Concurrent Infection of the Human Brain with Multiple Borrelia Species

. 2023 Nov 29 ; 24 (23) : . [epub] 20231129

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu kazuistiky, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38069228

Grantová podpora
NV-19-05-00191 Ministry of Health of the Czech Republic

Lyme disease (LD) spirochetes are well known to be able to disseminate into the tissues of infected hosts, including humans. The diverse strategies used by spirochetes to avoid the host immune system and persist in the host include active immune suppression, induction of immune tolerance, phase and antigenic variation, intracellular seclusion, changing of morphological and physiological state in varying environments, formation of biofilms and persistent forms, and, importantly, incursion into immune-privileged sites such as the brain. Invasion of immune-privileged sites allows the spirochetes to not only escape from the host immune system but can also reduce the efficacy of antibiotic therapy. Here we present a case of the detection of spirochetal DNA in multiple loci in a LD patient's post-mortem brain. The presence of co-infection with Borrelia burgdorferi sensu stricto and Borrelia garinii in this LD patient's brain was confirmed by PCR. Even though both spirochete species were simultaneously present in human brain tissue, the brain regions where the two species were detected were different and non-overlapping. The presence of atypical spirochete morphology was noted by immunohistochemistry of the brain samples. Atypical morphology was also found in the tissues of experimentally infected mice, which were used as a control.

Zobrazit více v PubMed

Steere A. Lyme disease. N. Engl. J. Med. 1989;321:586–596. doi: 10.1056/NEJM198908313210906. PubMed DOI

Bransfield R.C. Neuropsychiatric Lyme borreliosis: An overview with a focus on a specialty psychiatrist’s clinical practice. Healthcare. 2018;6:104. doi: 10.3390/healthcare6030104. PubMed DOI PMC

Bransfield R.C., Aidlen D.M., Cook M.J., Javia S. A clinical diagnostic system for late-stage neuropsychiatric Lyme borreliosis based upon an analysis of 100 patients. Healthcare. 2020;8:13. doi: 10.3390/healthcare8010013. PubMed DOI PMC

Fallon B.A., Madsen T., Erlangsen A., Benros M.E. Lyme borreliosis and associations with mental disorders and suicidal behavior: A nationwide danish cohort study. Am. J. Psychiatry. 2021;178:921–931. doi: 10.1176/appi.ajp.2021.20091347. PubMed DOI

Barthold S.W., Hodzic E., Imai D.M., Feng S., Yang X., Luft B.J. Ineffectiveness of tigecycline against persistent Borrelia burgdorferi. Antimicrob. Agents Chemother. 2010;54:643–651. doi: 10.1128/AAC.00788-09. PubMed DOI PMC

Preac-Mursic V., Wilske B., Gross B., Weber K., Pfister H.W., Baumann A., Prokop J. Survival of Borrelia burgdorferi in antibiotically treated patients with Lyme borreliosis. Infection. 1989;17:355–359. doi: 10.1007/BF01645543. PubMed DOI

Shadick N.A., Phillips C.B., Logigian E.L., Steere A.C., Kaplan R.F., Berardi V.P., Duray P.H., Larson M.G., Wright E.A., Ginsburg K.S., et al. The long-term clinical outcomes of Lyme disease: A population-based retrospective cohort study. Ann. Intern. Med. 1994;121:560–567. doi: 10.7326/0003-4819-121-8-199410150-00002. PubMed DOI

Fauvart M., De Groote V.N., Michiels J. Role of persister cells in chronic infections: Clinical relevance and perspectives on anti-persister therapies. Pt 6J. Med. Microbiol. 2011;60:699–709. doi: 10.1099/jmm.0.030932-0. PubMed DOI

Nemeth J., Bernasconi E., Heininger U., Abbas M., Nadal D., Strahm C., Erb S., Zimmerli S., Furrer H., Delaloye J., et al. Update of the Swiss guidelines on post-treatment Lyme disease syndrome. Swiss Med. Wkly. 2016;146:w14353. doi: 10.4414/smw.2016.14353. PubMed DOI

Horowitz R.I., Freeman P.R. Precision medicine: The role of the MSIDS model in defining, diagnosing, and treating chronic lyme disease/post treatment Lyme disease syndrome and other chronic illness: Part 2. Healthcare. 2018;6:129. doi: 10.3390/healthcare6040129. PubMed DOI PMC

Hastey C.J., Elsner R.A., Barthold S.W., Baumgarth N. Delays and diversions mark the development of B cell responses to Borrelia burgdorferi Infection. J. Immunol. 2012;188:5612–5622. doi: 10.4049/jimmunol.1103735. PubMed DOI PMC

