Antigenicity and immunogenicity of different morphological forms of Borrelia burgdorferi sensu lato spirochetes
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NV19-05-00191
Ministry of Health of the Czech Republic
IGA_LF_2023_010
Palacky University Olomouc
PubMed
38369537
PubMed Central
PMC10874929
DOI
10.1038/s41598-024-54505-y
PII: 10.1038/s41598-024-54505-y
Knihovny.cz E-zdroje
- MeSH
- antigeny bakteriální MeSH
- Borrelia burgdorferi komplex * MeSH
- Borrelia burgdorferi * MeSH
- lidé MeSH
- lymeská nemoc * mikrobiologie MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny bakteriální MeSH
Borrelia burgdorferi sensu lato is a species complex of pleomorphic spirochetes, including species that cause Lyme disease (LD) in humans. In addition to classic spiral forms, these bacteria are capable of creating morphological forms referred to as round bodies and aggregates. The subject of discussion is their possible contribution to the persistence of infection or post-infection symptoms in LD. This study investigates the immunological properties of these forms by monitoring reactivity with early (n = 30) and late stage (n = 30) LD patient sera and evaluating the immune response induced by vaccination of mice. In patient sera, we found a quantitative difference in reactivity with individual morphotypes, when aggregates were recognized most intensively, but the difference was statistically significant in only half of the tested strains. In post-vaccination mouse sera, we observed a statistically significant higher reactivity with antigens p83 and p25 (OspC) in mice vaccinated with aggregates compared to mice vaccinated with spiral forms. The importance of the particulate nature of the antigen for the induction of a Th1-directed response has also been demonstrated. In any of morphological forms, the possibility of inducing antibodies cross-reacting with human nuclear and myositis specific/associated autoantigens was not confirmed by vaccination of mice.
Department of Immunology University Hospital Olomouc Zdravotniku 248 7 779 00 Olomouc Czech Republic
Department of Neurology University Hospital Olomouc Zdravotniku 248 7 779 00 Olomouc Czech Republic
Zobrazit více v PubMed
Steere AC. Lyme disease. N. Engl. J. Med. 2001;345:115–125. doi: 10.1056/NEJM200107123450207. PubMed DOI
Rudenko N, Golovchenko M, Grubhoffer L, Oliver JH. Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick Borne Dis. 2011;2:123–128. doi: 10.1016/j.ttbdis.2011.04.002. PubMed DOI PMC
Mead PS. Epidemiology of Lyme disease. Infect. Dis. Clin. N. Am. 2015;29:187–210. doi: 10.1016/j.idc.2015.02.010. PubMed DOI
Gern L. Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis: life in the wilds. Parasite. 2008;15:244–247. doi: 10.1051/parasite/2008153244. PubMed DOI
Stanek G, Strle F. Lyme borreliosis. Lancet (London, England) 2003;362:1639–1647. doi: 10.1016/S0140-6736(03)14798-8. PubMed DOI
Nau R, Christen H-J, Eiffert H. Lyme disease. Dtsch. Arztebl. Int. 2009;106:72–82. PubMed PMC
Wormser GP, et al. The clinical assessment, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: Clinical practice guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 2006;43:1089–1134. doi: 10.1086/508667. PubMed DOI
Steere AC, et al. Lyme borreliosis. Nat. Rev. Dis. Prim. 2016;2:16090. doi: 10.1038/nrdp.2016.90. PubMed DOI PMC
Nemeth J, et al. Update of the Swiss guidelines on post-treatment Lyme disease syndrome. Swiss Med. Wkly. 2016;146:w14353. PubMed
Marques A. Chronic Lyme disease: A review. Infect. Dis. Clin. N. Am. 2008;22:341–360. doi: 10.1016/j.idc.2007.12.011. PubMed DOI PMC
Rudenko N, Golovchenko M, Kybicova K, Vancova M. Metamorphoses of Lyme disease spirochetes: Phenomenon of Borrelia persisters. Parasites Vectors. 2019;12:1–10. doi: 10.1186/s13071-019-3495-7. PubMed DOI PMC
