Antigenicity and immunogenicity of different morphological forms of Borrelia burgdorferi sensu lato spirochetes

. 2024 Feb 18 ; 14 (1) : 4014. [epub] 20240218

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38369537

Grantová podpora
NV19-05-00191 Ministry of Health of the Czech Republic
IGA_LF_2023_010 Palacky University Olomouc

Odkazy

PubMed 38369537
PubMed Central PMC10874929
DOI 10.1038/s41598-024-54505-y
PII: 10.1038/s41598-024-54505-y
Knihovny.cz E-zdroje

Borrelia burgdorferi sensu lato is a species complex of pleomorphic spirochetes, including species that cause Lyme disease (LD) in humans. In addition to classic spiral forms, these bacteria are capable of creating morphological forms referred to as round bodies and aggregates. The subject of discussion is their possible contribution to the persistence of infection or post-infection symptoms in LD. This study investigates the immunological properties of these forms by monitoring reactivity with early (n = 30) and late stage (n = 30) LD patient sera and evaluating the immune response induced by vaccination of mice. In patient sera, we found a quantitative difference in reactivity with individual morphotypes, when aggregates were recognized most intensively, but the difference was statistically significant in only half of the tested strains. In post-vaccination mouse sera, we observed a statistically significant higher reactivity with antigens p83 and p25 (OspC) in mice vaccinated with aggregates compared to mice vaccinated with spiral forms. The importance of the particulate nature of the antigen for the induction of a Th1-directed response has also been demonstrated. In any of morphological forms, the possibility of inducing antibodies cross-reacting with human nuclear and myositis specific/associated autoantigens was not confirmed by vaccination of mice.

Zobrazit více v PubMed

Steere AC. Lyme disease. N. Engl. J. Med. 2001;345:115–125. doi: 10.1056/NEJM200107123450207. PubMed DOI

Rudenko N, Golovchenko M, Grubhoffer L, Oliver JH. Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick Borne Dis. 2011;2:123–128. doi: 10.1016/j.ttbdis.2011.04.002. PubMed DOI PMC

Mead PS. Epidemiology of Lyme disease. Infect. Dis. Clin. N. Am. 2015;29:187–210. doi: 10.1016/j.idc.2015.02.010. PubMed DOI

Gern L. Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis: life in the wilds. Parasite. 2008;15:244–247. doi: 10.1051/parasite/2008153244. PubMed DOI

Stanek G, Strle F. Lyme borreliosis. Lancet (London, England) 2003;362:1639–1647. doi: 10.1016/S0140-6736(03)14798-8. PubMed DOI

Nau R, Christen H-J, Eiffert H. Lyme disease. Dtsch. Arztebl. Int. 2009;106:72–82. PubMed PMC

Wormser GP, et al. The clinical assessment, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: Clinical practice guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 2006;43:1089–1134. doi: 10.1086/508667. PubMed DOI

Steere AC, et al. Lyme borreliosis. Nat. Rev. Dis. Prim. 2016;2:16090. doi: 10.1038/nrdp.2016.90. PubMed DOI PMC

Nemeth J, et al. Update of the Swiss guidelines on post-treatment Lyme disease syndrome. Swiss Med. Wkly. 2016;146:w14353. PubMed

Marques A. Chronic Lyme disease: A review. Infect. Dis. Clin. N. Am. 2008;22:341–360. doi: 10.1016/j.idc.2007.12.011. PubMed DOI PMC

Rudenko N, Golovchenko M, Kybicova K, Vancova M. Metamorphoses of Lyme disease spirochetes: Phenomenon of Borrelia persisters. Parasites Vectors. 2019;12:1–10. doi: 10.1186/s13071-019-3495-7. PubMed DOI PMC

Sloupenska K, et al. Seroprevalence of antibodies against tick-borne pathogens in Czech patients with suspected post-treatment Lyme disease syndrome. Microorganisms. 2021;9:2217. doi: 10.3390/microorganisms9112217. PubMed DOI PMC

Sloupenska K, et al. Myositis autoantibodies in patients with suspected post-treatment Lyme disease syndrome. Life. 2023;13:1–8. doi: 10.3390/life13020527. PubMed DOI PMC

Nilsson K, et al. A comprehensive clinical and laboratory evaluation of 224 patients with persistent symptoms attributed to presumed tick-bite exposure. PLoS One. 2021;16:e0247384. doi: 10.1371/journal.pone.0247384. PubMed DOI PMC