Rudenko N., Golovchenko M., Kybicova K., Vancova M. Metamorphoses of Lyme disease spirochetes: Phenomenon of Borrelia persisters. Parasites Vectors. 2019;12:237. doi: 10.1186/s13071-019-3495-7. PubMed DOI PMC

Sloupenska K., Koubkova B., Horak P., Hutyrova B., Racansky M., Mares J., Miklusova M., Schovanek J., Zapletalova J., Raska M., et al. Myositis autoantibodies in patients with suspected post-treatment Lyme disease syndrome. Life. 2023;13:527. doi: 10.3390/life13020527. PubMed DOI PMC

Straubinger R.K., Straubinger A.F., Jacobson R.H., Chang Y., Summers B.A., Erb H.N., Appel M.J.G. Two lessons from the canine model of Lyme disease: Migration of Borrelia burgdorferi in tissues and persistence after antibiotic treatment. J. Spirochetal Tick Borne Dis. 1997;4:24–31.

Petzke M., Schwartz I. Borrelia burgdorferi pathogenesis and the immune response. Clin. Lab. Med. 2015;35:745–764. doi: 10.1016/j.cll.2015.07.004. PubMed DOI

Tsao J.I. Reviewing molecular adaptations of Lyme borreliosis spirochetes in the context of reproductive fitness in natural transmission cycles. Vet. Res. 2009;40:36. doi: 10.1051/vetres/2009019. PubMed DOI PMC

Hyde J.A. Borrelia burgdorferi keeps moving and carries on: A review of borrelial dissemination and invasion. Front. Immunol. 2017;8:114. doi: 10.3389/fimmu.2017.00114. PubMed DOI PMC

Livengood J.A., Gilmore R.D. Invasion of human neuronal and glial cells by an infectious strain of Borrelia burgdorferi. Microbes Infect. 2006;8:2832–2840. doi: 10.1016/j.micinf.2006.08.014. PubMed DOI

Ma Y., Sturrock A., Weis J.J. Intracellular localization of Borrelia burgdorferi within human endothelial cells. Infect. Immun. 1991;59:671–678. doi: 10.1128/iai.59.2.671-678.1991. PubMed DOI PMC

Montgomery R.R., Malawista E.S. Entry of Borrelia burgdorferi into macrophages is end-on and leads to degradation in lysosomes. Infect. Immun. 1996;64:2867–2872. doi: 10.1128/iai.64.7.2867-2872.1996. PubMed DOI PMC

Klempner M.S., Noring R., Rogers R.A. Invasion of human skin fibroblasts by the Lyme disease spirochete, borrelia burgdorferi. J. Infect. Dis. 1993;167:1074–1081. doi: 10.1093/infdis/167.5.1074. PubMed DOI

Gadila S.K.G., Rosoklija G., Dwork A.J., Fallon B.A., Embers M.E. Detecting borrelia spirochetes: A case study with validation among autopsy specimens. Front. Neurol. 2021;12:707. doi: 10.3389/fneur.2021.628045. PubMed DOI PMC

Hodzic E., Feng S., Holden K., Freet K.J., Barthold S.W. Persistence of Borrelia burgdorferi following antibiotic treatment in mice. Antimicrob. Agents Chemother. 2008;52:1728–1736. doi: 10.1128/AAC.01050-07. PubMed DOI PMC

Hodzic E., Imai D., Feng S., Barthold S.W. Resurgence of persisting non-cultivable Borrelia burgdorferi following antibiotic treatment in mice. PLoS ONE. 2014;9:e86907. doi: 10.1371/journal.pone.0086907. PubMed DOI PMC

Straubinger R.K., Summers A.B., Chang Y.F., Appel M.J. Persistence of Borrelia burgdorferi in experimentally infected dogs after antibiotic treatment. J. Clin. Microbiol. 1997;35:111–116. doi: 10.1128/jcm.35.1.111-116.1997. PubMed DOI PMC

Embers M.E., Barthold S.W., Borda J.T., Bowers L., Doyle L., Hodzic E., Jacobs M.B., Hasenkampf N.R., Martin D.S., Narasimhan S., et al. Persistence of Borrelia burgdorferi in rhesus macaques following antibiotic treatment of disseminated infection. PLoS ONE. 2012;7:e29914. doi: 10.1371/annotation/4cafed66-fb84-4589-a001-131d9c50aea6. PubMed DOI PMC

Rizzoli A., Hauffe H.C., Carpi G., Vourc’h I.G., Neteler M., Rosà R. Lyme borreliosis in europe. Eurosurveillance. 2011;16:19906. doi: 10.2807/ese.16.27.19906-en. PubMed DOI

