Seroprevalence of Antibodies against Tick-Borne Pathogens in Czech Patients with Suspected Post-Treatment Lyme Disease Syndrome

. 2021 Oct 25 ; 9 (11) : . [epub] 20211025

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34835343

Grantová podpora
grant IGA_LF_2021_015 Palacky University Olomouc
grant NV19-05-00191 Ministry of Health of the Czech Republic

Odkazy

PubMed 34835343
PubMed Central PMC8619037
DOI 10.3390/microorganisms9112217
PII: microorganisms9112217
Knihovny.cz E-zdroje

The hypothesized importance of coinfections in the pathogenesis of post-treatment Lyme disease syndrome (PTLDS) leads to the use of combined, ongoing antimicrobial treatment in many cases despite the absence of symptoms typical of the presence of infection with specific pathogens. Serum samples from 103 patients with suspected post-treatment Lyme disease syndrome were tested for the presence of antibodies to the major tick-borne pathogens Anaplasma phagocytophilum, Bartonella henselae/Bartonella quinatana, and Babesia microti. Although the presence of anti-Anaplasma antibodies was detected in 12.6% of the samples and anti-Bartonella antibodies in 9.7% of the samples, the presence of antibodies against both pathogens in the same samples or anti-Babesia antibodies in the selected group of patients could not be confirmed. However, we were able to detect autoantibodies, mostly antinuclear, in 11.6% of the patients studied. Our results are in good agreement with previously published studies showing the presence of a wide spectrum of autoantibodies in some patients with complicated forms of Lyme disease and post-treatment Lyme disease syndrome, but they do not reveal a significant influence of co-infections on the development of PTLDS in the studied group of patients.

Zobrazit více v PubMed

Kugeler K.J., Schwartz A.M., Delorey M.J., Mead P.S., Hinckley A.F. Estimating the Frequency of Lyme Disease Diagnoses, United States, 2010–2018. Emerg. Infect. Dis. 2021;27:616–619. doi: 10.3201/eid2702.202731. PubMed DOI PMC

Rudenko N., Golovchenko M. Sexual Transmission of Lyme Borreliosis? The Question That Calls for an Answer. Trop. Med. Infect. Dis. 2021;6:87. doi: 10.3390/tropicalmed6020087. PubMed DOI PMC

European Parliament Resolution on Lyme Disease (Borreliosis) (2018/2774(RSP) [(accessed on 15 September 2021)]. Available online: https://www.europarl.europa.eu/doceo/document/B-8-2018-0514_EN.html.

Steere A.C., Strle F., Wormser G.P., Hu L.T., Branda J.A., Hovius J.W.R., Li X., Mead P.S. Lyme borreliosis. Nat. Rev. Dis. Prim. 2016;2:16090. doi: 10.1038/nrdp.2016.90. PubMed DOI PMC

Krupka M., Raska M., Belakova J., Horynová M.S., Novotny R., Weigl E. Biological aspects of lyme disease spirochetes: Unique bacteria of the Borrelia burgdorferi species group. Biomed. Pap. 2007;151:175–186. doi: 10.5507/bp.2007.032. PubMed DOI

Mead P.S. Epidemiology of Lyme Disease. Infect. Dis. Clin. N. Am. 2015;29:187–210. doi: 10.1016/j.idc.2015.02.010. PubMed DOI

Rudenko N., Golovchenko M., Grubhoffer L., Oliver J.H. Updates on Borrelia burgdorferi sensu lato complex with respect to public health. Ticks Tick-Borne Dis. 2011;2:123–128. doi: 10.1016/j.ttbdis.2011.04.002. PubMed DOI PMC

Kingry L.C., Batra D., Replogle A., Rowe L.A., Pritt B.S., Petersen J.M. Whole Genome Sequence and Comparative Genomics of the Novel Lyme Borreliosis Causing Pathogen, Borrelia mayonii. PLoS ONE. 2016;11:e0168994. doi: 10.1371/journal.pone.0168994. PubMed DOI PMC

Gern L. Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis: Life in the wilds. Parasite. 2008;15:244–247. doi: 10.1051/parasite/2008153244. PubMed DOI

Centers for Disease Control and Prevention Signs and Symptoms of Untreated Lyme Disease. [(accessed on 1 September 2021)]; Available online: https://www.cdc.gov/lyme/signs_symptoms/index.html.

