Computational investigation of natural compounds as potential main protease (Mpro) inhibitors for SARS-CoV-2 virus
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36423529
PubMed Central
PMC9673090
DOI
10.1016/j.compbiomed.2022.106318
PII: S0010-4825(22)01026-5
Knihovny.cz E-zdroje
- Klíčová slova
- Binding free energy, DFT calculation, Dynamics simulation, Main proteases (M(pro)), Omicron,
- MeSH
- farmakoterapie COVID-19 * MeSH
- lidé MeSH
- pandemie MeSH
- proteasy MeSH
- SARS-CoV-2 * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- proteasy MeSH
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is significantly impacting human lives, overburdening the healthcare system and weakening global economies. Plant-derived natural compounds are being largely tested for their efficacy against COVID-19 targets to combat SARS-CoV-2 infection. The SARS-CoV-2 Main protease (Mpro) is considered an appealing target because of its role in replication in host cells. We curated a set of 7809 natural compounds by combining the collections of five databases viz Dr Duke's Phytochemical and Ethnobotanical database, IMPPAT, PhytoHub, AromaDb and Zinc. We applied a rigorous computational approach to identify lead molecules from our curated compound set using docking, dynamic simulations, the free energy of binding and DFT calculations. Theaflavin and ginkgetin have emerged as better molecules with a similar inhibition profile in both SARS-CoV-2 and Omicron variants.
Zobrazit více v PubMed
Acter T., Uddin N., Das J., Akhter A., Choudhury T.R., Kim S. Evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as coronavirus disease 2019 (COVID-19) pandemic: a global health emergency. Sci. Total Environ. 2020;730 doi: 10.1016/j.scitotenv.2020.138996. PubMed DOI PMC
Sifuentes-Rodríguez E., Palacios-Reyes D. Covid-19: the outbreak caused by a new coronavirus. Bol. Med. Hosp. Infant. Mex. 2020;77:47–53. doi: 10.24875/BMHIM.20000039. PubMed DOI
Gorbalenya A.E., Baker S.C., Baric R.S., de Groot R.J., Drosten C., Gulyaeva A.A., Haagmans B.L., Lauber C., Leontovich A.M., Neuman B.W., Penzar D., Perlman S., Poon L.L.M., Samborskiy D., Sidorov I.A., Sola I., Ziebuhr J. Severe acute respiratory syndrome-related coronavirus: the species and its viruses – a statement of the Coronavirus Study Group. bioRxiv. 2020 doi: 10.1101/2020.02.07.937862. DOI
Garcés-Ayala F., Araiza-Rodríguez A., Mendieta-Condado Edgar, Rodríguez-Maldonado Abril P., Wong-Arámbula C., Landa-Flores M., Carlos Del Mazo-López J., González-Villa M., Escobar-Escamilla N., Fragoso-Fonseca David E., María, Esteban-Valencia C., Lloret-Sánchez L., Dayanira, Arellano-Suarez S., Nuñez-García Tatiana E., Nervain, Contreras-González B., Cruz-Ortiz N., Ruiz-López A., Fierro-Valdez Miguel Á., Regalado-Santiago D., Martínez-Velázquez N., Mederos-Michel M., Vázquez-Pérez J., Martínez-Orozco José A., Becerril-Vargas Eduardo, Salas J., Hernández-Rivas Lucía, López-Martínez I., Luis Alomía-Zegarra J., López-Gatell Hugo, Barrera-Badillo G., Ramírez-González E. Full genome sequence of the first SARS-CoV-2 detected in Mexico. Arch. Virol. 2020;165:2095–2098. doi: 10.1007/s00705-020-04695-3. PubMed DOI PMC
Tracking SARS-CoV-2 variants. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ n.d.