Sloupenska K, et al. Seroprevalence of antibodies against tick-borne pathogens in Czech patients with suspected post-treatment Lyme disease syndrome. Microorganisms. 2021;9:2217. doi: 10.3390/microorganisms9112217. PubMed DOI PMC
Sloupenska K, et al. Myositis autoantibodies in patients with suspected post-treatment Lyme disease syndrome. Life. 2023;13:1–8. doi: 10.3390/life13020527. PubMed DOI PMC
Nilsson K, et al. A comprehensive clinical and laboratory evaluation of 224 patients with persistent symptoms attributed to presumed tick-bite exposure. PLoS One. 2021;16:e0247384. doi: 10.1371/journal.pone.0247384. PubMed DOI PMC
Radolf JD, Caimano MJ, Stevenson B, Hu LT. Of ticks, mice and men: Understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol. 2012;10:87–99. doi: 10.1038/nrmicro2714. PubMed DOI PMC
Caimano MJ, Drecktrah D, Kung F, Samuels DS. Interaction of the Lyme disease spirochete with its tick vector. Cell. Microbiol. 2016;18:919–927. doi: 10.1111/cmi.12609. PubMed DOI PMC
Samuels DS, et al. Gene regulation and transcriptomics. Curr. Issues Mol. Biol. 2022;42:223–266. doi: 10.21775/cimb.042.223. PubMed DOI PMC
Brooks CS, Vuppala SR, Jett AM, Akins DR. Identification of Borrelia burgdorferi outer surface proteins. Infect. Immun. 2006;74:296–304. doi: 10.1128/IAI.74.1.296-304.2006. PubMed DOI PMC
Lawrenz MB, et al. Human antibody responses to VlsE antigenic variation protein of Borrelia burgdorferi. J. Clin. Microbiol. 1999;37:3997–4004. doi: 10.1128/JCM.37.12.3997-4004.1999. PubMed DOI PMC
van Burgel ND, Brandenburg A, Gerritsen HJ, Kroes ACM, van Dam AP. High sensitivity and specificity of the C6-peptide ELISA on cerebrospinal fluid in Lyme neuroborreliosis patients. Clin. Microbiol. Infect. 2011;17:1495–1500. doi: 10.1111/j.1469-0691.2011.03459.x. PubMed DOI
Chaconas G, Castellanos M, Verhey TB. Changing of the guard: How the Lyme disease spirochete subverts the host immune response. J. Biol. Chem. 2020;295:301–313. doi: 10.1074/jbc.REV119.008583. PubMed DOI PMC
Krupka M, Zachova K, Weigl E, Raska M. Prevention of Lyme disease: Promising research or sisyphean task? Arch. Immunol. Ther. Exp. Warsz. 2011;59:261. doi: 10.1007/s00005-011-0128-z. PubMed DOI
Preac-Mursic V, Wilske B, Schierz G. European Borrelia burgdorferi isolated from humans and ticks culture conditions and antibiotic susceptibility. Zentralblatt Bakteriol. Mikrobiol. Hyg. Ser. A Med. Microbiol. Infect. Dis. Virol. Parasitol. 1986;263:112–118. PubMed
Kersten A, Poitschek C, Rauch S, Aberer E. Effects of penicillin, ceftriaxone, and doxycycline on morphology of Borrelia burgdorferi. Antimicrob. Agents Chemother. 1995;39:1127–1133. doi: 10.1128/AAC.39.5.1127. PubMed DOI PMC
Murgia R, Cinco M. Induction of cystic forms by different stress conditions in Borrelia burgdorferi. Apmis. 2004;112:57–62. doi: 10.1111/j.1600-0463.2004.apm1120110.x. PubMed DOI
Brorson Ø, et al. Destruction of spirochete Borrelia burgdorferi round-body propagules (RBs) by the antibiotic Tigecycline. Proc. Natl. Acad. Sci. 2009;106:18656–18661. doi: 10.1073/pnas.0908236106. PubMed DOI PMC
Brorson Ø, Brorson SH. A rapid method for generating cystic forms of Borrelia burgdorferi, and their reversal to mobile spirochetes. APMIS. 1998;106:1131–1141. doi: 10.1111/j.1699-0463.1998.tb00269.x. PubMed DOI
Brorson Ø, Brorson SH. In vitro conversion of Borrelia burgdorferi to cystic forms in spinal fluid, and transformation to mobile spirochetes by incubation in BSK-H medium. Infection. 1998;26:144–150. doi: 10.1007/BF02771839. PubMed DOI
Gruntar I, Malovrh T, Murgia R, Cinco M. Conversion of Borrelia garinii cystic forms to motile spirochetes in vivo. Apmis. 2001;109:383–388. doi: 10.1034/j.1600-0463.2001.090507.x. PubMed DOI