Hubálek Z. Epidemiology of Lyme Borreliosis. In: Lipsker D., Jaulhac B., editors. Lyme Borreliosis, Current Problems in Dermatology Volume 37. Karger; Basel, Switzerland: 2009. pp. 31–50. PubMed

Gade A., Matin T., Rubenstein R., Robinson C.A. StatPearls. StatPearls Publishing; Treasure Island, FL, USA: 2023. Acrodermatitis Chronica Atrophicans. PubMed

Janson C.G. Blocking Borrelia in the brain. Sci. Transl. Med. 2016;8:324ec18. doi: 10.1126/scitranslmed.aaf2005. DOI

Miklossy J., Khalili K., Gern L., Ericson R.L., Darekar P., Bolle L., Hurlimann J., Paster B.J. Borrelia burgdorferi persists in the brain in chronic lyme neuroborreliosis and may be associated with Alzheimer disease. J. Alzheimers Dis. 2004;6:639–649; discussion 673–681. doi: 10.3233/JAD-2004-6608. PubMed DOI

Miklossy J., Kis A., Radenovic A., Miller L., Forro L., Martins R., Reiss K., Darbinian N., Darekar P., Mihaly L., et al. Beta-amyloid deposition and Alzheimer’s type changes induced by Borrelia spirochetes. Neurobiol. Aging. 2006;27:228–236. doi: 10.1016/j.neurobiolaging.2005.01.018. PubMed DOI

Liegner K.B., Rosenkilde C., Campbell G., Quan T., Dennis D. Culture confirmed treatment failure of cefotaxime and minocycline in a case of Lyme meningoencephalomyelitis in the United States; Proceedings of the Program and Abstracts of the 5th International Conference on Lyme Borreliosis; Arlington, VA, USA. 30 May–2 June 1992.

Sapi E., Kasliwala R.S., Ismail H., Torres J.P., Oldakowski M., Markland S., Gaur G., Melillo A., Eisendle K., Liegner K.B., et al. The long-term persistence of Borrelia burgdorferi antigens and DNA in the tissues of a patient with Lyme disease. Antibiotics. 2019;8:183. doi: 10.3390/antibiotics8040183. PubMed DOI PMC

Miklossy J., Kasas S., Zurn A.D., McCall S., Yu S., McGeer P.L. Persisting atypical and cystic forms of Borrelia burgdorferi and local inflammation in Lyme neuroborreliosis. J. Neuroinflamm. 2008;5:40. doi: 10.1186/1742-2094-5-40. PubMed DOI PMC

Piesman J., Gern L. Lyme borreliosis in Europe and North America. Parasitology. 2004;129:S191–S220. doi: 10.1017/S0031182003004694. PubMed DOI

Rudenko N., Golovchenko M., Grubhoffer L., Oliver J.H., Jr. Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick-Borne Dis. 2011;2:123–128. doi: 10.1016/j.ttbdis.2011.04.002. PubMed DOI PMC

Omotosho Y.B., Sherchan R., Ying G.W., Shayuk M. A unique case of bannwarth syndrome in early disseminated Lyme disease. Cureus. 2021;13:e14680. doi: 10.7759/cureus.14680. PubMed DOI PMC

Garcia-Monco J.C., Benach J.L. Lyme neuroborreliosis: Clinical outcomes, controversy, pathogenesis, and polymicrobial infections. Ann. Neurol. 2018;85:21–31. doi: 10.1002/ana.25389. PubMed DOI PMC

Adams Y., Clausen A.S., Jensen P., Lager M., Wilhelmsson P., Henningson A.J., Lindgren P.-E., Faurholt-Jepsen D., Mens H., Kraiczy P., et al. 3D blood-brain barrier-organoids as a model for Lyme neuroborreliosis highlighting genospecies dependent organotropism. iScience. 2022;26:105838. doi: 10.1016/j.isci.2022.105838. PubMed DOI PMC

Ford L., Tufts D.M. Lyme neuroborreliosis: Mechanisms of B. burgdorferi infection of the nervous system. Brain Sci. 2021;11:789. doi: 10.3390/brainsci11060789. PubMed DOI PMC

Embers M.E., Hasenkampf N.R., Jacobs M.B., Tardo A.C., Doyle-Meyers L.A., Philipp M.T., Hodzic E. Variable manifestations, diverse seroreactivity and post-treatment persistence in non-human primates exposed to Borrelia burgdorferi by tick feeding. PLoS ONE. 2017;12:e0189071. doi: 10.1371/journal.pone.0189071. PubMed DOI PMC

Marques A., Telford S.R., 3rd, Turk S.-P., Chung E., Williams C., Dardick K., Krause P.J., Brandeburg C., Crowder C.D., Carolan H.E., et al. Xenodiagnosis to detect Borrelia burgdorferi infection: A first-in-human study. Clin. Infect. Dis. 2014;58:937–945. doi: 10.1093/cid/cit939. PubMed DOI PMC

Middelveen M.J., Sapi E., Burke J., Filush K.R., Franco A., Fesler M.C., Stricker R.B. Persistent borrelia infection in patients with ongoing symptoms of Lyme disease. Healthcare. 2018;6:33. doi: 10.3390/healthcare6020033. PubMed DOI PMC

CDC Post-Treatment Lyme Disease Syndrome. [(accessed on 7 March 2018)];2017 Available online: https://www.cdc.gov/lyme/postLDS/index.html.