Bhardwaj V.K., Singh R., Sharma J., Rajendran V., Purohit R., Kumar S. Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. J. Biomol. Struct. Dyn. 2020:1–10. doi: 10.1080/07391102.2020.1766572. PubMed DOI PMC
Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5. PubMed DOI PMC
Li P., Wang Y., Lavrijsen M., Lamers M.M., de Vries A.C., Rottier R.J., Bruno M.J., Peppelenbosch M.P., Haagmans B.L., Pan Q. SARS-CoV-2 Omicron variant is highly sensitive to molnupiravir, nirmatrelvir, and the combination. Cell Res. 2022;32:322–324. doi: 10.1038/S41422-022-00618-W. PubMed DOI PMC
Goss A.L., Samudralwar R.D., Das R.R., Nath A. ANA investigates: neurological complications of COVID-19 vaccines. Ann. Neurol. 2021;89:856. doi: 10.1002/ANA.26065. PubMed DOI PMC
Gohar U.F., Iqbal I., Shah Z., Mukhtar H., Zia-Ul-Haq M. COVID-19: recent developments in therapeutic approaches. Altern. Med. Interv. COVID- 2021;19:249–274. doi: 10.1007/978-3-030-67989-7_9. DOI
Leao J.C., Gusmao T.P. de L., Zarzar A.M., Leao Filho J.C., Barkokebas Santos de Faria A., Morais Silva I.H., Gueiros L.A.M., Robinson N.A., Porter S., Carvalho A. de A.T. Coronaviridae—old friends, new enemy. Oral Dis. 2022;28:858–866. doi: 10.1111/ODI.13447. PubMed DOI PMC
Frere J.J., Serafini R.A., Pryce K.D., Zazhytska M., Oishi K., Golynker I., Panis M., Zimering J., Horiuchi S., Hoagland D.A., Møller R., Ruiz A., Kodra A., Overdevest J.B., Canoll P.D., Borczuk A.C., Chandar V., Bram Y., Schwartz R., Lomvardas S., Zachariou V., tenOever B.R. SARS-CoV-2 infection in hamsters and humans results in lasting and unique systemic perturbations post recovery. Sci. Transl. Med. 2022 doi: 10.1126/SCITRANSLMED.ABQ3059. PubMed DOI PMC
Chakraborty C., Bhattacharya M., Nandi S.S., Mohapatra R.K., Dhama K., Agoramoorthy G. Appearance and re-appearance of zoonotic disease during the pandemic period: long-term monitoring and analysis of zoonosis is crucial to confirm the animal origin of SARS-CoV-2 and monkeypox virus. 2022. Https://Doi.Org/10.1080/01652176.2022.2086718. 42 119–124. PubMed DOI PMC
Liu P., Jiang J.Z., Wan X.F., Hua Y., Li L., Zhou J., Wang X., Hou F., Chen J., Zou J., Chen J. Are pangolins the intermediate host of the 2019 novel coronavirus (SARS-CoV-2)? PLoS Pathog. 2020;16 doi: 10.1371/JOURNAL.PPAT.1008421. PubMed DOI PMC
Yang H., Yang M., Ding Y., Liu Y., Lou Z., Zhou Z., Sun L., Mo L., Ye S., Pang H., Gao G.F., Anand K., Bartlam M., Hilgenfeld R., Rao Z. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc. Natl. Acad. Sci. U.S.A. 2003;100:13190–13195. doi: 10.1073/pnas.1835675100. PubMed DOI PMC
Jin Z., Du X., Xu Y., Deng Y., Liu M., Zhao Y., Zhang B., Li X., Zhang L., Peng C., Duan Y., Yu J., Wang L., Yang K., Liu F., Jiang R., Yang X., You T., Liu X., Yang X., Bai F., Liu H., Liu X., Guddat L.W., Xu W., Xiao G., Qin C., Shi Z., Jiang H., Rao Z., Yang H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature. 2020;582:289–293. doi: 10.1038/s41586-020-2223-y. PubMed DOI
Kumar S., Nyodu R., Maurya V.K., Saxena S.K. Morphology, genome organization, replication, and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 2020. 23–31. DOI
Patel C.N., Goswami D., Sivakumar K., Pandya H.A. Repurposing of anticancer phytochemicals for identifying potential fusion inhibitor for SARS-CoV-2 using molecular docking and molecular dynamics (MD) simulations. 2021. PubMed DOI
Bakhshandeh B., Jahanafrooz Z., Abbasi A., Goli M.B., Sadeghi M., Mottaqi M.S., Zamani M. Mutations in SARS-CoV-2; Consequences in structure, function, and pathogenicity of the virus. Microb. Pathog. 2021;154 doi: 10.1016/J.MICPATH.2021.104831. PubMed DOI PMC
