Distant genetic variants of Anaplasma phagocytophilum from Ixodes ricinus attached to people
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
GACR 21-11661S
Grant Agency of the Czech Republic
GACR 21-11661S
Grant Agency of the Czech Republic
GACR 21-11661S
Grant Agency of the Czech Republic
GACR 21-11661S
Grant Agency of the Czech Republic
CZ.02.1.01/0.0/0.0/ 16_019/0000787
Ministry of Education Youth and Sports of the Czech Republic
CZ.02.1.01/0.0/0.0/ 16_019/0000787
Ministry of Education Youth and Sports of the Czech Republic
PubMed
36855167
PubMed Central
PMC9976488
DOI
10.1186/s13071-023-05654-y
PII: 10.1186/s13071-023-05654-y
Knihovny.cz E-zdroje
- Klíčová slova
- Anaplasma phagocytophilum, Anaplasmosis, Genetic diversity, Infectious diseases, Ixodes ricinus,
- MeSH
- Anaplasma phagocytophilum * genetika MeSH
- ekotyp MeSH
- klíště * MeSH
- lidé MeSH
- polymerázová řetězová reakce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Although the tick-borne pathogen Anaplasma phagocytophilum is currently described as a single species, studies using genetic markers can distinguish groups of variants associated with different hosts, pathogenicity, zoonotic potential and biotic and geographic niches. The objective of our study was to investigate the genetic diversity of A. phagocytophilum and Ixodes ricinus ticks attached to people. METHODS: In collaboration with a commercial diagnostic company, a total of 52 DNA samples were obtained from ticks that tested positive for A. phagocytophilum by quantitative PCR. The genetic profile of each sample was determined using the groEL and ankA genes. Identification of the tick species was confirmed by partial sequencing of the COI subunit and a portion of the TROSPA gene. RESULTS: All 52 ticks were identified as I. ricinus. Two protocols of nested PCR amplifying 1293- and 407-bp fragments of groEL of A. phagocytophilum yielded amplicons of the expected size for all 52 samples. Among all sequences, we identified 10 unique genetic variants of groEL belonging to ecotype I and ecotype II. The analysis targeting ankA was successful in 46 of 52 ticks. Among all sequences, we identified 21 unique genetic variants phylogenetically belonging to three clusters. CONCLUSIONS: Our results indicate that ticks attached to people harbor distant genetic variants of A. phagocytophilum, some of which are not recognized as zoonotic. Further studies are needed to determine the risk of human infection by genetic variants other than those designated as zoonotic.
Biology Centre Institute of Parasitology Czech Academy of Sciences České Budějovice Czech Republic
CEITEC University of Veterinary Sciences Brno Czech Republic
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Department of Chemistry and Biochemistry Mendel University Brno Czech Republic
Faculty of Medicine in Pilsen Biomedical Center Charles University Pilsen Czech Republic
Zobrazit více v PubMed
Stuen S, Granquist EG, Silaghi C. Anaplasma phagocytophilum-a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol. 2013;3:31. doi: 10.3389/fcimb.2013.00031. PubMed DOI PMC
Matei IA, Estrada-Peña A, Cutler SJ, Vayssier-Taussat M, Varela-Castro L, Potkonjak A, et al. A review on the eco-epidemiology and clinical management of human granulocytic anaplasmosis and its agent in Europe. Parasit Vectors. 2019;12:599. doi: 10.1186/s13071-019-3852-6. PubMed DOI PMC
Rar V, Tkachev S, Tikunova N. Genetic diversity of Anaplasma bacteria: twenty years later. Infect Genet Evol. 2021;91:104833. doi: 10.1016/j.meegid.2021.104833. PubMed DOI
Huhn C, Winter C, Wolfsperger T, Wüppenhorst N, Strašek Smrdel K, Skuballa J, et al. Analysis of the population structure of Anaplasma phagocytophilum using multilocus sequence typing. PLoS ONE. 2014;9:e93725. doi: 10.1371/journal.pone.0093725. PubMed DOI PMC