Radolf JD, Caimano MJ, Stevenson B, Hu LT. Of ticks, mice and men: Understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol. 2012;10:87–99. doi: 10.1038/nrmicro2714. PubMed DOI PMC

Caimano MJ, Drecktrah D, Kung F, Samuels DS. Interaction of the Lyme disease spirochete with its tick vector. Cell. Microbiol. 2016;18:919–927. doi: 10.1111/cmi.12609. PubMed DOI PMC

Samuels DS, et al. Gene regulation and transcriptomics. Curr. Issues Mol. Biol. 2022;42:223–266. doi: 10.21775/cimb.042.223. PubMed DOI PMC

Brooks CS, Vuppala SR, Jett AM, Akins DR. Identification of Borrelia burgdorferi outer surface proteins. Infect. Immun. 2006;74:296–304. doi: 10.1128/IAI.74.1.296-304.2006. PubMed DOI PMC

Lawrenz MB, et al. Human antibody responses to VlsE antigenic variation protein of Borrelia burgdorferi. J. Clin. Microbiol. 1999;37:3997–4004. doi: 10.1128/JCM.37.12.3997-4004.1999. PubMed DOI PMC

van Burgel ND, Brandenburg A, Gerritsen HJ, Kroes ACM, van Dam AP. High sensitivity and specificity of the C6-peptide ELISA on cerebrospinal fluid in Lyme neuroborreliosis patients. Clin. Microbiol. Infect. 2011;17:1495–1500. doi: 10.1111/j.1469-0691.2011.03459.x. PubMed DOI

Chaconas G, Castellanos M, Verhey TB. Changing of the guard: How the Lyme disease spirochete subverts the host immune response. J. Biol. Chem. 2020;295:301–313. doi: 10.1074/jbc.REV119.008583. PubMed DOI PMC

Krupka M, Zachova K, Weigl E, Raska M. Prevention of Lyme disease: Promising research or sisyphean task? Arch. Immunol. Ther. Exp. Warsz. 2011;59:261. doi: 10.1007/s00005-011-0128-z. PubMed DOI

Preac-Mursic V, Wilske B, Schierz G. European Borrelia burgdorferi isolated from humans and ticks culture conditions and antibiotic susceptibility. Zentralblatt Bakteriol. Mikrobiol. Hyg. Ser. A Med. Microbiol. Infect. Dis. Virol. Parasitol. 1986;263:112–118. PubMed

Kersten A, Poitschek C, Rauch S, Aberer E. Effects of penicillin, ceftriaxone, and doxycycline on morphology of Borrelia burgdorferi. Antimicrob. Agents Chemother. 1995;39:1127–1133. doi: 10.1128/AAC.39.5.1127. PubMed DOI PMC

Murgia R, Cinco M. Induction of cystic forms by different stress conditions in Borrelia burgdorferi. Apmis. 2004;112:57–62. doi: 10.1111/j.1600-0463.2004.apm1120110.x. PubMed DOI

Brorson Ø, et al. Destruction of spirochete Borrelia burgdorferi round-body propagules (RBs) by the antibiotic Tigecycline. Proc. Natl. Acad. Sci. 2009;106:18656–18661. doi: 10.1073/pnas.0908236106. PubMed DOI PMC

Brorson Ø, Brorson SH. A rapid method for generating cystic forms of Borrelia burgdorferi, and their reversal to mobile spirochetes. APMIS. 1998;106:1131–1141. doi: 10.1111/j.1699-0463.1998.tb00269.x. PubMed DOI

Brorson Ø, Brorson SH. In vitro conversion of Borrelia burgdorferi to cystic forms in spinal fluid, and transformation to mobile spirochetes by incubation in BSK-H medium. Infection. 1998;26:144–150. doi: 10.1007/BF02771839. PubMed DOI

Gruntar I, Malovrh T, Murgia R, Cinco M. Conversion of Borrelia garinii cystic forms to motile spirochetes in vivo. Apmis. 2001;109:383–388. doi: 10.1034/j.1600-0463.2001.090507.x. PubMed DOI

Feder HM, et al. A critical appraisal of “chronic Lyme disease”. N. Engl. J. Med. 2007;357:1422–1430. doi: 10.1056/NEJMra072023. PubMed DOI

Miklossy J, et al. Persisting atypical and cystic forms of Borrelia burgdorferi and local inflammation in Lyme neuroborreliosis. J. Neuroinflammation. 2008;5:40. doi: 10.1186/1742-2094-5-40. PubMed DOI PMC