Yadav R., Chaudhary J.K., Jain N., Chaudhary P.K., Khanra S., Dhamija P., Sharma A., Kumar A., Handu S. Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells. 2021;10 doi: 10.3390/CELLS10040821. PubMed DOI PMC
Dai W., Zhang B., Jiang X.-M., Su H., Li J., Zhao Y., Xie X., Jin Z., Peng J., Liu F., Li C., Li Y., Bai F., Wang H., Cheng X., Cen X., Hu S., Yang X., Wang J., Liu X., Xiao G., Jiang H., Rao Z., Zhang L.-K., Xu Y., Yang H., Liu H. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. https://www.science.org n.d. PubMed PMC
Bhardwaj V.K., Purohit R. Targeting the protein-protein interface pocket of Aurora-A-TPX2 complex: rational drug design and validation. J. Biomol. Struct. Dyn. 2020 doi: 10.1080/07391102.2020.1772109. PubMed DOI
Cheng S.C., Chang G.G., Chou C.Y. Mutation of Glu-166 blocks the substrate-induced dimerization of SARS coronavirus main protease. Biophys. J. 2010;98:1327. doi: 10.1016/J.BPJ.2009.12.4272. PubMed DOI PMC
C.C.-19 R. Team SARS-CoV-2 B.1.1.529 (omicron) variant — United States, December 1–8, 2021. Morb. Mortal. Wkly. Rep. 2021;70:1731. doi: 10.15585/MMWR.MM7050E1. PubMed DOI PMC
Sharma V., Rai H., Gautam D.N.S., Prajapati P.K., Sharma R. Emerging evidence on Omicron (B.1.1.529) SARS-CoV-2 variant. J. Med. Virol. 2022;94:1876–1885. doi: 10.1002/JMV.27626. PubMed DOI PMC
Ramakrishnan M.S., Patel A.P., Melles R., Vora R.A. Multiple evanescent white dot syndrome: findings from a large northern California cohort. Ophthalmol. Retin. 2021;5:850–854. doi: 10.1016/J.ORET.2020.11.016. PubMed DOI
Kaku C.I., Bergeron A.J., Ahlm C., Normark J., Sakharkar M., Forsell M.N.E., Walker L.M. Immune memory to SARS-CoV-2 Omicron BA.1 breakthrough infections: to change the vaccine or not? Sci. Immunol. 2022;7:8891. doi: 10.1126/SCIIMMUNOL.ABQ5901. PubMed DOI
Ullrich S., Ekanayake K.B., Otting G., Nitsche C. Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir. Bioorg. Med. Chem. Lett. 2022;62 doi: 10.1016/j.bmcl.2022.128629. PubMed DOI PMC
Santhi V.P., Masilamani P., Sriramavaratharajan V., Murugan R., Gurav S.S., Sarasu V.P., Parthiban S., Ayyanar M. Therapeutic potential of phytoconstituents of edible fruits in combating emerging viral infections. J. Food Biochem. 2021;45 doi: 10.1111/JFBC.13851. PubMed DOI PMC
Kumar A., Choudhir G., Shukla S.K., Sharma M., Tyagi P., Bhushan A., Rathore M. Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. J. Biomol. Struct. Dyn. 2021;39:3760–3770. doi: 10.1080/07391102.2020.1772112. PubMed DOI PMC
P. Pandey, J.S. Rane, A. Chatterjee, A. Kumar, R. Khan, A. Prakash, S. Ray, J. Subhash, R. B#, Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development, (n.d.). 10.1080/07391102.2020.1796811. PubMed DOI PMC
ZINC − A Free Database of Commercially Available Compounds for Virtual Screening | Journal of Chemical Information and Modeling, (n.d.). https://pubs.acs.org/doi/full/10.1021/ci049714%2B (accessed July 3, 2022). (2005):45(1), 177-182. PubMed DOI PMC
Mohanraj K., Karthikeyan B.S., Vivek-Ananth R.P., Chand R.P.B., Aparna S.R., Mangalapandi P., Samal A. IMPPAT: a curated database of Indian medicinal plants, phytochemistry and therapeutics. Sci. Rep. 2018;81(2018):1–17. doi: 10.1038/s41598-018-22631-z. 8. PubMed DOI PMC
PhytoHub V1.4 A new release for the online database dedicated to food phytochemicals and their human metabolites - human Nutrition Unit. https://hal.laas.fr/UNH/hal-01607427 (n.d.)