Adrion E.R., Aucott J., Lemke K.W., Weiner J.P. Health care costs, utilization and patterns of care following Lyme disease. PLoS ONE. 2015;10:e0116767. doi: 10.1371/journal.pone.0116767. PubMed DOI PMC

Zhang Y. Persisters, persistent infections and the Yin–Yang model. Emerg. Microbes Infect. 2014;3:e3. doi: 10.1038/emi.2014.3. PubMed DOI PMC

Feng J., Li T., Yee R., Yuan Y., Bai C., Cai M., Shi W., Embers M., Brayton C., Saeki H., et al. Stationary Phase Persister/Biofilm Microcolony of Borrelia burgdorferi Causes More Severe Disease in a Mouse Model of Lyme Arthritis: Implications for understanding persistence, Post-Treatment Lyme Disease Syndrome (PTLDS), and Treatment Failure. Published in Discovery Medicine on 28 March 2019. [(accessed on 9 October 2023)]. Available online: http://www.discoverymedicine.com/Jie-Feng/2019/03/persister-biofilm-microcolony-borrelia-burgdorferi-causes-severe-lyme-arthritis-in-mouse-model/ PubMed

Feng J., Auwaerter P.G., Zhang Y. Drug combinations against Borrelia burgdorferi Persisters in vitro: Eradication achieved by using daptomycin, cefoperazone and doxycycline. PLoS ONE. 2015;10:e0117207. doi: 10.1371/journal.pone.0117207. PubMed DOI PMC

Feng J., Shi W., Zhang S., Zhang Y. Identification of new compounds with high activity against stationary phase Borrelia burgdorferi from the NCI compound collection. Emerg. Microbes Infect. 2015;4:1–15. doi: 10.1038/emi.2015.31. PubMed DOI PMC

Lewis K. Persister cells, dormancy and infectious disease. Nat. Rev. Microbiol. 2006;5:48–56. doi: 10.1038/nrmicro1557. PubMed DOI

Horowitz R.I., Freeman P.R. The use of dapsone as a novel “persister” drug in the treatment of chronic Lyme disease/post treatment Lyme disease syndrome. J. Clin. Exp. Dermatol. 2016;7:345. doi: 10.4172/2155-9554.1000345. DOI

Horowitz R.I., Murali K., Gaur G., Freeman P.R., Sapi E. Effect of dapsone alone and in combination with intracellular antibiotics against the biofilm form of B. burgdorferi. BMC Res. Notes. 2020;13:455. doi: 10.1186/s13104-020-05298-6. PubMed DOI PMC

Horowitz R.I., Freeman P.R. Efficacy of short-term high dose pulsed dapsone combination therapy in the treatment of chronic Lyme disease/post-treatment Lyme disease syndrome (PTLDS) and associated co-infections: A report of three cases and literature review. Antibiotics. 2022;11:912. doi: 10.3390/antibiotics11070912. PubMed DOI PMC

Gao J., Gong Z., Montesano D., Glazer E., Liegner K. “Repurposing” disulfiram in the treatment of Lyme disease and babesiosis: Retrospective review of first 3 years’ experience in one medical practice. Antibiotics. 2020;9:868. doi: 10.3390/antibiotics9120868. PubMed DOI PMC

MacDonald A.B. Borrelia in the brains of patients dying with dementia. JAMA. 1986;256:2195–2196. doi: 10.1001/jama.1986.03380160053011. PubMed DOI

Fallon A.B., Nields A.J. Lyme disease: A neuropsychiatric illness. Am. J. Psychiatry. 1994;151:1571–1583. doi: 10.1176/ajp.151.11.1571. PubMed DOI

Miklossy J. Biology and neuropathology of dementia in syphilis and Lyme disease. Handb. Clin. Neurol. 2008;89:825–844. PubMed

Blanc F., Philippi N., Cretin B., Kleitz C., Berly L., Jung B., Kremer S., Namer I.J., Sellal F., Jaulhac B., et al. Lyme neuroborreliosis and dementia. J. Alzheimers Dis. 2014;41:1087–1093. doi: 10.3233/JAD-130446. PubMed DOI