Srivastava SY, de Silva AM. Characterization of Borrelia burgdorferi aggregates. Vector Borne Zoonotic Dis. 2009;9:323–329. doi: 10.1089/vbz.2008.0148. PubMed DOI PMC

Dunham-Ems SM, et al. Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks. J. Clin. Invest. 2009;119:3652–3665. doi: 10.1172/JCI39401. PubMed DOI PMC

Meriläinen L, Herranen A, Schwarzbach A, Herranen A, Gilbert L. Morphological and biochemical features of Borrelia burgdorferi pleomorphic forms. Microbiology. 2015;161:516–527. doi: 10.1099/mic.0.000027. PubMed DOI PMC

Meriläinen L, Brander H, Herranen A, Schwarzbach A, Gilbert L. Pleomorphic forms of Borrelia burgdorferi induce distinct immune responses. Microbes Infect. 2016;18:484–495. doi: 10.1016/j.micinf.2016.04.002. PubMed DOI

Burgdorfer W, et al. Lyme disease—A tick-borne spirochetosis? Science (80-) 1982;216:1317–1319. doi: 10.1126/science.7043737. PubMed DOI

Barbour AG, Hayes SF. Biology of Borrelia species. Microbiol. Rev. 1986;50:381–400. doi: 10.1128/mr.50.4.381-400.1986. PubMed DOI PMC

Vancová M, et al. Pleomorphism and viability of the Lyme disease pathogen Borrelia burgdorferi exposed to physiological stress conditions: A correlative cryo-fluorescence and cryo-scanning electron microscopy study. Front. Microbiol. 2017;8:1–9. doi: 10.3389/fmicb.2017.00596. PubMed DOI PMC

Alban PS, Johnson PW, Nelson DR. Serum-starvation-induced changes in protein synthesis and morphology of Borrelia burgdorferi. Microbiology. 2000;146:119–127. doi: 10.1099/00221287-146-1-119. PubMed DOI

Bamm VV, Ko JT, Mainprize IL, Sanderson VP, Wills MKB. Lyme disease frontiers: Reconciling Borrelia biology and clinical conundrums. Pathogens. 2019;8:299. doi: 10.3390/pathogens8040299. PubMed DOI PMC

Sapi E, et al. Characterization of biofilm formation by Borrelia burgdorferi in vitro. PLoS One. 2012;7:e48277. doi: 10.1371/journal.pone.0048277. PubMed DOI PMC

Timmaraju VA, et al. Biofilm formation by Borrelia burgdorferi sensu lato. FEMS Microbiol. Lett. 2015;362:120. doi: 10.1093/femsle/fnv120. PubMed DOI

Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: A common cause of persistent infections. Science (80-) 1999;284:1318–1322. doi: 10.1126/science.284.5418.1318. PubMed DOI

Feng J, et al. Stationary phase persister/biofilm microcolony of Borrelia burgdorferi causes more severe disease in a mouse model of Lyme arthritis: Implications for understanding persistence, post-treatment Lyme disease syndrome (PTLDS), and treatment failure. Discov. Med. 2019;27:125–138. PubMed

Aberer EMD, Kersten AMD, Klade HMD, Poitschek C, Jurecka WMDA. Heterogeneity of Borrelia burgdorferi in the Skin. Am. J. Dermatopathol. 1996;18:571–579. doi: 10.1097/00000372-199612000-00004. PubMed DOI

Sapi E, et al. Evidence of in vivo existence of Borrelia biofilm in borrelial lymphocytomas. Eur. J. Microbiol. Immunol. 2016;6:9–24. doi: 10.1556/1886.2015.00049. PubMed DOI PMC

Hulínska D, et al. Electron microscopy of Langerhans cells and Borrelia burgdorferi in Lyme disease patients. Zentralblatt Bakteriol. 1994;280:348–359. doi: 10.1016/S0934-8840(11)80597-9. PubMed DOI

Golovchenko M, et al. Concurrent infection of the human brain with multiple Borrelia species. Int. J. Mol. Sci. 2023;24:16906. doi: 10.3390/ijms242316906. PubMed DOI PMC

Lantos PM, Auwaerter PG, Wormser GP. A systematic review of Borrelia burgdorferi morphologic variants does not support a role in chronic Lyme disease. Clin. Infect. Dis. 2014;58:663–671. doi: 10.1093/cid/cit810. PubMed DOI PMC

Al-Robaiy S, et al. Metamorphosis of Borrelia burgdorferi organisms—RNA, lipid and protein composition in context with the spirochetes’ shape. J. Basic Microbiol. 2010;50(Suppl 1):S5–17. PubMed

Indest KJ, et al. Analysis of Borrelia burgdorferi vlsE gene expression and recombination in the tick vector. Infect. Immun. 2001;69:7083–7090. doi: 10.1128/IAI.69.11.7083-7090.2001. PubMed DOI PMC

Hauser U, Lehnert G, Lobentanzer R, Wilske B. Interpretation criteria for standardized Western blots for three European species of Borrelia burgdorferi sensu lato. J. Clin. Microbiol. 1997;35:1433–1444. doi: 10.1128/jcm.35.6.1433-1444.1997. PubMed DOI PMC

Wilske B, et al. An improved recombinant IgG immunoblot for serodiagnosis of Lyme borreliosis. Med. Microbiol. Immunol. 1999;188:139–144. doi: 10.1007/s004300050116. PubMed DOI

Parthasarathy G, Fevrier HB, Philipp MT. Non-viable Borrelia burgdorferi induce inflammatory mediators and apoptosis in human oligodendrocytes. Neurosci. Lett. 2013;556:200–203. doi: 10.1016/j.neulet.2013.10.032. PubMed DOI PMC

Parthasarathy G, Gadila SKG. Neuropathogenicity of non-viable Borrelia burgdorferi ex vivo. Sci. Rep. 2022;12:688. doi: 10.1038/s41598-021-03837-0. PubMed DOI PMC

Kanjana K, et al. Autoimmunity to synovial extracellular matrix proteins in patients with post-infectious Lyme arthritis. J. Clin. Invest. 2023;21:4. PubMed PMC

Lochhead RB, et al. Robust interferon signature and suppressed tissue repair gene expression in synovial tissue from patients with postinfectious, Borrelia burgdorferi -induced Lyme arthritis. Cell. Microbiol. 2019;21:1–28. doi: 10.1111/cmi.12954. PubMed DOI PMC

Bolz DD, Weis JJ. Molecular mimicry to Borrelia burgdorferi : Pathway to autoimmunity? Autoimmunity. 2004;37:387–392. doi: 10.1080/08916930410001713098. PubMed DOI

Aberer E, et al. Molecular mimicry and Lyme borreliosis: A shared antigenic determinant between Borrelia burgdorferi and human tissue. Ann. Neurol. 1989;26:732–737. doi: 10.1002/ana.410260608. PubMed DOI

Steere AC, Gross D, Meyer AL, Huber BT. Autoimmune mechanisms in antibiotic treatment-resistant Lyme arthritis. J. Autoimmun. 2001;16:263–268. doi: 10.1006/jaut.2000.0495. PubMed DOI

Raveche ES, et al. Evidence of Borrelia autoimmunity-induced component of Lyme carditis and arthritis. J. Clin. Microbiol. 2005;43:850–856. doi: 10.1128/JCM.43.2.850-856.2005. PubMed DOI PMC

Drouin EE, et al. A novel human autoantigen, endothelial cell growth factor, is a target of T and B cell responses in patients with Lyme disease. Arthritis Rheum. 2013;65:186–196. doi: 10.1002/art.37732. PubMed DOI PMC

Crowley JT, et al. Matrix metalloproteinase-10 is a target of T and B cell responses that correlate with synovial pathology in patients with antibiotic-refractory Lyme arthritis. J. Autoimmun. 2016;69:24–37. doi: 10.1016/j.jaut.2016.02.005. PubMed DOI PMC

Crowley JT, et al. A highly expressed human protein, apolipoprotein B-100, serves as an autoantigen in a subgroup of patients with Lyme disease. J. Infect. Dis. 2015;212:1841–1850. doi: 10.1093/infdis/jiv310. PubMed DOI PMC

Fallon BA, Strobino B, Reim S, Stoner J, Cunningham MW. Anti-lysoganglioside and other anti-neuronal autoantibodies in post-treatment Lyme disease and erythema migrans after repeat infection. Brain Behav. Immun. Health. 2020;2:100015. doi: 10.1016/j.bbih.2019.100015. PubMed DOI PMC

Stricker R, Johnson L. Antiphospholipid antibodies in patients with persistent Lyme disease symptoms. Lupus. 2012;21:346–347. doi: 10.1177/0961203311425531. PubMed DOI

Tuominen-Gustafsson H, Penttinen M, Hytönen J, Viljanen MK. Use of CFSE staining of borreliae in studies on the interaction between borreliae and human neutrophils. BMC Microbiol. 2006;6:1–14. doi: 10.1186/1471-2180-6-92. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...