Kumar Y., Prakash O., Tripathi H., Tandon S., Gupta M.M., Rahman L.U., Lal R.K., Semwal M., Darokar M.P., Khan F. AromaDb: a database of medicinal and aromatic plant's aroma molecules with phytochemistry and therapeutic potentials. Front. Plant Sci. 2018;9:1081. doi: 10.3389/FPLS.2018.01081/BIBTEX. PubMed DOI PMC
Duke J.A. 2017. Handbook of Phytochemical Constituents of GRAS Herbs and Other Economic Plants. Herbal Reference Library, Handb. Phytochem. Const. GRAS Herbs Other Econ. Plants. DOI
Krieger E., Darden T., Nabuurs S.B., Finkelstein A., Vriend G. Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins Struct. Funct. Genet. 2004;57:678–683. doi: 10.1002/PROT.20251. PubMed DOI
Land H., Humble M.S., YASARA A tool to obtain structural guidance in biocatalytic investigations. Methods Mol. Biol. 2018;1685:43–67. doi: 10.1007/978-1-4939-7366-8_4. PubMed DOI
Krieger E., Nther Koraimann G., Vriend G. Increasing the precision of comparative models with YASARA NOVA-a self-parameterizing force field. 2002. PubMed DOI
Sacco M.D., Hu Y., Gongora M.V., Meilleur F., Kemp M.T., Zhang X., Wang J., Chen Y. The P132H mutation in the main protease of Omicron SARS-CoV-2 decreases thermal stability without compromising catalysis or small-molecule drug inhibition. Cell Res. 2022;325(32):498–500. doi: 10.1038/s41422-022-00640-y. 2022. PubMed DOI PMC
Krieger E., Darden T., Nabuurs S.B., Finkelstein A., Vriend G. vol. 57. Wiley Online Libr; 2004. pp. 678–683. (Making Optimal Use of Empirical Energy Functions: Force-Field Parameterization in Crystal Space). PubMed DOI
Patel C.N., Georrge J.J., Modi K.M., Narechania M.B., Patel D.P., Gonzalez F.J., Pandya H.A. Pharmacophore-based virtual screening of catechol-o-methyltransferase (COMT) inhibitors to combat Alzheimer's disease. J. Biomol. Struct. Dyn. 2018;36:3938–3957. doi: 10.1080/07391102.2017.1404931. PubMed DOI PMC
A M., VK S., D M.K., M M., SP K., SK K., RS U., U A., S S. Silico prediction, characterization, molecular docking, and dynamic studies on fungal SDRs as novel targets for searching potential fungicides against Fusarium wilt in tomato. Front. Pharmacol. 2018;9 doi: 10.3389/FPHAR.2018.01038. PubMed DOI PMC
Patel C.N., Jani S.P., Jaiswal D.G., Kumar S.P., Mangukia N., Parmar R.M., Rawal R.M., Pandya H.A. Identification of antiviral phytochemicals as a potential SARS-CoV-2 main protease (Mpro) inhibitor using docking and molecular dynamics simulations. Sci. Rep. 2021;111(11):1–13. doi: 10.1038/s41598-021-99165-4. 2021. PubMed DOI PMC
Krieger E., Vriend G. New ways to boost molecular dynamics simulations. J. Comput. Chem. 2015;36:996–1007. doi: 10.1002/jcc.23899. PubMed DOI PMC
Frisch A. 1996. Gaussian 09W Reference.