Liveris D, Aguero-Rosenfeld ME, Daniels TJ, Karpathy S, Paddock C, Adish S, et al. A new genetic approach to distinguish strains of Anaplasma phagocytophilum that appear not to cause human disease. Ticks Tick Borne Dis. 2021;12:101659. doi: 10.1016/j.ttbdis.2021.101659. PubMed DOI PMC
Liz JS, Sumner JW, Pfister K, Brossard M. PCR detection and serological evidence of granulocytic ehrlichial infection in roe deer (Capreolus capreolus) and chamois (Rupicapra rupicapra) J Clin Microbiol. 2002;40:892–897. doi: 10.1128/JCM.40.3.892-897.2002. PubMed DOI PMC
Jaarsma RI, Sprong H, Takumi K, Kazimirova M, Silaghi C, Mysterud A, et al. Anaplasma phagocytophilum evolves in geographical and biotic niches of vertebrates and ticks. Parasit Vectors. 2019;12:328. doi: 10.1186/s13071-019-3583-8. PubMed DOI PMC
Jahfari S, Coipan EC, Fonville M, van Leeuwen AD, Hengeveld P, Heylen D, et al. Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasit Vectors. 2014;7:365. doi: 10.1186/1756-3305-7-365. PubMed DOI PMC
de la Fuente J, Gortazar C. Wild boars as hosts of human-pathogenic Anaplasma phagocytophilum variants. Emerg Infect Dis. 2012;18:2094–2095. doi: 10.3201/eid1812.120778. PubMed DOI PMC
Stigum VM, Jaarsma RI, Sprong H, Rolandsen CM, Mysterud A. Infection prevalence and ecotypes of Anaplasma phagocytophilum in moose Alces alces, red deer Cervus elaphus, roe deer Capreolus capreolus and Ixodes ricinus ticks from Norway. Parasit Vectors. 2019;12:1–8. doi: 10.1186/s13071-018-3256-z. PubMed DOI PMC
Petrovec M, Bidovec A, Sumner JW, Nicholson WL, Childs JE, Avsic-Zupanc T. Infection with Anaplasma phagocytophila in cervids from Slovenia: evidence of two genotypic lineages. Wien Klin Wochenschr. 2002;114:641–647. PubMed
Katargina O, Geller J, Alekseev A, Dubinina H, Efremova G, Mishaeva N, et al. Identification of Anaplasma phagocytophilum in tick populations in Estonia, the European part of Russia and Belarus. Clin Microbiol Infect. 2012;18:40–46. doi: 10.1111/j.1469-0691.2010.03457.x. PubMed DOI
Von Loewenich FD, Stumpf G, Baumgarten BU, Röllinghoff M, Dumler JS, Bogdan C. A case of equine granulocytic ehrlichiosis provides molecular evidence for the presence of pathogenic Anaplasma phagocytophilum (HGE agent) in Germany. Eur J Clin Microbiol Infect Dis. 2003;22:303–305. doi: 10.1007/s10096-003-0935-1. PubMed DOI
Madison-Antenucci S, Kramer LD, Gebhardt LL. Emerging tick-borne diseases. Clin Microbiol Rev. 2020;33:e00083. doi: 10.1128/CMR.00083-18. PubMed DOI PMC
Bakken JS, Dumler JS. Human granulocytic anaplasmosis. Infect Dis Clin North Am. 2020;22:85–91. PubMed
Dvořáková Heroldová M, Dvořáčková M. Seroprevalence of Anaplasma phagocytophilum in patients with suspected Lyme borreliosis. Epidemiol Mikrobiol Imunol. 2014;63:297–302. PubMed
Sloupenska K, Dolezilkova J, Koubkova B, Hutyrova B, Racansky M, Horak P, et al. Seroprevalence of Antibodies against tick-borne pathogens in Czech patients with suspected post-treatment Lyme disease syndrome. Microorganisms. 2021;9:2217. doi: 10.3390/microorganisms9112217. PubMed DOI PMC
Baker A, Wang HH, Mogg M, Derouen Z, Borski J, Grant WE. Increasing incidence of anaplasmosis in the United States, 2012 through 2016. Vector Borne Zoonotic Dis. 2020;20:855–9. doi: 10.1089/vbz.2019.2598. PubMed DOI
Pilloux L, Baumgartner A, Jaton K, Lienhard R, Ackermann-Gäumann R, Beuret C, et al. Prevalence of Anaplasma phagocytophilum and Coxiella burnetii in Ixodes ricinus ticks in Switzerland: an underestimated epidemiologic risk. New Microbes New Infect. 2019;27:22–26. doi: 10.1016/j.nmni.2018.08.017. PubMed DOI PMC
Lernout T, De Regge N, Tersago K, Fonville M, Suin V, Sprong H. Prevalence of pathogens in ticks collected from humans through citizen science in Belgium. Parasit Vectors. 2019;12:1–11. doi: 10.1186/s13071-019-3806-z. PubMed DOI PMC
Courtney JW, Kostelnik LM, Zeidner NS, Massung RF. Multiplex real-time PCR for detection of Anaplasma phagocytophilum and Borrelia burgdorferi. J Clin Microbiol. 2004;42:3164–3168. doi: 10.1128/JCM.42.7.3164-3168.2004. PubMed DOI PMC
Noureddine R, Chauvin A, Plantard O. Lack of genetic structure among Eurasian populations of the tick Ixodesricinus contrasts with marked divergence from north-African populations. Int J Parasitol. 2011;41(2):183–92. 10.1016/j.ijpara.2010.08.010. PubMed
Alberti A, Zobba R, Chessa B, Addis MF, Sparagano O, Parpaglia MLP, et al. Equine and canine Anaplasma phagocytophilum strains isolated on the island of Sardinia (Italy) are phylogenetically related to pathogenic strains from the United States. Appl Environ Microbiol. 2005;71:6418–6422. doi: 10.1128/AEM.71.10.6418-6422.2005. PubMed DOI PMC
Lesiczka PM, Hrazdilová K, Majerová K, Fonville M, Sprong H, Hönig V, et al. The role of peridomestic animals in the eco-epidemiology of Anaplasma phagocytophilum. Microb Ecol. 2021;82:602–612. doi: 10.1007/s00248-021-01704-z. PubMed DOI
Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–274. doi: 10.1093/molbev/msu300. PubMed DOI PMC
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC
Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30:1188–1195. doi: 10.1093/molbev/mst024. PubMed DOI PMC
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–21. doi: 10.1093/sysbio/syq010. PubMed DOI
Langenwalder, D.B., Silaghi, C., Nieder, M. et al. Co-infection, reinfection and superinfection with Anaplasma phagocytophilum strains in a cattle herd based on ankA gene and multilocus sequence typing. Parasit Vectors. 2020;13:157. 10.1186/s13071-020-04032-2. PubMed PMC
Grzeszczuk A, Stańczak J. High prevalence of Anaplasma phagocytophilum infection in ticks removed from human skin in north-eastern Poland. Ann Agric Environ Med. 2006;13:45–48. PubMed
Otranto D, Dantas-Torres F, Giannelli A, Latrofa M, Cascio A, Cazzin S, et al. Ticks infesting humans in Italy and associated pathogens. Parasit Vectors. 2014;7:328. doi: 10.1186/1756-3305-7-328. PubMed DOI PMC
Audino T, Pautasso A, Bellavia V, Carta V, Ferrari A, Verna F, et al. Ticks infesting humans and associated pathogens: a cross-sectional study in a 3-year period (2017–2019) in northwest Italy. Parasit Vectors. 2021;14:1–10. doi: 10.1186/s13071-021-04603-x. PubMed DOI PMC
Matei IA, Kalmár Z, Lupşe M, D’Amico G, Ionică AM, Dumitrache MO, et al. The risk of exposure to rickettsial infections and human granulocytic anaplasmosis associated with Ixodes ricinus tick bites in humans in Romania: a multiannual study. Ticks Tick Borne Dis. 2017;8:375–378. doi: 10.1016/j.ttbdis.2016.12.013. PubMed DOI
Hagedorn P, Imhoff M, Fischer C, Domingo C, Niedrig M. Human granulocytic anaplasmosis acquired in Scotland, 2013. Emerg Infect Dis. 2014;20:1079–1081. doi: 10.3201/eid2006.131849. PubMed DOI PMC
de la Fuente J, Estrada-Peña A, Cabezas-Cruz A, Kocan KM. Anaplasma phagocytophilum uses common strategies for infection of ticks and vertebrate hosts. Trends Microbiol. 2016;24:173–180. doi: 10.1016/j.tim.2015.12.001. PubMed DOI
Kim KH, Yi J, Oh WS, Kim NH, Choi SJ, Choe PG, Kim NJ, Lee JK, Oh MD. Human granulocytic anaplasmosis, South Korea, 2013. Emerg Infect Dis. 2014;20(10):1708–11. 10.3201/eid2010.131680. PubMed PMC
Margos G. Population, genetics, taxonomy and phylogeny Borrelia burgdorrferi. Infect Genet Evol. 2012;2011:1545–63. PubMed PMC