Concurrent Infection of the Human Brain with Multiple Borrelia Species
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu kazuistiky, časopisecké články
Grantová podpora
NV-19-05-00191
Ministry of Health of the Czech Republic
PubMed
38069228
PubMed Central
PMC10707132
DOI
10.3390/ijms242316906
PII: ijms242316906
Knihovny.cz E-zdroje
- Klíčová slova
- Borrelia burgdorferi, Borrelia garinii, Lyme disease, co-infection, human brain, immunohistochemistry, molecular detection, neuroborreliosis, persistence,
- MeSH
- Borrelia burgdorferi komplex * genetika MeSH
- Borrelia burgdorferi * genetika MeSH
- Borrelia * genetika MeSH
- lidé MeSH
- lymeská nemoc * MeSH
- mozek MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
Lyme disease (LD) spirochetes are well known to be able to disseminate into the tissues of infected hosts, including humans. The diverse strategies used by spirochetes to avoid the host immune system and persist in the host include active immune suppression, induction of immune tolerance, phase and antigenic variation, intracellular seclusion, changing of morphological and physiological state in varying environments, formation of biofilms and persistent forms, and, importantly, incursion into immune-privileged sites such as the brain. Invasion of immune-privileged sites allows the spirochetes to not only escape from the host immune system but can also reduce the efficacy of antibiotic therapy. Here we present a case of the detection of spirochetal DNA in multiple loci in a LD patient's post-mortem brain. The presence of co-infection with Borrelia burgdorferi sensu stricto and Borrelia garinii in this LD patient's brain was confirmed by PCR. Even though both spirochete species were simultaneously present in human brain tissue, the brain regions where the two species were detected were different and non-overlapping. The presence of atypical spirochete morphology was noted by immunohistochemistry of the brain samples. Atypical morphology was also found in the tissues of experimentally infected mice, which were used as a control.
Department of Immunology University Hospital Olomouc 77900 Olomouc Czech Republic
Faculty of Sciences University of South Bohemia 37005 Ceske Budejovice Czech Republic
Zobrazit více v PubMed
Steere A. Lyme disease. N. Engl. J. Med. 1989;321:586–596. doi: 10.1056/NEJM198908313210906. PubMed DOI
Bransfield R.C. Neuropsychiatric Lyme borreliosis: An overview with a focus on a specialty psychiatrist’s clinical practice. Healthcare. 2018;6:104. doi: 10.3390/healthcare6030104. PubMed DOI PMC
Bransfield R.C., Aidlen D.M., Cook M.J., Javia S. A clinical diagnostic system for late-stage neuropsychiatric Lyme borreliosis based upon an analysis of 100 patients. Healthcare. 2020;8:13. doi: 10.3390/healthcare8010013. PubMed DOI PMC
Fallon B.A., Madsen T., Erlangsen A., Benros M.E. Lyme borreliosis and associations with mental disorders and suicidal behavior: A nationwide danish cohort study. Am. J. Psychiatry. 2021;178:921–931. doi: 10.1176/appi.ajp.2021.20091347. PubMed DOI
Barthold S.W., Hodzic E., Imai D.M., Feng S., Yang X., Luft B.J. Ineffectiveness of tigecycline against persistent Borrelia burgdorferi. Antimicrob. Agents Chemother. 2010;54:643–651. doi: 10.1128/AAC.00788-09. PubMed DOI PMC
Preac-Mursic V., Wilske B., Gross B., Weber K., Pfister H.W., Baumann A., Prokop J. Survival of Borrelia burgdorferi in antibiotically treated patients with Lyme borreliosis. Infection. 1989;17:355–359. doi: 10.1007/BF01645543. PubMed DOI
Shadick N.A., Phillips C.B., Logigian E.L., Steere A.C., Kaplan R.F., Berardi V.P., Duray P.H., Larson M.G., Wright E.A., Ginsburg K.S., et al. The long-term clinical outcomes of Lyme disease: A population-based retrospective cohort study. Ann. Intern. Med. 1994;121:560–567. doi: 10.7326/0003-4819-121-8-199410150-00002. PubMed DOI
Fauvart M., De Groote V.N., Michiels J. Role of persister cells in chronic infections: Clinical relevance and perspectives on anti-persister therapies. Pt 6J. Med. Microbiol. 2011;60:699–709. doi: 10.1099/jmm.0.030932-0. PubMed DOI