Kristoferitsch W., Aboulenein-Djamshidian F., Jecel J., Rauschka H., Rainer M., Stanek G., Fischer P. Secondary dementia due to Lyme neuroborreliosis. Wien. Klin. Wochenschr. 2018;130:468–478. doi: 10.1007/s00508-018-1361-9. PubMed DOI PMC

Garcia-Toro M., Aguirre I. Biopsychosocial model in depression revisited. Med. Hypotheses. 2007;68:683–691. doi: 10.1016/j.mehy.2006.02.049. PubMed DOI

Senejani A.G., Maghsoudlou J., El-Zohiry D., Gaur G., Wawrzeniak K., Caravaglia C., Khatri V.A., MacDonald A., Sapi E. Borrelia burgdorferi co-localizing with amyloid markers in Alzheimer’s disease brain tissues. J. Alzheimers Dis. 2022;85:889–903. doi: 10.3233/JAD-215398. PubMed DOI PMC

Di Domenico E.G., Cavallo I., Bordignon V., D’Agosto G., Pontone M., Trento E., Gallo M.T., Prignano G., Pimpinelli F., Toma L., et al. The emerging role of microbial biofilm in Lyme neuroborreliosis. Front. Neurol. 2018;9:1048. doi: 10.3389/fneur.2018.01048. PubMed DOI PMC

Hansen K., Lebec A.-M. The clinical and epidemiological profile of Lyme neuroborreliosis in Denmark 1985-1990: A prospective study of 187 patients with Borrelia burgdorferi specific intrathecal antibody production. Brain. 1992;115:399–423. doi: 10.1093/brain/115.2.399. PubMed DOI

MacDonald A.B. Spirochetal cyst forms in neurodegenerative disorders,…hiding in plain sight. Med. Hypotheses. 2006;67:819–832. doi: 10.1016/j.mehy.2006.04.025. PubMed DOI

Gruntar I., Malovrh T., Murgia R., Cinco M. Conversion of Borrelia garinii cystic forms to motile spirochetes in vivo note. APMIS. 2001;109:383–388. doi: 10.1034/j.1600-0463.2001.090507.x. PubMed DOI

Murgia R., Cinco M. Induction of cystic forms by different stress conditions in Borrelia burgdorferi. APMIS. 2004;112:57–62. doi: 10.1111/j.1600-0463.2004.apm1120110.x. PubMed DOI

Cabello F.C., Godfrey H.P., Newman S.A. Hidden in plain sight: Borrelia burgdorferi and the extracellular matrix. Trends Microbiol. 2007;15:350–354. doi: 10.1016/j.tim.2007.06.003. PubMed DOI

Tilly K., Rosa P.A., Stewart P.E. Biology of Infection with Borrelia burgdorferi. Infect. Dis. Clin. N. Am. 2008;22:217–234. doi: 10.1016/j.idc.2007.12.013. PubMed DOI PMC

Liang F.T., Brown E.L., Wang T., Iozzo R.V., Fikrig E. Protective niche for Borrelia burgdorferi to evade humoral immunity. Am. J. Pathol. 2004;165:977–985. doi: 10.1016/S0002-9440(10)63359-7. PubMed DOI PMC

Nordstrand A., Barbour A.G., Bergström S. Borrelia pathogenesis research in the post-genomic and post-vaccine era. Curr. Opin. Microbiol. 2000;3:86–92. doi: 10.1016/S1369-5274(99)00056-9. PubMed DOI

Berndtson K. Review of evidence for immune evasion and persistent infection in Lyme disease. Int. J. Gen. Med. 2013;6:291–306. doi: 10.2147/IJGM.S44114. PubMed DOI PMC

Liang F.T., Yan J., Mbow M.L., Sviat S.L., Gilmore R.D., Mamula M., Fikrig E. Borrelia burgdorferi changes its surface antigenic expression in response to host immune responses. Infect. Immun. 2004;72:5759–5767. doi: 10.1128/IAI.72.10.5759-5767.2004. PubMed DOI PMC

Pachner A., Basta J., Delaney E., Hulinska D. Localisation of Borrelia burgdorferi in murine Lyme borreliosis by electron microscopy. Am. J. Trop. Med. Hyg. 1995;52:128–133. doi: 10.4269/ajtmh.1995.52.128. PubMed DOI

Girschick H.J., Huppertz H.I., Krenn V., Karch H., Rüssman H. Intracellular persistence of Borrelia burgdorferi in human synovial cells. Rheumatol. Int. 1996;16:125–132. doi: 10.1007/BF01409985. PubMed DOI