Sztain T., Amaro R., McCammon J.A. Elucidation of cryptic and allosteric pockets within the SARS-CoV-2 main protease. J. Chem. Inf. Model. 2021 doi: 10.1021/acs.jcim.1c00140. acs.jcim.1c00140. PubMed DOI PMC
The Structure of Small Molecules and Ions. Springer US; 1988. DOI
Dizaji N.J., Nouri A., Zahedi E., Musavi S.M., Nouri A. Regioselectivity of 1,3-dipolar cycloadditions between aryl azides and an electron-deficient alkyne through DFT reactivity descriptors. Res. Chem. Intermed. 2017;43:767–782. doi: 10.1007/s11164-016-2663-z. DOI
Suvitha A., Venkataramanan N.S., Mizuseki H., Kawazoe Y., Ohuchi N. Theoretical insights into the formation, structure, and electronic properties of anticancer oxaliplatin drug and cucurbit[n]urils n = 5 to 8. J. Inclusion Phenom. Macrocycl. Chem. 2010;66:213–218. doi: 10.1007/s10847-009-9601-2. DOI
Fakhari S., Nouri A., Jamzad M., Arab-Salmanabadi S., Falaki F. Investigation of inclusion complex of metformin into selective cyclic peptides as novel drug delivery system: structure, electronic properties, AIM, and NBO study via DFT. J. Chin. Chem. Soc. 2021;68:67–75. doi: 10.1002/jccs.202000304. DOI
Koopmans T. Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines Atoms. Physica. 1934;1:104–113. doi: 10.1016/S0031-8914(34)90011-2. DOI
Pearson R.G. Chemical hardness and density functional theory. J. Chem. Sci. 2005;117:369–377. doi: 10.1007/BF02708340. DOI
Houk K.N. The frontier molecular orbital theory of cycloaddition reactions. Acc. Chem. Res. 1975;8:361–369. doi: 10.1021/ar50095a001. DOI
Kohn W., Becke A.D., Parr R.G. Density functional theory of electronic structure. J. Phys. Chem. 1996;100:12974–12980. doi: 10.1021/jp960669l. DOI
Geerlings P., De Proft F., Langenaeker W. Conceptual density functional theory. Chem. Rev. 2003;103:1793–1873. doi: 10.1021/cr990029p. PubMed DOI
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1998;79:926. doi: 10.1063/1.445869. DOI
Jorgensen W.L., Tirado-Rives J. The OPLS potential functions for proteins. Energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 1988;110:1657–1666. doi: 10.1021/ja00214a001. PubMed DOI
Ryabov V.A. Constant pressure–temperature molecular dynamics on a torus. Phys. Lett. 2006;359:61–65. doi: 10.1016/J.PHYSLETA.2006.05.078. DOI
Braga C., Travis K.P. A configurational temperature Nosé-Hoover thermostat. J. Chem. Phys. 2005;123 doi: 10.1063/1.2013227. PubMed DOI
Marsili S., Signorini G.F., Chelli R., Marchi M., Procacci P. ORAC: a molecular dynamics simulation program to explore free energy surfaces in biomolecular systems at the atomistic level. J. Comput. Chem. 2010;31:1106–1116. doi: 10.1002/JCC.21388. PubMed DOI
Kumar Y., Singh H., Patel C.N. Silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. J. Infect. Public Health. 2020;13:1210–1223. doi: 10.1016/j.jiph.2020.06.016. PubMed DOI PMC
Kollman P.A., Massova I., Reyes C., Kuhn B., Huo S., Chong L., Lee M., Lee T., Duan Y., Wang W., Donini O., Cieplak P., Srinivasan J., Case D.A., Cheatham T.E. Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc. Chem. Res. 2000;33:889–897. doi: 10.1021/ar000033j. PubMed DOI