Nemeth J., Bernasconi E., Heininger U., Abbas M., Nadal D., Strahm C., Erb S., Zimmerli S., Furrer H., Delaloye J., et al. Update of the Swiss guidelines on post-treatment Lyme disease syndrome. Swiss Med. Wkly. 2016;146:w14353. doi: 10.4414/smw.2016.14353. PubMed DOI
Horowitz R.I., Freeman P.R. Precision medicine: The role of the MSIDS model in defining, diagnosing, and treating chronic lyme disease/post treatment Lyme disease syndrome and other chronic illness: Part 2. Healthcare. 2018;6:129. doi: 10.3390/healthcare6040129. PubMed DOI PMC
Hastey C.J., Elsner R.A., Barthold S.W., Baumgarth N. Delays and diversions mark the development of B cell responses to Borrelia burgdorferi Infection. J. Immunol. 2012;188:5612–5622. doi: 10.4049/jimmunol.1103735. PubMed DOI PMC
Rudenko N., Golovchenko M., Kybicova K., Vancova M. Metamorphoses of Lyme disease spirochetes: Phenomenon of Borrelia persisters. Parasites Vectors. 2019;12:237. doi: 10.1186/s13071-019-3495-7. PubMed DOI PMC
Sloupenska K., Koubkova B., Horak P., Hutyrova B., Racansky M., Mares J., Miklusova M., Schovanek J., Zapletalova J., Raska M., et al. Myositis autoantibodies in patients with suspected post-treatment Lyme disease syndrome. Life. 2023;13:527. doi: 10.3390/life13020527. PubMed DOI PMC
Straubinger R.K., Straubinger A.F., Jacobson R.H., Chang Y., Summers B.A., Erb H.N., Appel M.J.G. Two lessons from the canine model of Lyme disease: Migration of Borrelia burgdorferi in tissues and persistence after antibiotic treatment. J. Spirochetal Tick Borne Dis. 1997;4:24–31.
Petzke M., Schwartz I. Borrelia burgdorferi pathogenesis and the immune response. Clin. Lab. Med. 2015;35:745–764. doi: 10.1016/j.cll.2015.07.004. PubMed DOI
Tsao J.I. Reviewing molecular adaptations of Lyme borreliosis spirochetes in the context of reproductive fitness in natural transmission cycles. Vet. Res. 2009;40:36. doi: 10.1051/vetres/2009019. PubMed DOI PMC
Hyde J.A. Borrelia burgdorferi keeps moving and carries on: A review of borrelial dissemination and invasion. Front. Immunol. 2017;8:114. doi: 10.3389/fimmu.2017.00114. PubMed DOI PMC
Livengood J.A., Gilmore R.D. Invasion of human neuronal and glial cells by an infectious strain of Borrelia burgdorferi. Microbes Infect. 2006;8:2832–2840. doi: 10.1016/j.micinf.2006.08.014. PubMed DOI
Ma Y., Sturrock A., Weis J.J. Intracellular localization of Borrelia burgdorferi within human endothelial cells. Infect. Immun. 1991;59:671–678. doi: 10.1128/iai.59.2.671-678.1991. PubMed DOI PMC
Montgomery R.R., Malawista E.S. Entry of Borrelia burgdorferi into macrophages is end-on and leads to degradation in lysosomes. Infect. Immun. 1996;64:2867–2872. doi: 10.1128/iai.64.7.2867-2872.1996. PubMed DOI PMC
Klempner M.S., Noring R., Rogers R.A. Invasion of human skin fibroblasts by the Lyme disease spirochete, borrelia burgdorferi. J. Infect. Dis. 1993;167:1074–1081. doi: 10.1093/infdis/167.5.1074. PubMed DOI
Gadila S.K.G., Rosoklija G., Dwork A.J., Fallon B.A., Embers M.E. Detecting borrelia spirochetes: A case study with validation among autopsy specimens. Front. Neurol. 2021;12:707. doi: 10.3389/fneur.2021.628045. PubMed DOI PMC
Hodzic E., Feng S., Holden K., Freet K.J., Barthold S.W. Persistence of Borrelia burgdorferi following antibiotic treatment in mice. Antimicrob. Agents Chemother. 2008;52:1728–1736. doi: 10.1128/AAC.01050-07. PubMed DOI PMC
Hodzic E., Imai D., Feng S., Barthold S.W. Resurgence of persisting non-cultivable Borrelia burgdorferi following antibiotic treatment in mice. PLoS ONE. 2014;9:e86907. doi: 10.1371/journal.pone.0086907. PubMed DOI PMC
Straubinger R.K., Summers A.B., Chang Y.F., Appel M.J. Persistence of Borrelia burgdorferi in experimentally infected dogs after antibiotic treatment. J. Clin. Microbiol. 1997;35:111–116. doi: 10.1128/jcm.35.1.111-116.1997. PubMed DOI PMC
Embers M.E., Barthold S.W., Borda J.T., Bowers L., Doyle L., Hodzic E., Jacobs M.B., Hasenkampf N.R., Martin D.S., Narasimhan S., et al. Persistence of Borrelia burgdorferi in rhesus macaques following antibiotic treatment of disseminated infection. PLoS ONE. 2012;7:e29914. doi: 10.1371/annotation/4cafed66-fb84-4589-a001-131d9c50aea6. PubMed DOI PMC
Rizzoli A., Hauffe H.C., Carpi G., Vourc’h I.G., Neteler M., Rosà R. Lyme borreliosis in europe. Eurosurveillance. 2011;16:19906. doi: 10.2807/ese.16.27.19906-en. PubMed DOI
Hubálek Z. Epidemiology of Lyme Borreliosis. In: Lipsker D., Jaulhac B., editors. Lyme Borreliosis, Current Problems in Dermatology Volume 37. Karger; Basel, Switzerland: 2009. pp. 31–50. PubMed
Gade A., Matin T., Rubenstein R., Robinson C.A. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2023. Acrodermatitis Chronica Atrophicans. PubMed
Janson C.G. Blocking Borrelia in the brain. Sci. Transl. Med. 2016;8:324ec18. doi: 10.1126/scitranslmed.aaf2005. DOI
Miklossy J., Khalili K., Gern L., Ericson R.L., Darekar P., Bolle L., Hurlimann J., Paster B.J. Borrelia burgdorferi persists in the brain in chronic lyme neuroborreliosis and may be associated with Alzheimer disease. J. Alzheimers Dis. 2004;6:639–649; discussion 673–681. doi: 10.3233/JAD-2004-6608. PubMed DOI
Miklossy J., Kis A., Radenovic A., Miller L., Forro L., Martins R., Reiss K., Darbinian N., Darekar P., Mihaly L., et al. Beta-amyloid deposition and Alzheimer’s type changes induced by Borrelia spirochetes. Neurobiol. Aging. 2006;27:228–236. doi: 10.1016/j.neurobiolaging.2005.01.018. PubMed DOI
Liegner K.B., Rosenkilde C., Campbell G., Quan T., Dennis D. Culture confirmed treatment failure of cefotaxime and minocycline in a case of Lyme meningoencephalomyelitis in the United States; Proceedings of the Program and Abstracts of the 5th International Conference on Lyme Borreliosis; Arlington, VA, USA. 30 May–2 June 1992.
Sapi E., Kasliwala R.S., Ismail H., Torres J.P., Oldakowski M., Markland S., Gaur G., Melillo A., Eisendle K., Liegner K.B., et al. The long-term persistence of Borrelia burgdorferi antigens and DNA in the tissues of a patient with Lyme disease. Antibiotics. 2019;8:183. doi: 10.3390/antibiotics8040183. PubMed DOI PMC
Miklossy J., Kasas S., Zurn A.D., McCall S., Yu S., McGeer P.L. Persisting atypical and cystic forms of Borrelia burgdorferi and local inflammation in Lyme neuroborreliosis. J. Neuroinflamm. 2008;5:40. doi: 10.1186/1742-2094-5-40. PubMed DOI PMC
Piesman J., Gern L. Lyme borreliosis in Europe and North America. Parasitology. 2004;129:S191–S220. doi: 10.1017/S0031182003004694. PubMed DOI
Rudenko N., Golovchenko M., Grubhoffer L., Oliver J.H., Jr. Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick-Borne Dis. 2011;2:123–128. doi: 10.1016/j.ttbdis.2011.04.002. PubMed DOI PMC
Omotosho Y.B., Sherchan R., Ying G.W., Shayuk M. A unique case of bannwarth syndrome in early disseminated Lyme disease. Cureus. 2021;13:e14680. doi: 10.7759/cureus.14680. PubMed DOI PMC
Garcia-Monco J.C., Benach J.L. Lyme neuroborreliosis: Clinical outcomes, controversy, pathogenesis, and polymicrobial infections. Ann. Neurol. 2018;85:21–31. doi: 10.1002/ana.25389. PubMed DOI PMC
Adams Y., Clausen A.S., Jensen P., Lager M., Wilhelmsson P., Henningson A.J., Lindgren P.-E., Faurholt-Jepsen D., Mens H., Kraiczy P., et al. 3D blood-brain barrier-organoids as a model for Lyme neuroborreliosis highlighting genospecies dependent organotropism. iScience. 2022;26:105838. doi: 10.1016/j.isci.2022.105838. PubMed DOI PMC
Ford L., Tufts D.M. Lyme neuroborreliosis: Mechanisms of B. burgdorferi infection of the nervous system. Brain Sci. 2021;11:789. doi: 10.3390/brainsci11060789. PubMed DOI PMC
Embers M.E., Hasenkampf N.R., Jacobs M.B., Tardo A.C., Doyle-Meyers L.A., Philipp M.T., Hodzic E. Variable manifestations, diverse seroreactivity and post-treatment persistence in non-human primates exposed to Borrelia burgdorferi by tick feeding. PLoS ONE. 2017;12:e0189071. doi: 10.1371/journal.pone.0189071. PubMed DOI PMC
Marques A., Telford S.R., 3rd, Turk S.-P., Chung E., Williams C., Dardick K., Krause P.J., Brandeburg C., Crowder C.D., Carolan H.E., et al. Xenodiagnosis to detect Borrelia burgdorferi infection: A first-in-human study. Clin. Infect. Dis. 2014;58:937–945. doi: 10.1093/cid/cit939. PubMed DOI PMC
Middelveen M.J., Sapi E., Burke J., Filush K.R., Franco A., Fesler M.C., Stricker R.B. Persistent borrelia infection in patients with ongoing symptoms of Lyme disease. Healthcare. 2018;6:33. doi: 10.3390/healthcare6020033. PubMed DOI PMC
CDC Post-Treatment Lyme Disease Syndrome. [(accessed on 7 March 2018)];2017 Available online: https://www.cdc.gov/lyme/postLDS/index.html.
Adrion E.R., Aucott J., Lemke K.W., Weiner J.P. Health care costs, utilization and patterns of care following Lyme disease. PLoS ONE. 2015;10:e0116767. doi: 10.1371/journal.pone.0116767. PubMed DOI PMC
Zhang Y. Persisters, persistent infections and the Yin–Yang model. Emerg. Microbes Infect. 2014;3:e3. doi: 10.1038/emi.2014.3. PubMed DOI PMC
Feng J., Li T., Yee R., Yuan Y., Bai C., Cai M., Shi W., Embers M., Brayton C., Saeki H., et al. Stationary Phase Persister/Biofilm Microcolony of Borrelia burgdorferi Causes More Severe Disease in a Mouse Model of Lyme Arthritis: Implications for understanding persistence, Post-Treatment Lyme Disease Syndrome (PTLDS), and Treatment Failure. Published in Discovery Medicine on 28 March 2019. [(accessed on 9 October 2023)]. Available online: http://www.discoverymedicine.com/Jie-Feng/2019/03/persister-biofilm-microcolony-borrelia-burgdorferi-causes-severe-lyme-arthritis-in-mouse-model/ PubMed
Feng J., Auwaerter P.G., Zhang Y. Drug combinations against Borrelia burgdorferi Persisters in vitro: Eradication achieved by using daptomycin, cefoperazone and doxycycline. PLoS ONE. 2015;10:e0117207. doi: 10.1371/journal.pone.0117207. PubMed DOI PMC
Feng J., Shi W., Zhang S., Zhang Y. Identification of new compounds with high activity against stationary phase Borrelia burgdorferi from the NCI compound collection. Emerg. Microbes Infect. 2015;4:1–15. doi: 10.1038/emi.2015.31. PubMed DOI PMC
Lewis K. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 2006;5:48–56. doi: 10.1038/nrmicro1557. PubMed DOI
Horowitz R.I., Freeman P.R. The use of dapsone as a novel “persister” drug in the treatment of chronic Lyme disease/post treatment Lyme disease syndrome. J. Clin. Exp. Dermatol. 2016;7:345. doi: 10.4172/2155-9554.1000345. DOI
Horowitz R.I., Murali K., Gaur G., Freeman P.R., Sapi E. Effect of dapsone alone and in combination with intracellular antibiotics against the biofilm form of B. burgdorferi. BMC Res. Notes. 2020;13:455. doi: 10.1186/s13104-020-05298-6. PubMed DOI PMC
Horowitz R.I., Freeman P.R. Efficacy of short-term high dose pulsed dapsone combination therapy in the treatment of chronic Lyme disease/post-treatment Lyme disease syndrome (PTLDS) and associated co-infections: A report of three cases and literature review. Antibiotics. 2022;11:912. doi: 10.3390/antibiotics11070912. PubMed DOI PMC
Gao J., Gong Z., Montesano D., Glazer E., Liegner K. “Repurposing” disulfiram in the treatment of Lyme disease and babesiosis: Retrospective review of first 3 years’ experience in one medical practice. Antibiotics. 2020;9:868. doi: 10.3390/antibiotics9120868. PubMed DOI PMC
MacDonald A.B. Borrelia in the brains of patients dying with dementia. JAMA. 1986;256:2195–2196. doi: 10.1001/jama.1986.03380160053011. PubMed DOI
Fallon A.B., Nields A.J. Lyme disease: A neuropsychiatric illness. Am. J. Psychiatry. 1994;151:1571–1583. doi: 10.1176/ajp.151.11.1571. PubMed DOI
Miklossy J. Biology and neuropathology of dementia in syphilis and Lyme disease. Handb. Clin. Neurol. 2008;89:825–844. PubMed
Blanc F., Philippi N., Cretin B., Kleitz C., Berly L., Jung B., Kremer S., Namer I.J., Sellal F., Jaulhac B., et al. Lyme neuroborreliosis and dementia. J. Alzheimers Dis. 2014;41:1087–1093. doi: 10.3233/JAD-130446. PubMed DOI
Kristoferitsch W., Aboulenein-Djamshidian F., Jecel J., Rauschka H., Rainer M., Stanek G., Fischer P. Secondary dementia due to Lyme neuroborreliosis. Wien. Klin. Wochenschr. 2018;130:468–478. doi: 10.1007/s00508-018-1361-9. PubMed DOI PMC
Garcia-Toro M., Aguirre I. Biopsychosocial model in depression revisited. Med. Hypotheses. 2007;68:683–691. doi: 10.1016/j.mehy.2006.02.049. PubMed DOI
Senejani A.G., Maghsoudlou J., El-Zohiry D., Gaur G., Wawrzeniak K., Caravaglia C., Khatri V.A., MacDonald A., Sapi E. Borrelia burgdorferi co-localizing with amyloid markers in Alzheimer’s disease brain tissues. J. Alzheimers Dis. 2022;85:889–903. doi: 10.3233/JAD-215398. PubMed DOI PMC
Di Domenico E.G., Cavallo I., Bordignon V., D’Agosto G., Pontone M., Trento E., Gallo M.T., Prignano G., Pimpinelli F., Toma L., et al. The emerging role of microbial biofilm in Lyme neuroborreliosis. Front. Neurol. 2018;9:1048. doi: 10.3389/fneur.2018.01048. PubMed DOI PMC
Hansen K., Lebec A.-M. The clinical and epidemiological profile of Lyme neuroborreliosis in Denmark 1985-1990: A prospective study of 187 patients with Borrelia burgdorferi specific intrathecal antibody production. Brain. 1992;115:399–423. doi: 10.1093/brain/115.2.399. PubMed DOI
MacDonald A.B. Spirochetal cyst forms in neurodegenerative disorders,…hiding in plain sight. Med. Hypotheses. 2006;67:819–832. doi: 10.1016/j.mehy.2006.04.025. PubMed DOI
Gruntar I., Malovrh T., Murgia R., Cinco M. Conversion of Borrelia garinii cystic forms to motile spirochetes in vivo note. APMIS. 2001;109:383–388. doi: 10.1034/j.1600-0463.2001.090507.x. PubMed DOI
Murgia R., Cinco M. Induction of cystic forms by different stress conditions in Borrelia burgdorferi. APMIS. 2004;112:57–62. doi: 10.1111/j.1600-0463.2004.apm1120110.x. PubMed DOI
Cabello F.C., Godfrey H.P., Newman S.A. Hidden in plain sight: Borrelia burgdorferi and the extracellular matrix. Trends Microbiol. 2007;15:350–354. doi: 10.1016/j.tim.2007.06.003. PubMed DOI
Tilly K., Rosa P.A., Stewart P.E. Biology of Infection with Borrelia burgdorferi. Infect. Dis. Clin. N. Am. 2008;22:217–234. doi: 10.1016/j.idc.2007.12.013. PubMed DOI PMC
Liang F.T., Brown E.L., Wang T., Iozzo R.V., Fikrig E. Protective niche for Borrelia burgdorferi to evade humoral immunity. Am. J. Pathol. 2004;165:977–985. doi: 10.1016/S0002-9440(10)63359-7. PubMed DOI PMC
Nordstrand A., Barbour A.G., Bergström S. Borrelia pathogenesis research in the post-genomic and post-vaccine era. Curr. Opin. Microbiol. 2000;3:86–92. doi: 10.1016/S1369-5274(99)00056-9. PubMed DOI
Berndtson K. Review of evidence for immune evasion and persistent infection in Lyme disease. Int. J. Gen. Med. 2013;6:291–306. doi: 10.2147/IJGM.S44114. PubMed DOI PMC
Liang F.T., Yan J., Mbow M.L., Sviat S.L., Gilmore R.D., Mamula M., Fikrig E. Borrelia burgdorferi changes its surface antigenic expression in response to host immune responses. Infect. Immun. 2004;72:5759–5767. doi: 10.1128/IAI.72.10.5759-5767.2004. PubMed DOI PMC
Pachner A., Basta J., Delaney E., Hulinska D. Localisation of Borrelia burgdorferi in murine Lyme borreliosis by electron microscopy. Am. J. Trop. Med. Hyg. 1995;52:128–133. doi: 10.4269/ajtmh.1995.52.128. PubMed DOI
Girschick H.J., Huppertz H.I., Krenn V., Karch H., Rüssman H. Intracellular persistence of Borrelia burgdorferi in human synovial cells. Rheumatol. Int. 1996;16:125–132. doi: 10.1007/BF01409985. PubMed DOI
Rupprecht T.A., Koedel U., Fingerle V., Pfister H.-W. The pathogenesis of Lyme neuroborreliosis: From infection to inflammation. Mol. Med. 2008;14:205–212. doi: 10.2119/2007-00091.Rupprecht. PubMed DOI PMC