Rupprecht T.A., Koedel U., Fingerle V., Pfister H.-W. The pathogenesis of Lyme neuroborreliosis: From infection to inflammation. Mol. Med. 2008;14:205–212. doi: 10.2119/2007-00091.Rupprecht. PubMed DOI PMC

Rudenko N., Golovchenko M., Hönig V., Mallátová N., Krbková L., Mikulášek P., Fedorova N., Belfiore N.M., Grubhoffer L., Lane R.S., et al. Detection of Borrelia burgdorferi sensu stricto ospC alleles associated with human Lyme borreliosis worldwide in non-human-biting tick Ixodes affinis and rodent hosts in Southeastern United States. Appl. Environ. Microbiol. 2013;79:1444–1453. doi: 10.1128/AEM.02749-12. PubMed DOI PMC

Qiu W.-G., Bruno J.F., McCaig W.D., Xu Y., Livey I., Schriefer M.E., Luft B.J. Wide Distribution of a High-Virulence Borrelia burgdorferi clone in Europe and North America. Emerg. Infect. Dis. 2008;14:1097–1104. doi: 10.3201/eid/1407.070880. PubMed DOI PMC

Hanincovaá K., Liveris D., Sandigursky S., Wormser G.P., Schwartz I. Borrelia burgdorferi sensu stricto is clonal in patients with early lyme borreliosis. Appl. Environ. Microbiol. 2008;74:5008–5014. doi: 10.1128/AEM.00479-08. PubMed DOI PMC

Strle K., Jones K.L., Drouin E.E., Li X., Steere A.C. Borrelia burgdorferi RST1 (OspC type A) genotype is associated with greate rinflammation and more severe Lyme disease. Am. J. Pathol. 2011;178:2726–2739. doi: 10.1016/j.ajpath.2011.02.018. PubMed DOI PMC

Seinost G., Dykhuizen D.E., Dattwyler R.J., Golde W.T., Dunn J.J., Wang I.-N., Wormser G.P., Schriefer M.E., Luft B.J. Four clones of Borrelia burgdorferi sensu stricto cause invasive infection in humans. Infect. Immun. 1999;67:3518–3524. doi: 10.1128/IAI.67.7.3518-3524.1999. PubMed DOI PMC

Brisson D., Baxamusa N., Schwartz I., Wormser G.P. Biodiversity of Borrelia burgdorferi strains in tissues of Lyme disease patients. PLoS ONE. 2011;6:e22926. doi: 10.1371/journal.pone.0022926. PubMed DOI PMC

Dykhuizen D.E., Sandigursky S., Nadelman R.B., Nowakowski J., Brisson D., Wormser G.P., Schwartz I. The propensity of different Borrelia burgdorferi sensu stricto genotypes to cause disseminated infections in humans. Am. J. Trop. Med. Hyg. 2008;78:806–810. doi: 10.4269/ajtmh.2008.78.806. PubMed DOI PMC

Ivanova L., Christova I., Neves V., Aroso M., Meirelles L., Brisson D., Gomes-Solecki M. Comprehensive seroprofiling of sixteen B. burgdorferi OspC: Implications for Lyme disease diagnostics design. Clin. Immunol. 2009;132:393–400. doi: 10.1016/j.clim.2009.05.017. PubMed DOI PMC

Casselli T., Divan A., Vomhof-DeKrey E.E., Tourand Y., Pecoraro H.L., Brissette C.A. A murine model of Lyme disease demonstrates that Borrelia burgdorferi colonizes the dura mater and induces inflammation in the central nervous system. PLoS Pathog. 2021;17:e1009256. doi: 10.1371/journal.ppat.1009256. PubMed DOI PMC

Divan A., Casselli T., Narayanan S.A., Mukherjee S., Zawieja D.C., Watt J.A., Brissette C.A., Newell-Rogers M.K. Borrelia burgdorferi adhere to blood vessels in the dura mater and are associated with increased meningeal T cells during murine disseminated borreliosis. PLoS ONE. 2018;13:e0196893. doi: 10.1371/journal.pone.0196893. PubMed DOI PMC

Persidsky Y., Ramirez S.H., Haorah J., Kanmogne G.D. Blood–brain barrier: Structural components and function under physiologic and pathologic conditions. J. Neuroimmune Pharmacol. 2006;1:223–236. doi: 10.1007/s11481-006-9025-3. PubMed DOI

Dupin N., Lecuyer H., Carlotti A., Poyart C., Coureuil M., Chanal J., Schmitt A., Vacher-Lavenu M.-C., Taha M.-K., Nassif X., et al. Chronic meningococcemia cutaneous lesions involve meningococcal perivascular invasion through the remodeling of endothelial barriers. Clin. Infect. Dis. 2012;54:1162–1165. doi: 10.1093/cid/cis120. PubMed DOI