Feder HM, et al. A critical appraisal of “chronic Lyme disease”. N. Engl. J. Med. 2007;357:1422–1430. doi: 10.1056/NEJMra072023. PubMed DOI
Miklossy J, et al. Persisting atypical and cystic forms of Borrelia burgdorferi and local inflammation in Lyme neuroborreliosis. J. Neuroinflammation. 2008;5:40. doi: 10.1186/1742-2094-5-40. PubMed DOI PMC
Srivastava SY, de Silva AM. Characterization of Borrelia burgdorferi aggregates. Vector Borne Zoonotic Dis. 2009;9:323–329. doi: 10.1089/vbz.2008.0148. PubMed DOI PMC
Dunham-Ems SM, et al. Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks. J. Clin. Invest. 2009;119:3652–3665. doi: 10.1172/JCI39401. PubMed DOI PMC
Meriläinen L, Herranen A, Schwarzbach A, Herranen A, Gilbert L. Morphological and biochemical features of Borrelia burgdorferi pleomorphic forms. Microbiology. 2015;161:516–527. doi: 10.1099/mic.0.000027. PubMed DOI PMC
Meriläinen L, Brander H, Herranen A, Schwarzbach A, Gilbert L. Pleomorphic forms of Borrelia burgdorferi induce distinct immune responses. Microbes Infect. 2016;18:484–495. doi: 10.1016/j.micinf.2016.04.002. PubMed DOI
Burgdorfer W, et al. Lyme disease—A tick-borne spirochetosis? Science (80-) 1982;216:1317–1319. doi: 10.1126/science.7043737. PubMed DOI
Barbour AG, Hayes SF. Biology of Borrelia species. Microbiol. Rev. 1986;50:381–400. doi: 10.1128/mr.50.4.381-400.1986. PubMed DOI PMC
Vancová M, et al. Pleomorphism and viability of the Lyme disease pathogen Borrelia burgdorferi exposed to physiological stress conditions: A correlative cryo-fluorescence and cryo-scanning electron microscopy study. Front. Microbiol. 2017;8:1–9. doi: 10.3389/fmicb.2017.00596. PubMed DOI PMC
Alban PS, Johnson PW, Nelson DR. Serum-starvation-induced changes in protein synthesis and morphology of Borrelia burgdorferi. Microbiology. 2000;146:119–127. doi: 10.1099/00221287-146-1-119. PubMed DOI
Bamm VV, Ko JT, Mainprize IL, Sanderson VP, Wills MKB. Lyme disease frontiers: Reconciling Borrelia biology and clinical conundrums. Pathogens. 2019;8:299. doi: 10.3390/pathogens8040299. PubMed DOI PMC
Sapi E, et al. Characterization of biofilm formation by Borrelia burgdorferi in vitro. PLoS One. 2012;7:e48277. doi: 10.1371/journal.pone.0048277. PubMed DOI PMC
Timmaraju VA, et al. Biofilm formation by Borrelia burgdorferi sensu lato. FEMS Microbiol. Lett. 2015;362:120. doi: 10.1093/femsle/fnv120. PubMed DOI
Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: A common cause of persistent infections. Science (80-) 1999;284:1318–1322. doi: 10.1126/science.284.5418.1318. PubMed DOI
Feng J, et al. Stationary phase persister/biofilm microcolony of Borrelia burgdorferi causes more severe disease in a mouse model of Lyme arthritis: Implications for understanding persistence, post-treatment Lyme disease syndrome (PTLDS), and treatment failure. Discov. Med. 2019;27:125–138. PubMed
Aberer EMD, Kersten AMD, Klade HMD, Poitschek C, Jurecka WMDA. Heterogeneity of Borrelia burgdorferi in the Skin. Am. J. Dermatopathol. 1996;18:571–579. doi: 10.1097/00000372-199612000-00004. PubMed DOI
Sapi E, et al. Evidence of in vivo existence of Borrelia biofilm in borrelial lymphocytomas. Eur. J. Microbiol. Immunol. 2016;6:9–24. doi: 10.1556/1886.2015.00049. PubMed DOI PMC
Hulínska D, et al. Electron microscopy of Langerhans cells and Borrelia burgdorferi in Lyme disease patients. Zentralblatt Bakteriol. 1994;280:348–359. doi: 10.1016/S0934-8840(11)80597-9. PubMed DOI
Golovchenko M, et al. Concurrent infection of the human brain with multiple Borrelia species. Int. J. Mol. Sci. 2023;24:16906. doi: 10.3390/ijms242316906. PubMed DOI PMC
Lantos PM, Auwaerter PG, Wormser GP. A systematic review of Borrelia burgdorferi morphologic variants does not support a role in chronic Lyme disease. Clin. Infect. Dis. 2014;58:663–671. doi: 10.1093/cid/cit810. PubMed DOI PMC
Al-Robaiy S, et al. Metamorphosis of Borrelia burgdorferi organisms—RNA, lipid and protein composition in context with the spirochetes’ shape. J. Basic Microbiol. 2010;50(Suppl 1):S5–17. PubMed
Indest KJ, et al. Analysis of Borrelia burgdorferi vlsE gene expression and recombination in the tick vector. Infect. Immun. 2001;69:7083–7090. doi: 10.1128/IAI.69.11.7083-7090.2001. PubMed DOI PMC
Hauser U, Lehnert G, Lobentanzer R, Wilske B. Interpretation criteria for standardized Western blots for three European species of Borrelia burgdorferi sensu lato. J. Clin. Microbiol. 1997;35:1433–1444. doi: 10.1128/jcm.35.6.1433-1444.1997. PubMed DOI PMC
Wilske B, et al. An improved recombinant IgG immunoblot for serodiagnosis of Lyme borreliosis. Med. Microbiol. Immunol. 1999;188:139–144. doi: 10.1007/s004300050116. PubMed DOI
Parthasarathy G, Fevrier HB, Philipp MT. Non-viable Borrelia burgdorferi induce inflammatory mediators and apoptosis in human oligodendrocytes. Neurosci. Lett. 2013;556:200–203. doi: 10.1016/j.neulet.2013.10.032. PubMed DOI PMC
Parthasarathy G, Gadila SKG. Neuropathogenicity of non-viable Borrelia burgdorferi ex vivo. Sci. Rep. 2022;12:688. doi: 10.1038/s41598-021-03837-0. PubMed DOI PMC
Kanjana K, et al. Autoimmunity to synovial extracellular matrix proteins in patients with post-infectious Lyme arthritis. J. Clin. Invest. 2023;21:4. PubMed PMC
Lochhead RB, et al. Robust interferon signature and suppressed tissue repair gene expression in synovial tissue from patients with postinfectious, Borrelia burgdorferi -induced Lyme arthritis. Cell. Microbiol. 2019;21:1–28. doi: 10.1111/cmi.12954. PubMed DOI PMC
Bolz DD, Weis JJ. Molecular mimicry to Borrelia burgdorferi : Pathway to autoimmunity? Autoimmunity. 2004;37:387–392. doi: 10.1080/08916930410001713098. PubMed DOI
Aberer E, et al. Molecular mimicry and Lyme borreliosis: A shared antigenic determinant between Borrelia burgdorferi and human tissue. Ann. Neurol. 1989;26:732–737. doi: 10.1002/ana.410260608. PubMed DOI
Steere AC, Gross D, Meyer AL, Huber BT. Autoimmune mechanisms in antibiotic treatment-resistant Lyme arthritis. J. Autoimmun. 2001;16:263–268. doi: 10.1006/jaut.2000.0495. PubMed DOI
Raveche ES, et al. Evidence of Borrelia autoimmunity-induced component of Lyme carditis and arthritis. J. Clin. Microbiol. 2005;43:850–856. doi: 10.1128/JCM.43.2.850-856.2005. PubMed DOI PMC
Drouin EE, et al. A novel human autoantigen, endothelial cell growth factor, is a target of T and B cell responses in patients with Lyme disease. Arthritis Rheum. 2013;65:186–196. doi: 10.1002/art.37732. PubMed DOI PMC
Crowley JT, et al. Matrix metalloproteinase-10 is a target of T and B cell responses that correlate with synovial pathology in patients with antibiotic-refractory Lyme arthritis. J. Autoimmun. 2016;69:24–37. doi: 10.1016/j.jaut.2016.02.005. PubMed DOI PMC
Crowley JT, et al. A highly expressed human protein, apolipoprotein B-100, serves as an autoantigen in a subgroup of patients with Lyme disease. J. Infect. Dis. 2015;212:1841–1850. doi: 10.1093/infdis/jiv310. PubMed DOI PMC
Fallon BA, Strobino B, Reim S, Stoner J, Cunningham MW. Anti-lysoganglioside and other anti-neuronal autoantibodies in post-treatment Lyme disease and erythema migrans after repeat infection. Brain Behav. Immun. Health. 2020;2:100015. doi: 10.1016/j.bbih.2019.100015. PubMed DOI PMC
Stricker R, Johnson L. Antiphospholipid antibodies in patients with persistent Lyme disease symptoms. Lupus. 2012;21:346–347. doi: 10.1177/0961203311425531. PubMed DOI
Tuominen-Gustafsson H, Penttinen M, Hytönen J, Viljanen MK. Use of CFSE staining of borreliae in studies on the interaction between borreliae and human neutrophils. BMC Microbiol. 2006;6:1–14. doi: 10.1186/1471-2180-6-92. PubMed DOI PMC