Rudenko N., Golovchenko M., Hönig V., Mallátová N., Krbková L., Mikulášek P., Fedorova N., Belfiore N.M., Grubhoffer L., Lane R.S., et al. Detection of Borrelia burgdorferi sensu stricto ospC alleles associated with human Lyme borreliosis worldwide in non-human-biting tick Ixodes affinis and rodent hosts in Southeastern United States. Appl. Environ. Microbiol. 2013;79:1444–1453. doi: 10.1128/AEM.02749-12. PubMed DOI PMC
Qiu W.-G., Bruno J.F., McCaig W.D., Xu Y., Livey I., Schriefer M.E., Luft B.J. Wide Distribution of a High-Virulence Borrelia burgdorferi clone in Europe and North America. Emerg. Infect. Dis. 2008;14:1097–1104. doi: 10.3201/eid/1407.070880. PubMed DOI PMC
Hanincovaá K., Liveris D., Sandigursky S., Wormser G.P., Schwartz I. Borrelia burgdorferi sensu stricto is clonal in patients with early lyme borreliosis. Appl. Environ. Microbiol. 2008;74:5008–5014. doi: 10.1128/AEM.00479-08. PubMed DOI PMC
Strle K., Jones K.L., Drouin E.E., Li X., Steere A.C. Borrelia burgdorferi RST1 (OspC type A) genotype is associated with greate rinflammation and more severe Lyme disease. Am. J. Pathol. 2011;178:2726–2739. doi: 10.1016/j.ajpath.2011.02.018. PubMed DOI PMC
Seinost G., Dykhuizen D.E., Dattwyler R.J., Golde W.T., Dunn J.J., Wang I.-N., Wormser G.P., Schriefer M.E., Luft B.J. Four clones of Borrelia burgdorferi sensu stricto cause invasive infection in humans. Infect. Immun. 1999;67:3518–3524. doi: 10.1128/IAI.67.7.3518-3524.1999. PubMed DOI PMC
Brisson D., Baxamusa N., Schwartz I., Wormser G.P. Biodiversity of Borrelia burgdorferi strains in tissues of Lyme disease patients. PLoS ONE. 2011;6:e22926. doi: 10.1371/journal.pone.0022926. PubMed DOI PMC
Dykhuizen D.E., Sandigursky S., Nadelman R.B., Nowakowski J., Brisson D., Wormser G.P., Schwartz I. The propensity of different Borrelia burgdorferi sensu stricto genotypes to cause disseminated infections in humans. Am. J. Trop. Med. Hyg. 2008;78:806–810. doi: 10.4269/ajtmh.2008.78.806. PubMed DOI PMC
Ivanova L., Christova I., Neves V., Aroso M., Meirelles L., Brisson D., Gomes-Solecki M. Comprehensive seroprofiling of sixteen B. burgdorferi OspC: Implications for Lyme disease diagnostics design. Clin. Immunol. 2009;132:393–400. doi: 10.1016/j.clim.2009.05.017. PubMed DOI PMC
Casselli T., Divan A., Vomhof-DeKrey E.E., Tourand Y., Pecoraro H.L., Brissette C.A. A murine model of Lyme disease demonstrates that Borrelia burgdorferi colonizes the dura mater and induces inflammation in the central nervous system. PLoS Pathog. 2021;17:e1009256. doi: 10.1371/journal.ppat.1009256. PubMed DOI PMC
Divan A., Casselli T., Narayanan S.A., Mukherjee S., Zawieja D.C., Watt J.A., Brissette C.A., Newell-Rogers M.K. Borrelia burgdorferi adhere to blood vessels in the dura mater and are associated with increased meningeal T cells during murine disseminated borreliosis. PLoS ONE. 2018;13:e0196893. doi: 10.1371/journal.pone.0196893. PubMed DOI PMC
Persidsky Y., Ramirez S.H., Haorah J., Kanmogne G.D. Blood–brain barrier: Structural components and function under physiologic and pathologic conditions. J. Neuroimmune Pharmacol. 2006;1:223–236. doi: 10.1007/s11481-006-9025-3. PubMed DOI
Dupin N., Lecuyer H., Carlotti A., Poyart C., Coureuil M., Chanal J., Schmitt A., Vacher-Lavenu M.-C., Taha M.-K., Nassif X., et al. Chronic meningococcemia cutaneous lesions involve meningococcal perivascular invasion through the remodeling of endothelial barriers. Clin. Infect. Dis. 2012;54:1162–1165. doi: 10.1093/cid/cis120. PubMed DOI
Adams Y., Olsen R.W., Bengtsson A., Dalgaard N., Zdioruk M., Satpathi S., Behera P.K., Sahu P.K., Lawler S.E., Qvortrup K., et al. Plasmodium falciparum erythrocyte membrane protein 1 variants induce cell swelling and disrupt the blood–brain barrier in cerebral malaria. J. Exp. Med. 2021;218:e20201266. doi: 10.1084/jem.20201266. PubMed DOI PMC
Disson O., Lecuit M. Targeting of the central nervous system by Listeria monocytogenes. Virulence. 2012;3:213–221. doi: 10.4161/viru.19586. PubMed DOI PMC
Hussain B., Fang C., Chang J. Blood–brain barrier breakdown: An emerging biomarker of cognitive impairment in normal aging and dementia. Front. Neurosci. 2021;15:688090. doi: 10.3389/fnins.2021.688090. PubMed DOI PMC
Al-Bachari S., Naish J.H., Parker G.J.M., Emsley H.C.A., Parkes L.M. Blood–brain barrier leakage is increased in parkinson’s disease. Front. Physiol. 2020;11:593026. doi: 10.3389/fphys.2020.593026. PubMed DOI PMC
Horowitz I.R., Freeman P.R. Precision medicine: Retrospective chart review and data analysis of 200 patients on dapsone combination therapy for chronic Lyme disease/post-treatment Lyme disease syndrome: Part 1. Int. J. Gen. Med. 2019;12:101–119. doi: 10.2147/IJGM.S193608. PubMed DOI PMC
Horowitz R.I., Freeman P.R. Efficacy of double-dose dapsone combination therapy in the treatment of chronic Lyme disease/post-treatment Lyme disease syndrome (PTLDS) and associated co-infections: A report of three cases and retrospective chart review. Antibiotics. 2020;9:725. doi: 10.3390/antibiotics9110725. PubMed DOI PMC
Cadavid D., Barbour A.G. Neuroborreliosis during relapsing fever: Review of the clinical manifestations, pathology, and treatment of infections in humans and experimental animals. Clin. Infect. Dis. 1998;26:151–164. doi: 10.1086/516276. PubMed DOI
Sergent A., Richard H. Spirochaeta hispanica peut persister plus de deux ans dans le cerveau d’un cobaye inocule experimentalement. Arch. Inst. Pasteur Alger. 1942;20:293–297.
Sergent E. Persistence de Spirochaete hispanica pendant trois ans dans le cerveau d’un cobaye. 3e note. Arch. Inst. Pasteur Alger. 1945;23:245–248. PubMed
Schauder H. Zur frage der spirochatenpersistenz in zentralnervensystem und ihrer chemotherapeutischen beeinflussbarkeit bei experimenteller rekurrens. Arch. Fuer Schiffs-Und Trop. Hyg. 1928;32:1–13.
Adler S., Ashbel R. Observations on Spirochaete sogdianum Nicolle and Anderson, 1928, in laboratory animals. Ann Trop Med Parasitol. 1937;31:89–104. doi: 10.1080/00034983.1937.11684969. DOI
Steiner G., Steinfeld J., Schauder H. Zur frage der spirochatenpersistenzim zentralnervensystem bei experimenteller recurrens. Klin. Wochenschr. 1925;4:2288–2289. doi: 10.1007/BF01721393. DOI
Sergent A. Fievre recurrente a Spirochaeta hispanicum en Algerie. Transmission par le rhipicephale du chien. Premunition. Serum de convalescents. Ann. Parasitol. Hum. Comparée. 1938;61:217–254.
Najera L. Sobre la conservacion del Spirocheta hispanica. Boletın Real. Soc. Esp. Hist. Nat. Actas. 1943;41:371–374.
Steiner G., Steinfeld J. Experimentelle untersuchungen zur pathologie und therapie der spirochatenkrankheiten. I. Die immunitatsverhaltnisse des gehirns und des serums in ihren beziehungen zueinander bei experimenteller recurrens. Klin. Wochenschr. 1925;4:1995–1997. doi: 10.1007/BF01737310. DOI
Cadavid D., Bundoc V., Barbour A.G. Experimental infection of the mouse brain by a relapsing fever borrelia species: A molecular analysis. J. Infect. Dis. 1993;168:143–151. doi: 10.1093/infdis/168.1.143. PubMed DOI
Merritt H.H., Adams R.D., Solomon H.C. Neurosyphilis. Oxford University Press; London, UK: 1946.
Vinken P.J., Bruyn G.W. Handbook of Neurology. Elsevier; Amsterdam, The Netherlands: New York, NY, USA: 1978.
Miklossy J. Alzheimer’s disease—A spirochetosis? Neuroreport. 1993;4:841–848. doi: 10.1097/00001756-199307000-00002. PubMed DOI
Loa C.C., Adelson M.E., Mordechai E., Lobrinus J.A., Fallon B.A., Tilton R.C. Lyme disease associated with Alzheimer’s disease. Curr. Microbiol. 2006;52:330–332. doi: 10.1007/s00284-005-0454-7. PubMed DOI
MacDonald A.B., Miranda J.M. Concurrent neocortical borreliosis and Alzheimer’s disease. Hum. Pathol. 1987;18:759–761. doi: 10.1016/S0046-8177(87)80252-6. PubMed DOI
McDonald A.B. Concurrent neocortical borreliosis and Alzheimer’s disease. Demonstration of a spirochetal cyst form. Ann. N. Y. Acad. Sci. 1988;539:468–470. doi: 10.1111/j.1749-6632.1988.tb31909.x. DOI
Stricker R.B. Counterpoint: Long-term antibiotic therapy improves persistent symptoms associated with lyme disease. Clin. Infect. Dis. 2007;45:149–157. doi: 10.1086/518853. PubMed DOI
Margos G., Gatewood A.G., Aanensen D.M., Hanincová K., Terekhova D., Vollmer S.A., Cornet M., Piesman J., Donaghy M., Bormane A., et al. MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA. 2008;105:8730–8735. doi: 10.1073/pnas.0800323105. PubMed DOI PMC
Golovchenko M., Sima R., Hajdusek O., Grubhoffer L., Oliver J.H., Rudenko N. Invasive potential of Borrelia burgdorferi sensu stricto ospC type L strains increases the possible disease risk to humans in the regions of their distribution. Parasites Vectors. 2014;7:538. doi: 10.1186/s13071-014-0538-y. PubMed DOI PMC
Rudenko N., Golovchenko M., Vancova M., Clark K., Grubhoffer L., Oliver J. Isolation of live Borrelia burgdorferi sensu lato spirochaetes from patients with undefined disorders and symptoms not typical for Lyme borreliosis. Clin. Microbiol. Infect. 2015;22:267.e9–267.e15. doi: 10.1016/j.cmi.2015.11.009. PubMed DOI
Bunikis J., Garpmo U., Tsao J., Berglund J., Fish D., Barbour A.G. Sequence typing reveals extensive strain diversity of the Lyme borreliosis agents Borrelia burgdorferi in north america and borrelia afzelii in europe. Pt 6Microbiology. 2004;150:1741–1755. doi: 10.1099/mic.0.26944-0. PubMed DOI
Clark K., Hendricks A., Burge D. Molecular identification and analysis of Borrelia burgdorferi sensu lato in lizards in the southeastern united states. Appl. Environ. Microbiol. 2005;71:2616–2625. doi: 10.1128/AEM.71.5.2616-2625.2005. PubMed DOI PMC
Levine J.D., Sauman I., Imbalzano M., Reppert S.M., Jackson F. Period protein from the giant silkmoth antheraea pernyi functions as a circadian clock element in drosophila melanogaster. Neuron. 1995;15:147–157. doi: 10.1016/0896-6273(95)90072-1. PubMed DOI
Yuste R.A., Muenkel M., Axarlis K., Benito M.J.G., Reuss A., Blacker G., Tal M.C., Kraiczy P., Bastounis E.E. Borrelia burgdorferi modulates the physical forces and immunity signaling in endothelial cells. iScience. 2022;25:104793. doi: 10.1016/j.isci.2022.104793. PubMed DOI PMC
Sapiro A.L., Hayes B.M., Volk R.F., Zhang J.Y., Brooks D.M., Martyn C., Radkov A., Zhao Z., Kinnersley M., Secor P.R., et al. Longitudinal map of transcriptome changes in the Lyme pathogen Borrelia burgdorferi during tick-borne transmission. eLife. 2023;12:RP86636. doi: 10.7554/eLife.86636. PubMed DOI PMC
Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Preac-Mursic V., Wilske B., Schierz G. European Borrelia burgdorferi isolated from humans and ticks. Culture conditions and antibiotic susceptibility. Zentralbl. Bakteriol. Mikrobiol. Hyg. 1986;263:112–118. doi: 10.1016/S0176-6724(86)80110-9. PubMed DOI