Essmann U., Perera L., Berkowitz M.L., Darden T., Lee H., Pedersen L.G. A smooth particle mesh Ewald method. J. Chem. Phys. 1995;103:8577–8593. doi: 10.1063/1.470117. DOI
Wang J., Hou T., Xu X. Recent advances in free energy calculations with a combination of molecular mechanics and continuum models. Curr. Comput. Aided Drug Des. 2006;2:287–306. doi: 10.2174/157340906778226454. DOI
Zhang D., Lazim R. Application of conventional molecular dynamics simulation in evaluating the stability of apomyoglobin in urea solution. Sci. Rep. 2017;71(7):1–12. doi: 10.1038/srep44651. 2017. PubMed DOI PMC
Massova I., Kollman P.A. Combined molecular mechanical and continuum solvent approach (MM- PBSA/GBSA) to predict ligand binding. Perspect. Drug Discov. Des. 2000;18:113–135. doi: 10.1023/A:1008763014207. DOI
Hou T., Wang J., Li Y., Wang W. Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model. 2011;51:69–82. doi: 10.1021/CI100275A/SUPPL_FILE/CI100275A_SI_001.PDF. PubMed DOI PMC
Genheden S., Ryde U. Expert Opinion on Drug Discovery the MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. 2015. PubMed DOI PMC
Sun H., Li Y., Tian S., Xu L., Hou T. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set running title: accuracies of MM/PBSA and MM/GBSA evaluated by a large dataset. Phys. Chem. Chem. Phys. Phys. Chem. Chem. Phys. Accept. Manuscr. (n.d.). 2014;16(31):16719–16729. doi: 10.1039/C4CP01388C. PubMed DOI
Li J., Abel R., Zhu K., Cao Y., Zhao S., Friesner R.A. The VSGB 2.0 model: a next generation energy model for high resolution protein structure modeling. Proteins: Struct., Funct., Bioinf. 2011;79:2794–2812. doi: 10.1002/PROT.23106. PubMed DOI PMC
Mhatre S., Naik S., Patravale V. A molecular docking study of EGCG and theaflavin digallate with the druggable targets of SARS-CoV-2. Comput. Biol. Med. 2021;129 doi: 10.1016/J.COMPBIOMED.2020.104137. PubMed DOI PMC
Ohgitani E., Shin-Ya M., Ichitani M., Kobayashi M., Takihara T., Kawamoto M., Kinugasa H., Mazda O. Significant inactivation of SARS-CoV-2 in vitro by a green tea catechin, a catechin-derivative, and black tea galloylated theaflavins. Mol. 2021;26(2021):3572. doi: 10.3390/MOLECULES26123572. 3572. 26. PubMed DOI PMC
Maiti S., Banerjee A. Epigallocatechin gallate and theaflavin gallate interaction in SARS-CoV-2 spike-protein central channel with reference to the hydroxychloroquine interaction: bioinformatics and molecular docking study. Drug Dev. Res. 2021;82:86–96. doi: 10.1002/DDR.21730. PubMed DOI PMC
Banerjee A., Kanwar M., Maiti S. Theaflavin-3′-O-gallate a black-tea constituent blocked SARS CoV-2 RNA dependant RNA polymerase active-site with better docking results than remdesivir. Drug Res. 2021;71:462–472. doi: 10.1055/A-1467-5828/ID/R2020-12-2197-0049. PubMed DOI
Goc A., Sumera W., Rath M., Niedzwiecki A. Phenolic compounds disrupt spike-mediated receptor-binding and entry of SARS-CoV-2 pseudo-virions. PLoS One. 2021;16 doi: 10.1371/JOURNAL.PONE.0253489. PubMed DOI PMC
Takeda Y., Tamura K., Jamsransuren D., Matsuda S., Ogawa H. Severe acute respiratory syndrome coronavirus-2 inactivation activity of the polyphenol-rich tea leaf extract with concentrated theaflavins and other virucidal catechins. Molecules. 2021;26 doi: 10.3390/MOLECULES26164803. PubMed DOI PMC
Bauer R., Katanic Stankovic J.S., Lin S., Wang X., Wai-Lun Tang R., Chun Lee H., Hin Chan H., A Choi S.S., Ting-Xia Dong T., Wing Leung K., Webb S.E., Miller A.L., Wah-Keung Tsim K. The extracts of polygonum cuspidatum root and rhizome block the entry of SARS-CoV-2 wild-type and omicron pseudotyped viruses via inhibition of the S-protein and 3CL protease. Mol. 2022;27(2022):3806. doi: 10.3390/MOLECULES27123806. 3806. 27. PubMed DOI PMC
Kreiser T., Zaguri D., Sachdeva S., Zamostiano R., Mograbi J., Segal D., Bacharach E., Gazit E. Inhibition of respiratory RNA viruses by a composition of ionophoric polyphenols with metal ions. Pharmaceuticals. 2022;15 doi: 10.3390/PH15030377/S1. PubMed DOI PMC
Dey D., Hossain R., Biswas P., Paul P., Islam M.A., Ema T.I., Gain B.K., Hasan M.M., Bibi S., Islam M.T., Rahman M.A., Kim B. Amentoflavone derivatives significantly act towards the main protease (3CL PRO/M PRO) of SARS-CoV-2: in silico admet profiling, molecular docking, molecular dynamics simulation, network pharmacology. Mol. Divers. 2022 doi: 10.1007/S11030-022-10459-9. PubMed DOI PMC
Xiong Y., Zhu G.H., Wang H.N., Hu Q., Chen L.L., Guan X.Q., Li H.L., Chen H.Z., Tang H., Ge G.B. Discovery of naturally occurring inhibitors against SARS-CoV-2 3CLpro from Ginkgo biloba leaves via large-scale screening. Fitoterapia. 2021;152 doi: 10.1016/J.FITOTE.2021.104909. PubMed DOI PMC
Murugesan S., Kottekad S., Crasta I., Sreevathsan S., Usharani D., Perumal M.K., Mudliar S.N. Targeting COVID-19 (SARS-CoV-2) main protease through active phytocompounds of ayurvedic medicinal plants - emblica officinalis (Amla), Phyllanthus niruri Linn. (Bhumi Amla) and Tinospora cordifolia (Giloy) - a molecular docking and simulation study. Comput. Biol. Med. 2021;136 doi: 10.1016/J.COMPBIOMED.2021.104683. PubMed DOI PMC
Raj V., Lee J.H., Shim J.J., Lee J. Antiviral activities of 4H-chromen-4-one scaffold-containing flavonoids against SARS-CoV-2 using computational and in vitro approaches. J. Mol. Liq. 2022;353 doi: 10.1016/J.MOLLIQ.2022.118775. PubMed DOI PMC
Park J., Park R., Jang M., Park Y.I., Park Y. Coronavirus enzyme inhibitors-experimentally proven natural compounds from plants. J. Microbiol. 2022;603(60):347–354. doi: 10.1007/S12275-022-1499-Z. 2022. PubMed DOI PMC
Antonopoulou I., Sapountzaki E., Rova U., Christakopoulos P. Inhibition of the main protease of SARS-CoV-2 (M pro) by repurposing/designing drug-like substances and utilizing nature's toolbox of bioactive compounds. Comput. Struct. Biotechnol. J. 2022;20:1306–1344. doi: 10.1016/J.CSBJ.2022.03.009. PubMed DOI PMC
Adnan M., Rasul A., Hussain G., Shah M.A., Zahoor M.K., Anwar H., Sarfraz I., Riaz A., Manzoor M., Adem Ş., Selamoglu Z. Ginkgetin: a natural biflavone with versatile pharmacological activities. Food Chem. Toxicol. 2020;145 doi: 10.1016/j.fct.2020.111642. PubMed DOI
Sati S.C., Joshi S. Antibacterial activities of Ginkgo biloba L. Leaf extracts. Sci. World J. 2011;11:2237. doi: 10.1100/2011/545421. PubMed DOI PMC