Bamm V.V., Ko J.T., Mainprize I.L., Sanderson V.P., Wills M.K.B. Lyme Disease Frontiers: Reconciling Borrelia Biology and Clinical Conundrums. Pathogens. 2019;8:299. doi: 10.3390/pathogens8040299. PubMed DOI PMC

Wormser G.P., Dattwyler R., Shapiro E.D., Halperin J., Steere A.C., Klempner M.S., Krause P.J., Bakken J.S., Strle F., Stanek G., et al. The Clinical Assessment, Treatment, and Prevention of Lyme Disease, Human Granulocytic Anaplasmosis, and Babesiosis: Clinical Practice Guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 2006;43:1089–1134. doi: 10.1086/508667. PubMed DOI

Horowitz R.I., Freeman P.R. Efficacy of Double-Dose Dapsone Combination Therapy in the Treatment of Chronic Lyme Disease/Post-Treatment Lyme Disease Syndrome (PTLDS) and Associated Co-infections: A Report of Three Cases and Retrospective Chart Review. Antibiotics. 2020;9:725. doi: 10.3390/antibiotics9110725. PubMed DOI PMC

Fallon B.A., Petkova E., Keilp J.G., Britton C.B. A Reappraisal of the U.S. Clinical Trials of Post-Treatment Lyme Disease Syndrome. Open Neurol. J. 2012;6:79–87. doi: 10.2174/1874205X01206010079. PubMed DOI PMC

Klempner M.S. Controlled Trials of Antibiotic Treatment in Patients with Post-Treatment Chronic Lyme Disease. Vector-Borne Zoonotic Dis. 2002;2:255–263. doi: 10.1089/153036602321653842. PubMed DOI

Krause P.J., Gewurz B.E., Hill D., Marty F.M., Vannier E., Foppa I.M., Furman R.R., Neuhaus E., Skowron G., Gupta S., et al. Persistent and Relapsing Babesiosis in Immunocompromised Patients. Clin. Infect. Dis. 2008;46:370–376. doi: 10.1086/525852. PubMed DOI

Horowitz R., Freeman P.R. Healthy Fetal Outcomes Using A Novel Treatment For Maternal Lyme Disease And Babesiosis During Consecutive Pregnancies: A Case Study and Literature Review. Arch. Med Case Rep. 2020;2:1–19. doi: 10.33696/casereports.2.006. DOI

Křupka M., Zachová K., Weigl E., Raska M. Prevention of Lyme Disease: Promising Research or Sisyphean Task? Arch. Immunol. Ther. Exp. 2011;59:261–275. doi: 10.1007/s00005-011-0128-z. PubMed DOI

Cerar D., Cerar T., Ružić-Sabljić E., Wormser G.P., Strle F. Subjective Symptoms after Treatment of Early Lyme Disease. Am. J. Med. 2010;123:79–86. doi: 10.1016/j.amjmed.2009.05.011. PubMed DOI

Aucott J.N., Crowder L., Kortte K.B. Development of a foundation for a case definition of post-treatment Lyme disease syndrome. Int. J. Infect. Dis. 2013;17:e443–e449. doi: 10.1016/j.ijid.2013.01.008. PubMed DOI

Rudenko N., Golovchenko M., Kybicova K., Vancova M. Metamorphoses of Lyme disease spirochetes: Phenomenon of Borrelia persisters. Parasites Vectors. 2019;12:1–10. doi: 10.1186/s13071-019-3495-7. PubMed DOI PMC