Adams Y., Olsen R.W., Bengtsson A., Dalgaard N., Zdioruk M., Satpathi S., Behera P.K., Sahu P.K., Lawler S.E., Qvortrup K., et al. Plasmodium falciparum erythrocyte membrane protein 1 variants induce cell swelling and disrupt the blood–brain barrier in cerebral malaria. J. Exp. Med. 2021;218:e20201266. doi: 10.1084/jem.20201266. PubMed DOI PMC

Disson O., Lecuit M. Targeting of the central nervous system by Listeria monocytogenes. Virulence. 2012;3:213–221. doi: 10.4161/viru.19586. PubMed DOI PMC

Hussain B., Fang C., Chang J. Blood–brain barrier breakdown: An emerging biomarker of cognitive impairment in normal aging and dementia. Front. Neurosci. 2021;15:688090. doi: 10.3389/fnins.2021.688090. PubMed DOI PMC

Al-Bachari S., Naish J.H., Parker G.J.M., Emsley H.C.A., Parkes L.M. Blood–brain barrier leakage is increased in parkinson’s disease. Front. Physiol. 2020;11:593026. doi: 10.3389/fphys.2020.593026. PubMed DOI PMC

Horowitz I.R., Freeman P.R. Precision medicine: Retrospective chart review and data analysis of 200 patients on dapsone combination therapy for chronic Lyme disease/post-treatment Lyme disease syndrome: Part 1. Int. J. Gen. Med. 2019;12:101–119. doi: 10.2147/IJGM.S193608. PubMed DOI PMC

Horowitz R.I., Freeman P.R. Efficacy of double-dose dapsone combination therapy in the treatment of chronic Lyme disease/post-treatment Lyme disease syndrome (PTLDS) and associated co-infections: A report of three cases and retrospective chart review. Antibiotics. 2020;9:725. doi: 10.3390/antibiotics9110725. PubMed DOI PMC

Cadavid D., Barbour A.G. Neuroborreliosis during relapsing fever: Review of the clinical manifestations, pathology, and treatment of infections in humans and experimental animals. Clin. Infect. Dis. 1998;26:151–164. doi: 10.1086/516276. PubMed DOI

Sergent A., Richard H. Spirochaeta hispanica peut persister plus de deux ans dans le cerveau d’un cobaye inocule experimentalement. Arch. Inst. Pasteur Alger. 1942;20:293–297.

Sergent E. Persistence de Spirochaete hispanica pendant trois ans dans le cerveau d’un cobaye. 3e note. Arch. Inst. Pasteur Alger. 1945;23:245–248. PubMed

Schauder H. Zur frage der spirochatenpersistenz in zentralnervensystem und ihrer chemotherapeutischen beeinflussbarkeit bei experimenteller rekurrens. Arch. Fuer Schiffs-Und Trop. Hyg. 1928;32:1–13.

Adler S., Ashbel R. Observations on Spirochaete sogdianum Nicolle and Anderson, 1928, in laboratory animals. Ann Trop Med Parasitol. 1937;31:89–104. doi: 10.1080/00034983.1937.11684969. DOI

Steiner G., Steinfeld J., Schauder H. Zur frage der spirochatenpersistenzim zentralnervensystem bei experimenteller recurrens. Klin. Wochenschr. 1925;4:2288–2289. doi: 10.1007/BF01721393. DOI

Sergent A. Fievre recurrente a Spirochaeta hispanicum en Algerie. Transmission par le rhipicephale du chien. Premunition. Serum de convalescents. Ann. Parasitol. Hum. Comparée. 1938;61:217–254.

Najera L. Sobre la conservacion del Spirocheta hispanica. Boletın Real. Soc. Esp. Hist. Nat. Actas. 1943;41:371–374.

Steiner G., Steinfeld J. Experimentelle untersuchungen zur pathologie und therapie der spirochatenkrankheiten. I. Die immunitatsverhaltnisse des gehirns und des serums in ihren beziehungen zueinander bei experimenteller recurrens. Klin. Wochenschr. 1925;4:1995–1997. doi: 10.1007/BF01737310. DOI

Cadavid D., Bundoc V., Barbour A.G. Experimental infection of the mouse brain by a relapsing fever borrelia species: A molecular analysis. J. Infect. Dis. 1993;168:143–151. doi: 10.1093/infdis/168.1.143. PubMed DOI

Merritt H.H., Adams R.D., Solomon H.C. Neurosyphilis. Oxford University Press; London, UK: 1946.

