2015). PubMed
Lakshmi B., Mishra M., Srinivasan N. & Archunan G. Structure-Based Phylogenetic Analysis of the Lipocalin Superfamily. PLoS ONE 10, e0135507 (2015). PubMed PMC
Sánchez D., Ganfornina M. D., Gutiérrez G. & Marín A. Exon-Intron Structure and Evolution of the Lipocalin Gene Family. Mol. Biol. Evol. 20, 775–783 (2003). PubMed
Flower D. R. The lipocalin protein family: structure and function. Biochem. J. 318, 1–14 (1996). PubMed PMC
Nunn M. A. et al.. Complement Inhibitor of C5 Activation from the Soft Tick Ornithodoros moubata. The Journal of Immunology 174, 2084–2091 (2005). PubMed
Niemi M. H. et al.. Dimerization of lipocalin allergens. Scientific Reports 5, 13841 (2015). PubMed PMC
Wikel S. Ticks and tick-borne pathogens at the cutaneous interface: host defenses, tick countermeasures, and a suitable environment for pathogen establishment. Frontiers in Microbiology 4, 337–346 (2013). PubMed PMC
Francischetti I. M. B., Sá-Nunes A., Mans B. J., Santos I. M. & Ribeiro J. M. C. The role of saliva in tick feeding. Front. Biosci. 14, 2051–2088 (2010). PubMed PMC
Gulia-Nuss M. et al.. Genomic insights into the Ixodes scapularis tick vector of Lyme disease. Nat. Commun. 7 (2016). PubMed PMC
Mans B. J. et al.. Ancestral reconstruction of tick lineages. Ticks and Tick-borne Diseases 7, 509–535 (2016). PubMed
Mans B. J. & Neitz A. W. Exon-intron structure of outlier tick lipocalins indicate a monophyletic origin within the larger lipocalin family. Insect Biochem. Mol. Biol. 34, 585–594 (2004). PubMed
McNally K. L. et al.. Differential salivary gland transcript expression profile in Ixodes scapularis nymphs upon feeding or flavivirus infection. Ticks and Tick-borne Diseases 3, 18–26 (2012). PubMed PMC
Berman H. M. et al.. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000). PubMed PMC
Paesen G. C., Adams P. L., Nuttall P. A. & Stuart D. L. Tick histamine-binding proteins: lipocalins with a second binding cavity. Biochim. Biophys. Acta 1482, 92–101 (2000). PubMed
Preston S. G. et al.. Novel Immunomodulators from Hard Ticks Selectively Reprogramme Human Dendritic Cell Responses. PLoS Pathog. 9, e1003450 (2013). PubMed PMC
Hepburn N. J. et al.. In Vivo Characterization and Therapeutic Efficacy of a C5-specific Inhibitor from the Soft Tick Ornithodoros moubata. J. Biol. Chem. 282, 8292–8299 (2007). PubMed
Barratt-Due A. et al.. Ornithodoros moubata complement inhibitor (OmCI) is an equally effective C5 inhibitor in pig and human. J. Immunol. 187, 4913–4919 (2011). PubMed PMC
Mans B. J. & Ribeiro J. M. C. A novel clade of cysteinyl leukotriene scavengers in soft ticks. Insect Biochem. Mol. Biol. 38, 862–870 (2008). PubMed PMC
Mans B. J. & Ribeiro J. M. C. Function, mechanism and evolution of the moubatin-clade of soft tick lipocalins. Insect Biochem. Mol. Biol. 38, 841–852 (2008). PubMed PMC
Beaufays J. r. m. et al.. Ir-LBP, an Ixodes ricinus Tick Salivary LTB4-Binding Lipocalin, Interferes with Host Neutrophil Function. PLoS ONE 3, e3987 (2008). PubMed PMC
Borhani D. & Shaw D. The future of molecular dynamics simulations in drug discovery. J. Comput. Aided Mol. Des. 26, 15–26 (2012). PubMed PMC
Borrelli K. W., Vitalis A., Alcantara R. & Guallar V. PELE: Protein energy landscape exploration. A novel Monte Carlo based technique. J. Chem. Theory Comput. 1, 1304–1311 (2005). PubMed
Valdés J. Antihistamine response: a dynamically refined function at the host-tick interface. Parasit. Vectors 7, 491–503 (2014). PubMed PMC
Schwarz A. et al.. De novo Ixodes ricinus salivary gland transcriptome analysis using two next-generation sequencing methodologies. The FASEB Journal 27, 4745–4756 (2013). PubMed PMC
Bateman A. et al.. The Pfam protein families database. Nucleic Acids Res. 28, 263–266 (2000). PubMed PMC
Finn R. D. et al.. Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230 (2014). PubMed PMC
Mans B. J., Ribeiro J. M. C. & Andersen J. F. Structure, Function, and Evolution of Biogenic Amine-binding Proteins in Soft Ticks. J. Biol. Chem. 283, 18721–18733 (2008). PubMed PMC
Rost B. & Sander C. Structure prediction of proteins—where are we now? Curr. Opin. Biotechnol. 5, 372–380 (1994). PubMed
Beaufays J. et al.. Ixodes ricinus Tick Lipocalins: Identification, Cloning, Phylogenetic Analysis and Biochemical Characterization. PLoS ONE 3, e3941 (2008). PubMed PMC
Ayllón N. et al.. Systems biology of tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in the tick vector Ixodes scapularis. PLoS Genet. 11, e1005120 (2015). PubMed PMC
Cabezas-Cruz A. et al.. Anaplasma phagocytophilum increases the levels of histone modifying enzymes to inhibit cell apoptosis and facilitate pathogen infection in the tick vector Ixodes scapularis. Epigenetics 11, 303–319 (2016). PubMed PMC
Löytynoja A., Vilella A. J. & Goldman N. Accurate extension of multiple sequence alignments using a phylogeny-aware graph algorithm. Bioinformatics 28, 1684–1691 (2012). PubMed PMC
Moult J., Fidelis K., Kryshtafovych A., Schwede T. & Tramontano A. Critical assessment of methods of protein structure prediction (CASP) — round x. Proteins: Struct., Funct., Bioinf. 82, 1–6 (2014). PubMed PMC
Huber R. et al.. Molecular structure of the bilin binding protein (BBP) from Pieris brassicae after refinement at 2.0 Å resolution. J. Mol. Biol. 198, 499–513 (1987). PubMed
Cohen J. Statistical power analysis for the behavioral sciences. (Erlbaum, 1988).
Paesen G. C., Adams P. L., Harlos K., Nuttall P. A. & Stuart D. I. Tick histamine-binding proteins: isolation, cloning, and three-dimensional structure. Mol. Cell 3, 661–671 (1999). PubMed
Janiak C. A critical account on [small pi]-[small pi] stacking in metal complexes with aromatic nitrogen-containing ligands. Journal of the Chemical Society, Dalton Transactions, 3885–3896 (2000).
Untalan P. M., Guerrero F. D., Haines L. R. & Pearson T. W. Proteome analysis of abundantly expressed proteins from unfed larvae of the cattle tick, Boophilus microplus. Insect Biochem. Mol. Biol. 35, 141–151 (2005). PubMed
Sangamnatdej S., Paesen G. C., Slovak M. & Nuttall P. A. A high affinity serotonin- and histamine-binding lipocalin from tick saliva. Insect Mol. Biol. 11, 79–86 (2002). PubMed
Wilhelmsson P. et al.. Prevalence, diversity, and load of Borrelia species in ticks that have fed on humans in regions of Sweden and Åland Islands, Finland with different Lyme borreliosis incidences. PLoS ONE 8, e81433 (2013). PubMed PMC
van der Heijden M. W., van der Kleij, H. P. M., Rocken M. & Redegeld F. A. in Mast cells (ed Bos J. D. ) 237–261 (CRC Press, 2005).
Gouveia-Oliveira R., Sackett P. W. & Pedersen A. G. MaxAlign: maximizing usable data in an alignment. BMC Bioinformatics 8, 312 (2007). PubMed PMC
Katoh K. & Frith M. C. Adding unaligned sequences into an existing alignment using MAFFT and LAST. Bioinformatics 28, 3144–3146 (2012). PubMed PMC
Penn O. et al.. GUIDANCE: a web server for assessing alignment confidence scores. Nucleic Acids Res. 38, W23–W28 (2010). PubMed PMC
Katoh K. & Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinform. 9, 286–298 (2008). PubMed
Larkin M. A. et al.. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007). PubMed
Tamura K., Stecher G., Peterson D., Filipski A. & Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013). PubMed PMC
Whelan S. & Goldman N. A General Empirical Model of Protein Evolution Derived from Multiple Protein Families Using a Maximum-Likelihood Approach. Mol. Biol. Evol. 18, 691–699 (2001). PubMed
Jones D. T., Taylor W. R. & Thornton J. M. The rapid generation of mutation data matrices from protein sequences. Comput. Appl. Biosci. 8, 275–282 (1992). PubMed
Raman S. et al.. Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins 77, 89–99 (2009). PubMed PMC
Li X., Jacobson M. P., Zhu K., Zhao S. & Friesner R. A. Assignment of polar states for protein amino acid residues using an interaction cluster decomposition algorithm and its application to high resolution protein structure modeling. Proteins: Struct., Funct., Bioinf. 66, 824–837 (2007). PubMed
Atilgan A. R. et al.. Anisotropy of Fluctuation Dynamics of Proteins with an Elastic Network Model. Biophys. J. 80, 505–515 (2001). PubMed PMC
Oliveira A. et al.. Kinetics and computational studies of ligand migration in nitrophorin 7 and its Δ1–3 mutant. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1834, 1711–1721 (2013). PubMed
Lim S. M. et al.. Structural and dynamic insights into substrate binding and catalysis of human lipocalin prostaglandin D synthase. J. Lipid Res. 54, 1630–1643 (2013). PubMed PMC
Jacobson M. P., Friesner R. A., Xiang Z. & Honig B. On the Role of the Crystal Environment in Determining Protein Side-chain Conformations. J. Mol. Biol. 320, 597–608 (2002). PubMed
Still W. C., Tempczyk A., Hawley R. C. & Hendrickson T. Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 112, 6127–6129 (1990).
Jorgensen W. L. & Tirado-Rives J. The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657–1666 (1988). PubMed
Caleman C. et al.. Force Field Benchmark of Organic Liquids: Density, Enthalpy of Vaporization, Heat Capacities, Surface Tension, Isothermal Compressibility, Volumetric Expansion Coefficient, and Dielectric Constant. J. Chem. Theory Comput. 8, 61–74 (2012). PubMed PMC
Humphrey W., Dalke A. & Schulten K. VMD - Visual Molecular Dynamics. J. Mol. Graph. 14, 33–38 (1996). PubMed
Läärä E. Statistics: reasoning on uncertainty, and the insignificance of testing null. Ann. Zool. Fenn. 46, 138–157 (2009).
Zuur A. F., Ieno E. N. & Elphick C. S. A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution 1, 3–14 (2010).
R: A Language and Environment for Statistical Computing (Vienna, Austria, 2013).
Urbanová V. et al.. IrFC - An Ixodes ricinus injury-responsive molecule related to Limulus Factor C. Dev. Comp. Immunol. 46, 439–447 (2014). PubMed
Golovchenko M. et al.. Invasive potential of Borrelia burgdorferi sensu stricto ospC type L strains increases the possible disease risk to humans in the regions of their distribution. Parasit. Vectors 7, 538 (2014). PubMed PMC