Baker P.J. A Review of Antibiotic-Tolerant Persisters and Their Relevance to Posttreatment Lyme Disease Symptoms. Am. J. Med. 2020;133:429–431. doi: 10.1016/j.amjmed.2019.12.007. PubMed DOI

Shor S., Green C., Szantyr B., Phillips S., Liegner K., Burrascano J.J.J., Bransfield R., Maloney E.L. Chronic Lyme Disease: An Evidence-Based Definition by the ILADS Working Group. Antibiotics. 2019;8:269. doi: 10.3390/antibiotics8040269. PubMed DOI PMC

Lantos P.M. Chronic Lyme Disease. Infect. Dis. Clin. N. Am. 2015;29:325–340. doi: 10.1016/j.idc.2015.02.006. PubMed DOI PMC

Nemeth J., Bernasconi E., Heininger U., Abbas M., Nadal D., Strahm C., Erb S., Zimmerli S., Furrer H., Delaloye J., et al. Update of the Swiss guidelines on post-treatment Lyme disease syndrome. Swiss Med. Wkly. 2016;146:w14353. doi: 10.4414/smw.2016.14353. PubMed DOI

Marcum L. LYME SCI: Tick-Borne Co-Infections Are the Rule, Not the Exception. [(accessed on 15 September 2021)]. Available online: https://www.lymedisease.org/lyme-sci-coinfections/

Horowitz R.I., Freeman P.R. Are mycobacterium drugs effective for treatment resistant Lyme disease, tick-borne co-infections, and autoimmune disease? JSM Arthritis. 2016;1:1008.

Grab D.J., Nyarko E., Barat N.C., Nikolskaia O.V., Dumler J.S. Anaplasma phagocytophilum—Borrelia burgdorferi Coinfection Enhances Chemokine, Cytokine, and Matrix Metalloprotease Expression by Human Brain Microvascular Endothelial Cells. Clin. Vaccine Immunol. 2007;14:1420–1424. doi: 10.1128/CVI.00308-07. PubMed DOI PMC

Krause P.J., McKay K., Thompson C.A., Sikand V.K., Lentz R., Lepore T., Closter L., Christianson D., Telford S.R., Persing D., et al. Disease-Specific Diagnosis of Coinfecting Tickborne Zoonoses: Babesiosis, Human Granulocytic Ehrlichiosis, and Lyme Disease. Clin. Infect. Dis. 2002;34:1184–1191. doi: 10.1086/339813. PubMed DOI

Dumler J.S., Choi K.-S., Garcia-Garcia J.C., Barat N.S., Scorpio D.G., Garyu J.W., Grab D.J., Bakken J.S. Human Granulocytic Anaplasmosis and Anaplasma phagocytophilum. Emerg. Infect. Dis. 2005;11:1828–1834. doi: 10.3201/eid1112.050898. PubMed DOI PMC

Chen S.M., Dumler J.S., Bakken J.S., Walker D.H. Identification of a granulocytotropic Ehrlichia species as the etiologic agent of human disease. J. Clin. Microbiol. 1994;32:589–595. doi: 10.1128/jcm.32.3.589-595.1994. PubMed DOI PMC

Petrovec M., Furlan S.L., Zupanc T.A., Strle F., Brouqui P., Roux V., Dumler J.S. Human disease in Europe caused by a granulocytic Ehrlichia species. J. Clin. Microbiol. 1997;35:1556–1559. doi: 10.1128/jcm.35.6.1556-1559.1997. PubMed DOI PMC

Dvořáková Heroldová M., Dvořáčková M. [Seroprevalence of Anaplasma phagocytophilum in patients with suspected Lyme borreliosis] In Czech. Epidemiol. Mikrobiol. Imunol. 2014;63:297–302. PubMed

Boulouis H.-J., Chao-Chin C., Henn J.B., Kasten R.W., Chomel B.B. Factors associated with the rapid emergence of zoonotic Bartonella infections. Veter Res. 2005;36:383–410. doi: 10.1051/vetres:2005009. PubMed DOI

Anderson B.E., Neuman M.A. Bartonella spp. as emerging human pathogens. Clin. Microbiol. Rev. 1997;10:203–219. doi: 10.1128/CMR.10.2.203. PubMed DOI PMC

Mozayeni B.R., Maggi R., Bradley J.M., Breitschwerdt E.B. Rheumatological presentation of Bartonella koehlerae and Bartonella henselae bacteremias. Medicine. 2018;97:e0465. doi: 10.1097/MD.0000000000010465. PubMed DOI PMC

Lobo C.A., Singh M., Rodriguez M. Human babesiosis: Recent advances and future challenges. Curr. Opin. Hematol. 2020;27:399–405. doi: 10.1097/MOH.0000000000000606. PubMed DOI PMC

Parveen N., Bhanot P. Babesia microti-Borrelia burgdorferi Coinfection. Pathogens. 2019;8:117. doi: 10.3390/pathogens8030117. PubMed DOI PMC

Lantos P.M. Chronic Lyme disease: The controversies and the science. Expert Rev. Anti-Infect. Ther. 2011;9:787–797. doi: 10.1586/eri.11.63. PubMed DOI

Lantos P.M., Wormser G.P. Chronic Coinfections in Patients Diagnosed with Chronic Lyme Disease: A Systematic Review. Am. J. Med. 2014;127:1105–1110. doi: 10.1016/j.amjmed.2014.05.036. PubMed DOI PMC

Stricker R.B. Counterpoint: Long-Term Antibiotic Therapy Improves Persistent Symptoms Associated with Lyme Disease. Clin. Infect. Dis. 2007;45:149–157. doi: 10.1086/518853. PubMed DOI

Horowitz R.I., Freeman P.R. Precision medicine: Retrospective chart review and data analysis of 200 patients on dapsone combination therapy for chronic Lyme disease/post-treatment Lyme disease syndrome: Part 1. Int. J. Gen. Med. 2019;12:101–119. doi: 10.2147/IJGM.S193608. PubMed DOI PMC

Maurin M., Bakken J.S., Dumler J.S. Antibiotic Susceptibilities of Anaplasma (Ehrlichia) phagocytophilum Strains from Various Geographic Areas in the United States. Antimicrob. Agents Chemother. 2003;47:413–415. doi: 10.1128/AAC.47.1.413-415.2003. PubMed DOI PMC

Matei I.A., Estrada-Peña A., Cutler S.J., Vayssier-Taussat M., Castro L.V., Potkonjak A., Zeller H., Mihalca A.D. A review on the eco-epidemiology and clinical management of human granulocytic anaplasmosis and its agent in Europe. Parasites Vectors. 2019;12:599–619. doi: 10.1186/s13071-019-3852-6. PubMed DOI PMC

Kříž B., Malý M., Balátová P., Kodym P., Kurzová Z., Daniel M., Kybicová K. A serological study of antibodies to Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato in the sera of healthy individuals collected two decades apart. Acta Parasitol. 2018;63:33–39. doi: 10.1515/ap-2018-0004. PubMed DOI

Thortveit E.T., Aase A., Petersen L.B., Lorentzen Å.R., Mygland Å., Ljøstad U. Human seroprevalence of antibodies to tick-borne microbes in southern Norway. Ticks Tick-Borne Dis. 2020;11:101410. doi: 10.1016/j.ttbdis.2020.101410. PubMed DOI

Nilsson K., Skoog E., Jones V., Sandelin L.L., Björling C., Fridenström E., Edvinsson M., Mårtensson A., Olsen B. A comprehensive clinical and laboratory evaluation of 224 patients with persistent symptoms attributed to presumed tick-bite exposure. PLoS ONE. 2021;16:e0247384. doi: 10.1371/journal.pone.0247384. PubMed DOI PMC

Chmielewska-Badora J., Moniuszko A., Żukiewicz-Sobczak W., Zwolinski J., Piątek J., Pancewicz S. Serological survey in persons occupationally exposed to tick-borne pathogens in cases of co-infections with Borrelia burgdorferi, Anaplasma phagocytophilum, Bartonella spp. and Babesia microti. Ann. Agric. Environ. Med. 2012;19:271–274. PubMed

Chochlakis D., Papaeustathiou A., Minadakis G., Psaroulaki A., Tselentis Y. A serosurvey of Anaplasma phagocytophilum in blood donors in Crete, Greece. Eur. J. Clin. Microbiol. Infect. Dis. 2008;27:473–475. doi: 10.1007/s10096-007-0457-3. PubMed DOI

Wittesjö B., Bjöersdorff A., Eliasson I., Berglund J. First long-term study of the seroresponse to the agent of human granulocytic ehrlichiosis among residents of a tick-endemic area of Sweden. Eur. J. Clin. Microbiol. Infect. Dis. 2001;20:173–178. doi: 10.1007/s100960100463. PubMed DOI

Łysakowska M.E., Brzezińska O., Szybka M., Konieczka M., Moskwa S., Brauncajs M., Makowska J., Pastuszak-Lewandoska D., Grzegorczyk J. The seroprevalence of Bartonella spp. in the blood of patients with musculoskeletal complaints and blood donors, Poland: A pilot study. Clin. Rheumatol. 2019;38:2691–2698. doi: 10.1007/s10067-019-04591-5. PubMed DOI

Zając V., Wójcik-Fatla A., Dutkiewicz J., Szymańska J. Bartonella henselae in eastern Poland: The relationship between tick infection rates and the serological response of individuals occupationally exposed to tick bites. J. Vector Ecol. 2015;40:75–82. doi: 10.1111/jvec.12135. PubMed DOI

Sander A., Posselt M., Oberle K., Bredt W. Seroprevalence of Antibodies to Bartonella henselae in Patients with Cat Scratch Disease and in Healthy Controls: Evaluation and Comparison of Two Commercial Serological Tests. Clin. Diagn. Lab. Immunol. 1998;5:486–490. doi: 10.1128/CDLI.5.4.486-490.1998. PubMed DOI PMC

Maggi R.G., Mozayeni B.R., Pultorak E.L., Hegarty B.C., Bradley J.M., Correa M., Breitschwerdt E.B. Bartonella spp. Bacteremia and Rheumatic Symptoms in Patients from Lyme Disease–endemic Region. Emerg. Infect. Dis. 2012;18:783–791. doi: 10.3201/eid1805.111366. PubMed DOI PMC

La Scola B., Raoult D. Serological cross-reactions between Bartonella quintana, Bartonella henselae, and Coxiella burnetii. J. Clin. Microbiol. 1996;34:2270–2274. doi: 10.1128/jcm.34.9.2270-2274.1996. PubMed DOI PMC

Maurin M., Eb F., Etienne J., Raoult D. Serological cross-reactions between Bartonella and Chlamydia species: Implications for diagnosis. J. Clin. Microbiol. 1997;35:2283–2287. doi: 10.1128/jcm.35.9.2283-2287.1997. PubMed DOI PMC

Vermeulen M., Verbakel H., Notermans D.W., Reimerink J.H.J., Peeters M. Evaluation of sensitivity, specificity and cross-reactivity in Bartonella henselae serology. J. Med. Microbiol. 2010;59:743–745. doi: 10.1099/jmm.0.015248-0. PubMed DOI

Maurin M., Rolain J.-M., Raoult D. Comparison of In-House and Commercial Slides for Detection by Immunofluorescence of Immunoglobulins G and M against Bartonella henselae and Bartonella quintana. Clin. Vaccine Immunol. 2002;9:1004–1009. doi: 10.1128/CDLI.9.5.1004-1009.2002. PubMed DOI PMC

Cotté V., Bonnet S., Le Rhun D., Le Naour E., Chauvin A., Boulouis H.-J., Lecuelle B., Lilin T., Vayssier-Taussat M. Transmission of Bartonella henselae by Ixodes ricinus. Emerg. Infect. Dis. 2008;14:1074–1080. doi: 10.3201/eid1407.071110. PubMed DOI PMC

Król N., Militzer N., Stöbe E., Nijhof A., Pfeffer M., Kempf V., Obiegala A. Evaluating Transmission Paths for Three Different Bartonella spp. in Ixodes ricinus Ticks Using Artificial Feeding. Microorganisms. 2021;9:901. doi: 10.3390/microorganisms9050901. PubMed DOI PMC

Schouls L.M., Van De Pol I., Rijpkema S.G.T., Schot C.S. Detection and Identification of Ehrlichia, Borrelia burgdorferi Sensu Lato, and Bartonella Species in Dutch Ixodes ricinus Ticks. J. Clin. Microbiol. 1999;37:2215–2222. doi: 10.1128/JCM.37.7.2215-2222.1999. PubMed DOI PMC

Hercík K., Hášová V., Janeček J., Branny P. Molecular evidence of DNA in ixodid ticks in Czechia. Folia Microbiol. 2007;52:503–509. doi: 10.1007/BF02932111. PubMed DOI

Sanogo Y.O., Zeaiter Z., Caruso G., Merola F., Shpynov S., Brouqui P., Raoult D. Bartonella henselae in Ixodes ricinus Ticks (Acari: Ixodida) Removed from Humans, Belluno Province, Italy. Emerg. Infect. Dis. 2003;9:329–332. doi: 10.3201/eid0903.020133. PubMed DOI PMC

Eskow E., Rao R.-V.S., Mordechai E. Concurrent Infection of the Central Nervous System by Borrelia burgdorferi and Bartonella henselae. Arch. Neurol. 2001;58:1357–1363. doi: 10.1001/archneur.58.9.1357. PubMed DOI

Halperin J.J., Wormser G.P. Of fleas and ticks on cats and mice. Arch. Neurol. 2001;58:1345–1347. doi: 10.1001/archneur.58.9.1345. PubMed DOI

Telford S.R., Wormser G.P. Bartonellaspp. Transmission by Ticks Not Established. Emerg. Infect. Dis. 2010;16:379–384. doi: 10.3201/eid1603.090443. PubMed DOI PMC

Okaro U., George S., Anderson B. What Is in a Cat Scratch? Growth of Bartonella henselae in a Biofilm. Microorganisms. 2021;9:835. doi: 10.3390/microorganisms9040835. PubMed DOI PMC

Diuk-Wasser M.A., Vannier E., Krause P.J., Diuk-Wasser M.A., Vannier E., Krause P.J. Coinfection by Ixodes Tick-Borne Pathogens: Ecological, Epidemiological, and Clinical Consequences. Trends Parasitol. 2015;32:30–42. doi: 10.1016/j.pt.2015.09.008. PubMed DOI PMC

Yang Y., Christie J., Köster L., Du A., Yao C. Emerging Human Babesiosis with “Ground Zero” in North America. Microorganisms. 2021;9:440. doi: 10.3390/microorganisms9020440. PubMed DOI PMC

Rudolf I., Golovchenko M., Šikutová S., Rudenko N., Grubhoffer L., Hubálek Z. Babesia microti (Piroplasmida: Babesiidae) in nymphal Ixodes ricinus (Acari: Ixodidae) in the Czech Republic. Folia Parasitol. 2005;52:274–276. doi: 10.14411/fp.2005.036. PubMed DOI

Hildebrandt A., Gray J.S., Hunfeld K.-P. Human Babesiosis in Europe: What clinicians need to know. Infection. 2013;41:1057–1072. doi: 10.1007/s15010-013-0526-8. PubMed DOI

Nohynkova E., Kubek J., Mestankova O., Chalupka P., Hubalek Z. A Case of Babesia microti Infection Imported to the Czech Republic from the USA. Cas. Lek. Ces. 2003;142:377–381. (In Czech) PubMed

Lempereur L., Shiels B., Heyman P., Moreau E., Saegerman C., Losson B., Malandrin L. A retrospective serological survey on human babesiosis in Belgium. Clin. Microbiol. Infect. 2015;21:96.e1–96.e7. doi: 10.1016/j.cmi.2014.07.004. PubMed DOI

Svensson J., Hunfeld K.-P., Persson K.E.M. High seroprevalence of Babesia antibodies among Borrelia burgdorferi-infected humans in Sweden. Ticks Tick-Borne Dis. 2018;10:186–190. doi: 10.1016/j.ttbdis.2018.10.007. PubMed DOI

Pianta A., Drouin E.E., Crowley J.T., Arvikar S., Strle K., Costello C.E., Steere A.C. Annexin A2 is a target of autoimmune T and B cell responses associated with synovial fibroblast proliferation in patients with antibiotic-refractory Lyme arthritis. Clin. Immunol. 2015;160:336–341. doi: 10.1016/j.clim.2015.07.005. PubMed DOI PMC

Crowley J.T., Drouin E.E., Pianta A., Strle K., Wang Q., Costello C., Steere A.C. A Highly Expressed Human Protein, Apolipoprotein B-100, Serves as an Autoantigen in a Subgroup of Patients With Lyme Disease. J. Infect. Dis. 2015;212:1841–1850. doi: 10.1093/infdis/jiv310. PubMed DOI PMC

Drouin E.E., Seward R.J., Strle K., McHugh G., Katchar K., Londoño D., Yao C., Costello C., Steere A.C. A novel human autoantigen, endothelial cell growth factor, is a target of T and B cell responses in patients with Lyme disease. Arthritis Rheum. 2012;65:186–196. doi: 10.1002/art.37732. PubMed DOI PMC

Crowley J.T., Strle K., Drouin E.E., Pianta A., Arvikar S.L., Wang Q., Costello C.E., Steere A.C. Matrix metalloproteinase-10 is a target of T and B cell responses that correlate with synovial pathology in patients with antibiotic-refractory Lyme arthritis. J. Autoimmun. 2016;69:24–37. doi: 10.1016/j.jaut.2016.02.005. PubMed DOI PMC

Greco T.P., Conti-Kelly A.M., Greco T.P. Antiphospholipid antibodies in patients with purported ‘chronic Lyme disease’. Lupus. 2011;20:1372–1377. doi: 10.1177/0961203311414098. PubMed DOI

Kratz A., Harding M.W., Craft J., Mackworth-Young C.G., Handschumacher R.E. Autoantibodies against cyclophilin in systemic lupus erythematosus and Lyme disease. Clin. Exp. Immunol. 2008;90:422–427. doi: 10.1111/j.1365-2249.1992.tb05862.x. PubMed DOI PMC

Chandra A., Wormser G.P., Klempner M.S., Trevino R.P., Crow M.K., Latov N., Alaedini A. Anti-neural antibody reactivity in patients with a history of Lyme borreliosis and persistent symptoms. Brain Behav. Immun. 2010;24:1018–1024. doi: 10.1016/j.bbi.2010.03.002. PubMed DOI PMC

Jacek E., Fallon B.A., Chandra A., Crow M.K., Wormser G.P., Alaedini A. Increased IFNα activity and differential antibody response in patients with a history of Lyme disease and persistent cognitive deficits. J. Neuroimmunol. 2012;255:85–91. doi: 10.1016/j.jneuroim.2012.10.011. PubMed DOI PMC

Maccallini P., Bonin S., Trevisan G. Autoimmunity against a glycolytic enzyme as a possible cause for persistent symptoms in Lyme disease. Med. Hypotheses. 2018;110:1–8. doi: 10.1016/j.mehy.2017.10.024. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...