Vinken P.J., Bruyn G.W. Handbook of Neurology. Elsevier; Amsterdam, The Netherlands: New York, NY, USA: 1978.

Miklossy J. Alzheimer’s disease—A spirochetosis? Neuroreport. 1993;4:841–848. doi: 10.1097/00001756-199307000-00002. PubMed DOI

Loa C.C., Adelson M.E., Mordechai E., Lobrinus J.A., Fallon B.A., Tilton R.C. Lyme disease associated with Alzheimer’s disease. Curr. Microbiol. 2006;52:330–332. doi: 10.1007/s00284-005-0454-7. PubMed DOI

MacDonald A.B., Miranda J.M. Concurrent neocortical borreliosis and Alzheimer’s disease. Hum. Pathol. 1987;18:759–761. doi: 10.1016/S0046-8177(87)80252-6. PubMed DOI

McDonald A.B. Concurrent neocortical borreliosis and Alzheimer’s disease. Demonstration of a spirochetal cyst form. Ann. N. Y. Acad. Sci. 1988;539:468–470. doi: 10.1111/j.1749-6632.1988.tb31909.x. DOI

Stricker R.B. Counterpoint: Long-term antibiotic therapy improves persistent symptoms associated with lyme disease. Clin. Infect. Dis. 2007;45:149–157. doi: 10.1086/518853. PubMed DOI

Margos G., Gatewood A.G., Aanensen D.M., Hanincová K., Terekhova D., Vollmer S.A., Cornet M., Piesman J., Donaghy M., Bormane A., et al. MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA. 2008;105:8730–8735. doi: 10.1073/pnas.0800323105. PubMed DOI PMC

Golovchenko M., Sima R., Hajdusek O., Grubhoffer L., Oliver J.H., Rudenko N. Invasive potential of Borrelia burgdorferi sensu stricto ospC type L strains increases the possible disease risk to humans in the regions of their distribution. Parasites Vectors. 2014;7:538. doi: 10.1186/s13071-014-0538-y. PubMed DOI PMC

Rudenko N., Golovchenko M., Vancova M., Clark K., Grubhoffer L., Oliver J. Isolation of live Borrelia burgdorferi sensu lato spirochaetes from patients with undefined disorders and symptoms not typical for Lyme borreliosis. Clin. Microbiol. Infect. 2015;22:267.e9–267.e15. doi: 10.1016/j.cmi.2015.11.009. PubMed DOI

Bunikis J., Garpmo U., Tsao J., Berglund J., Fish D., Barbour A.G. Sequence typing reveals extensive strain diversity of the Lyme borreliosis agents Borrelia burgdorferi in north america and borrelia afzelii in europe. Pt 6Microbiology. 2004;150:1741–1755. doi: 10.1099/mic.0.26944-0. PubMed DOI

Clark K., Hendricks A., Burge D. Molecular identification and analysis of Borrelia burgdorferi sensu lato in lizards in the southeastern united states. Appl. Environ. Microbiol. 2005;71:2616–2625. doi: 10.1128/AEM.71.5.2616-2625.2005. PubMed DOI PMC

Levine J.D., Sauman I., Imbalzano M., Reppert S.M., Jackson F. Period protein from the giant silkmoth antheraea pernyi functions as a circadian clock element in drosophila melanogaster. Neuron. 1995;15:147–157. doi: 10.1016/0896-6273(95)90072-1. PubMed DOI

Yuste R.A., Muenkel M., Axarlis K., Benito M.J.G., Reuss A., Blacker G., Tal M.C., Kraiczy P., Bastounis E.E. Borrelia burgdorferi modulates the physical forces and immunity signaling in endothelial cells. iScience. 2022;25:104793. doi: 10.1016/j.isci.2022.104793. PubMed DOI PMC

Sapiro A.L., Hayes B.M., Volk R.F., Zhang J.Y., Brooks D.M., Martyn C., Radkov A., Zhao Z., Kinnersley M., Secor P.R., et al. Longitudinal map of transcriptome changes in the Lyme pathogen Borrelia burgdorferi during tick-borne transmission. eLife. 2023;12:RP86636. doi: 10.7554/eLife.86636. PubMed DOI PMC

Schindelin J., Arganda-Carreras I., Frise E., Kaynig V., Longair M., Pietzsch T., Preibisch S., Rueden C., Saalfeld S., Schmid B., et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC

Preac-Mursic V., Wilske B., Schierz G. European Borrelia burgdorferi isolated from humans and ticks. Culture conditions and antibiotic susceptibility. Zentralbl. Bakteriol. Mikrobiol. Hyg. 1986;263:112–118. doi: 10.1016/S0176-6724(86)80110-9. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace