The Role of Peridomestic Animals in the Eco-Epidemiology of Anaplasma phagocytophilum

. 2021 Oct ; 82 (3) : 602-612. [epub] 20210205

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33547531

Grantová podpora
17-16009S Grantová Agentura České Republiky
CZ.02.1.01/16_019/0000759 CePaViP

Odkazy

PubMed 33547531
DOI 10.1007/s00248-021-01704-z
PII: 10.1007/s00248-021-01704-z
Knihovny.cz E-zdroje

Anaplasma phagocytophilum is an important tick-borne zoonotic agent of human granulocytic anaplasmosis (HGA). In Europe, the Ixodes ticks are the main vector responsible for A. phagocytophilum transmission. A wide range of wild animals is involved in the circulation of this pathogen in the environment. Changes in populations of vertebrates living in different ecosystems impact the ecology of ticks and the epidemiology of tick-borne diseases. In this study, we investigated four species, Western European hedgehog (Erinaceus europaeus), northern white-breasted hedgehog (Erinaceus roumanicus), Eurasian red squirrel (Sciurus vulgaris), and the common blackbird (Turdus merula), to describe their role in the circulation of A. phagocytophilum in urban and periurban ecosystems. Ten different tissues were collected from cadavers of the four species, and blood and ear/skin samples from live blackbirds and hedgehogs. Using qPCR, we detected a high rate of A. phagocytophilum: Western European hedgehogs (96.4%), northern white-breasted hedgehogs (92.9%), Eurasian red squirrels (60%), and common blackbirds (33.8%). In the groEL gene, we found nine genotypes belonging to three ecotypes; seven of the genotypes are associated with HGA symptoms. Our findings underline the role of peridomestic animals in the ecology of A. phagocytophilum and indicate that cadavers are an important source of material for monitoring zoonotic pathogens. Concerning the high prevalence rate, all investigated species play an important role in the circulation of A. phagocytophilum in municipal areas; however, hedgehogs present the greatest anaplasmosis risk for humans. Common blackbirds and squirrels carry different A. phagocytophilum variants some of which are responsible for HGA.

Zobrazit více v PubMed

Chvostáč M, Špitalská E, Václav R, Vaculová T, Minichová L, Derdáková M (2018) Seasonal patterns in the prevalence and diversity of Tick-Borne Borrelia burgdorferi Sensu Lato, Anaplasma phagocytophilum and Rickettsia spp. in an Urban temperate forest in South Western Slovakia. Int J Environ Res Public Health 15. https://doi.org/10.3390/ijerph15050994

Stuen S, Granquist EG, Silaghi C (2013) Anaplasma phagocytophilum-a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol 4:1–33. https://doi.org/10.3389/fcimb.2013.00031 DOI

Silaghi C, Skuballa J, Thiel C, Pfister K, Petney T, Pfäffle M, Taraschewski H, Passos LMF (2012) The European hedgehog (Erinaceus europaeus) - a suitable reservoir for variants of Anaplasma phagocytophilum? Ticks Tick Borne Dis 3:49–54. https://doi.org/10.1016/j.ttbdis.2011.11.005 PubMed DOI

Matei IA, D’Amico G, Ionicǎ AM et al (2018) New records for Anaplasma phagocytophilum infection in small mammal species. Parasit Vectors 11:1–6. https://doi.org/10.1186/s13071-018-2791-y DOI

Földvári G, Jahfari S, Rigó K et al (2014) Candidatus neoehrlichia mikurensis and anaplasma phagocytophilum in urban hedgehogs. Emerg Infect Dis 20:496–497 DOI

Jahfari S, Coipan EC, Fonville M, van Leeuwen A, Hengeveld P, Heylen D, Heyman P, van Maanen C, Butler CM, Földvári G, Szekeres S, van Duijvendijk G, Tack W, Rijks JM, van der Giessen J, Takken W, van Wieren SE, Takumi K, Sprong H (2014) Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasit Vectors 7:1–11. https://doi.org/10.1186/1756-3305-7-365 DOI

Jaarsma RI, Sprong H, Takumi K, Kazimirova M, Silaghi C, Mysterud A, Rudolf I, Beck R, Földvári G, Tomassone L, Groenevelt M, Everts RR, Rijks JM, Ecke F, Hörnfeldt B, Modrý D, Majerová K, Votýpka J, Estrada-Peña A (2019) Anaplasma phagocytophilum evolves in geographical and biotic niches of vertebrates and ticks. Parasit Vectors 12:1–17. https://doi.org/10.1186/s13071-019-3583-8 PubMed DOI PMC

Svitálková Z, Haruštiaková D, Mahríková L, Berthová L, Slovák M, Kocianová E, Kazimírová M (2015) Anaplasma phagocytophilum prevalence in ticks and rodents in an urban and natural habitat in South-Western Slovakia. Parasit Vectors 8:1–12. https://doi.org/10.1186/s13071-015-0880-8 DOI

Stuen S (2007) Anaplasma phagocytophilum - the most widespread tick-borne infection in animals in Europe. Vet Res Commun 31:79–84. https://doi.org/10.1007/s11259-007-0071-y PubMed DOI

Víchová B, Majláthová V, Nováková M, Stanko M, Hviščová I, Pangrácová L, Chrudimský T, Čurlík J, Peťko B (2014) Anaplasma infections in ticks and reservoir host from Slovakia. Infect Genet Evol 22:265–272. https://doi.org/10.1016/j.meegid.2013.06.003 PubMed DOI

Baráková I, Derdáková M, Carpi G, Rosso F, Collini M, Tagliapietra V, Ramponi C, Hauffe HC, Rizzoli A (2014) Genetic and ecologic variability among Anaplasma phagocytophilum strains, Northern Italy. Emerg Infect Dis 20:1082–1085. https://doi.org/10.3201/eid2006.131023 PubMed DOI PMC

Battilani M, De Arcangeli S, Balboni A, Dondi F (2017) Genetic diversity and molecular epidemiology of Anaplasma. Infect Genet Evol 49:195–211. https://doi.org/10.1016/j.meegid.2017.01.021 PubMed DOI

Kauffmann M, Rehbein S, Hamel D et al (2017) Anaplasma phagocytophilum and Babesia spp. in roe deer (Capreolus capreolus), fallow deer (Dama dama) and mouflon (Ovis musimon) in Germany. Mol Cell Probes 31:46–54. https://doi.org/10.1016/j.mcp.2016.08.008 Epub 2016 Aug 19. PMID: 27546888 PubMed DOI

Dugat T, Lagrée AC, Maillard R, Boulouis HJ, Haddad N (2015) Opening the black box of Anaplasma phagocytophilum diversity: current situation and future perspectives. Front Cell Infect Microbiol 5:1–18. https://doi.org/10.3389/fcimb.2015.00061 DOI

Hamšíková Z, Silaghi C, Takumi K, Rudolf I, Gunár K, Sprong H, Kazimírová M (2019) Presence of roe deer affects the occurrence of anaplasma phagocytophilum ecotypes in questing ixodes ricinus in different habitat types of central Europe. Int J Environ Res Public Health 16. https://doi.org/10.3390/ijerph16234725

Heylen D, Lasters R, Adriaensen F, Fonville M, Sprong H, Matthysen E (2019) Ticks and tick-borne diseases in the city: role of landscape connectivity and green space characteristics in a metropolitan area. Sci Total Environ 670:941–949. https://doi.org/10.1016/j.scitotenv.2019.03.235 PubMed DOI

Hasle G (2013) Transport of ixodid ticks and tick-borne pathogens by migratory birds. Front Cell Infect Microbiol 4:1–6. https://doi.org/10.3389/fcimb.2013.00048 DOI

Rizzoli A, Silaghi C, Obiegala A, Rudolf I, Hubálek ZÄ›, Földvári Gá, Plantard O, Vayssier-Taussat M, Bonnet S, Å pitalská E, Kazimírová Má (2014) Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: new hazards and relevance for public health. Front Public Health 2:1–26. https://doi.org/10.3389/fpubh.2014.00251 DOI

Dziemian S, Sikora B, Piłacińska B, Michalik J, Zwolak R (2015) Ectoparasite loads in sympatric urban populations of the northern white-breasted and the European hedgehog. Parasitol Res 114:2317–2323. https://doi.org/10.1007/s00436-015-4427-x PubMed DOI PMC

Jokimäki J, Selonen V, Lehikoinen A, Kaisanlahti-Jokimäki ML (2017) The role of urban habitats in the abundance of red squirrels (Sciurus vulgaris, L.) in Finland. Urban For Urban Green 27:100–108. https://doi.org/10.1016/j.ufug.2017.06.021 DOI

Jahfari S, Ruyts SC, Frazer-Mendelewska E, Jaarsma R, Verheyen K, Sprong H (2017) Melting pot of tick-borne zoonoses: the European hedgehog contributes to the maintenance of various tick-borne diseases in natural cycles urban and suburban areas. Parasit Vectors 10:1–9. https://doi.org/10.1186/s13071-017-2065-0 DOI

Liz JS, Sumner JW, Pfister K, Brossard M (2002) PCR detection and serological evidence of granulocytic ehrlichial infection in roe deer (Capreolus capreolus) and chamois (Rupicapra rupicapra). J Clin Microbiol 40:892–897. https://doi.org/10.1128/JCM.40.3.892-897.2002 PubMed DOI PMC

Skuballa J, Petney T, Pfäffle M, Oehme R, Hartelt K, Fingerle V, Kimmig P, Taraschewski H (2012) Occurrence of different Borrelia burgdorferi sensu lato genospecies including B. afzelii, B. bavariensis, and B. spielmanii in hedgehogs (Erinaceus spp.) in Europe. Ticks Tick Borne Dis 3:8–13. https://doi.org/10.1016/j.ttbdis.2011.09.008 PubMed DOI

Szekeres S, Docters van Leeuwen A, Tóth E, Majoros G, Sprong H, Földvári G (2019) Road-killed mammals provide insight into tick-borne bacterial pathogen communities within urban habitats. Transbound Emerg Dis 66:277–286. https://doi.org/10.1111/tbed.13019 PubMed DOI

Földvári G, Rigó K, Jablonszky M, Biró N, Majoros G, Molnár V, Tóth M (2011) Ticks and the city: ectoparasites of the Northern white-breasted hedgehog (Erinaceus roumanicus) in an urban park. Ticks Tick Borne Dis 2:231–234. https://doi.org/10.1016/j.ttbdis.2011.09.001 PubMed DOI

Hasle G, Bjune G, Edvardsen E, Jakobsen C, Linnehol B, Røer JE, Mehl R, Røed KH, Pedersen J, Leinaas HP (2009) Transport of ticks by migratory passerine birds to Norway. J Parasitol 95:1342–1351. https://doi.org/10.1645/GE-2146.1 PubMed DOI

Capligina V, Salmane I, Keišs O, Vilks K, Japina K, Baumanis V, Ranka R (2014) Prevalence of tick-borne pathogens in ticks collected from migratory birds in Latvia. Ticks Tick Borne Dis 5:75–81. https://doi.org/10.1016/j.ttbdis.2013.08.007 PubMed DOI

Heylen D, Fonville M, Docters Van Leeuwen A et al (2017) Pathogen communities of songbird-derived ticks in Europe’s low countries. Parasit Vectors 10:1–12. https://doi.org/10.1186/s13071-017-2423-y DOI

Šťastný K, Hudec K (2011) Ptáci 3/I. Academia, II Fauna. ČR

Wilson DE, Mittermeier RA, Ruff S, et al (2016) Handbook of the Mammals of the World: Lagomorphs and Rodents I

Wilson DE, Mittermeier RA, Ruff S et al (2018) Handbook of the Mammals of the World: Insectivores, sloths and colungos. Lynx

Alberti A, Zobba R, Chessa B, Addis MF, Sparagano O, Pinna Parpaglia ML, Cubeddu T, Pintori G, Pittau M (2005) Equine and canine Anaplasma phagocytophilum strains isolated on the island of Sardinia (Italy) are phylogenetically related to pathogenic strains from the United States. Appl Environ Microbiol 71:6418–6422. https://doi.org/10.1128/AEM.71.10.6418-6422.2005 PubMed DOI PMC

Liz JS (2002) Ehrlichiosis in Ixodes ricinus and wild mammals. Int J Med Microbiol 291(Suppl):104–105 DOI

Glez-Peña D, Gómez-Blanco D, Reboiro-Jato M et al (2010) ALTER: program-oriented conversion of DNA and protein alignments. Nucleic Acids Res 38:14–18. https://doi.org/10.1093/nar/gkq321 DOI

Katoh K, Rozewicki J, Yamada KD MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization [published online ahead of print September 6, 2017]. Br Bioinform

Dugat T, Chastagner A, Lagrée AC, Petit E, Durand B, Thierry S, Corbière F, Verheyden H, Chabanne L, Bailly X, Leblond A, Vourc’h G, Boulouis HJ, Maillard R, Haddad N (2014) A new multiple-locus variable-number tandem repeat analysis reveals different clusters for Anaplasma phagocytophilum circulating in domestic and wild ruminants. Parasit Vectors 7:1–11. https://doi.org/10.1186/1756-3305-7-439 DOI

Blazejak K, Janecek E, Strube C (2017) A 10-year surveillance of Rickettsiales (Rickettsia spp. and Anaplasma phagocytophilum) in the city of Hanover, Germany, reveals Rickettsia spp. as emerging pathogens in ticks. Parasit Vectors 10:1–10. https://doi.org/10.1186/s13071-017-2537-2 DOI

Huhn C, Winter C, Wolfsperger T, Wüppenhorst N, Strašek Smrdel K, Skuballa J, Pfäffle M, Petney T, Silaghi C, Dyachenko V, Pantchev N, Straubinger RK, Schaarschmidt-Kiener D, Ganter M, Aardema ML, von Loewenich FD (2014) Analysis of the population structure of Anaplasma phagocytophilum using multilocus sequence typing. PLoS One 9:e93725. https://doi.org/10.1371/journal.pone.0093725 PubMed DOI PMC

Grochowska A, Milewski R, Pancewicz S, Dunaj J, Czupryna P, Milewska AJ, Róg-Makal M, Grygorczuk S, Moniuszko-Malinowska A (2020) Comparison of tick-borne pathogen prevalence in Ixodes ricinus ticks collected in urban areas of Europe. Sci Rep 10:1–9. https://doi.org/10.1038/s41598-020-63883-y DOI

Pfäffle M, Petney T, Skuballa J, Taraschewski H (2011) Comparative population dynamics of a generalist (Ixodes ricinus) and specialist tick (I. hexagonus) species from European hedgehogs. Exp Appl Acarol 54:151–164. https://doi.org/10.1007/s10493-011-9432-x PubMed DOI

Norte AC, Margos G, Becker NS, Albino Ramos J, Núncio MS, Fingerle V, Araújo PM, Adamík P, Alivizatos H, Barba E, Barrientos R, Cauchard L, Csörgő T, Diakou A, Dingemanse NJ, Doligez B, Dubiec A, Eeva T, Flaisz B, Grim T, Hau M, Heylen D, Hornok S, Kazantzidis S, Kováts D, Krause F, Literak I, Mänd R, Mentesana L, Morinay J, Mutanen M, Neto JM, Nováková M, Sanz JJ, Pascoal da Silva L, Sprong H, Tirri IS, Török J, Trilar T, Tyller Z, Visser ME, Lopes de Carvalho I (2020) Host dispersal shapes the population structure of a tick-borne bacterial pathogen. Mol Ecol 29:485–501. https://doi.org/10.1111/mec.15336 PubMed DOI

Aronson MFJ, Lepczyk CA, Evans KL, et al (2017) Biodiversity in the city: key challenges for urban green space management. In: Front. Ecol. Environ. https://esajournals.onlinelibrary.wiley.com/doi/epdf/10.1002/fee.1480 . Accessed 5 Aug 2020

Santos AS, de Bruin A, Veloso AR, Marques C, Pereira da Fonseca I, de Sousa R, Sprong H, Santos-Silva MM (2018) Detection of Anaplasma phagocytophilum, Candidatus Neoehrlichia sp., Coxiella burnetii and Rickettsia spp. in questing ticks from a recreational park, Portugal. Ticks Tick Borne Dis 9:1555–1564. https://doi.org/10.1016/j.ttbdis.2018.07.010 PubMed DOI

Hoffman T, Wilhelmsson P, Barboutis C, Fransson T, Jaenson TGT, Lindgren PE, von Loewenich FD, Lundkvist Å, Olsen B, Salaneck E (2020) A divergent Anaplasma phagocytophilum variant in an Ixodes tick from a migratory bird; Mediterranean basin. Infect Ecol Epidemiol 10. https://doi.org/10.1080/20008686.2020.1729653

Rézouki C, Dozières A, Le Coeur C et al (2014) A viable population of the European red squirrel in an urban park. PLoS One 9:1–7. https://doi.org/10.1371/journal.pone.0105111 DOI

Krawczyk AI, Van Leeuwen AD, Jacobs-Reitsma W et al (2015) Presence of zoonotic agents in engorged ticks and hedgehog faeces from Erinaceus europaeus in (sub) urban areas. Parasit Vectors 8:210. https://doi.org/10.1186/s13071-015-0814-5 PubMed DOI PMC

Skuballa J, Petney T, Pfäffle M, Taraschewski H (2010) Molecular detection of Anaplasma phagocytophilum in the European hedgehog (Erinaceus europaeus) and its ticks. Vector-Borne Zoonotic Dis 10:1055–1057. https://doi.org/10.1089/vbz.2009.0150 PubMed DOI

Mysterud A, Stigum VM, Jaarsma RI, Sprong H (2019) Genospecies of Borrelia burgdorferi sensu lato detected in 16 mammal species and questing ticks from northern Europe. Sci Rep 9. https://doi.org/10.1038/s41598-019-41686-0

von Loewenich FD, Seckert C, Dauber E et al (2020) Prosthetic valve endocarditis with Bartonella washoensis in a human European patient and its detection in red squirrels (Sciurus vulgaris). J Clin Microbiol 58. https://doi.org/10.1128/JCM.01404-19

Honig V, Carolan HE, Vavruskova Z, Massire C, Mosel MR, Crowder CD, Rounds MA, Ecker DJ, Ruzek D, Grubhoffer L, Luft BJ, Eshoo MW (2017) Broad-range survey of vector-borne pathogens and tick host identification of Ixodes ricinus from Southern Czech Republic. FEMS Microbiol Ecol 93:1–13. https://doi.org/10.1093/femsec/fix129 DOI

Buczek AM, Buczek W, Buczek A, Bartosik K (2020) The potential role of migratory birds in the rapid spread of ticks and tick-borne pathogens in the changing climatic and environmental conditions in europe. Int J Environ Res Public Health 17. https://doi.org/10.3390/ijerph17062117

Matei IA, Estrada-Peña A, Cutler SJ, Vayssier-Taussat M, Varela-Castro L, Potkonjak A, Zeller H, Mihalca AD (2019) A review on the eco-epidemiology and clinical management of human granulocytic anaplasmosis and its agent in Europe. Parasit Vectors 12:599 DOI

Dondi F, Russo S, Agnoli C, Mengoli N, Balboni A, Alberti A, Battilani M (2014) Clinicopathological and molecular findings in a case of canine Anaplasma phagocytophilum infection in Northern Italy. Sci World J 2014:1–6. https://doi.org/10.1155/2014/810587 DOI

Smrdel KS, Serdt M, Duh D, Knap N, Županc T (2010) Anaplasma phagocytophilum in ticks in Slovenia. Parasit Vectors 3:1–5. https://doi.org/10.1186/1756-3305-3-102 DOI

Klitgaard K, Kjær LJ, Isbrand A, Hansen MF, Bødker R (2019) Multiple infections in questing nymphs and adult female Ixodes ricinus ticks collected in a recreational forest in Denmark. Ticks Tick Borne Dis 10:1060–1065. https://doi.org/10.1016/j.ttbdis.2019.05.016 PubMed DOI

Margos G (2012) Population, genetics, taxonomy and phylogeny borrelia burgdorrferi 2011:1545–1563. https://doi.org/10.1016/j.meegid.2011.07.022.Population

Mukhacheva TA, Shaikhova DR, Kovalev SY (2019) Asian isolates of Anaplasma phagocytophilum: multilocus sequence typing. Ticks Tick Borne Dis 10:775–780. https://doi.org/10.1016/j.ttbdis.2019.03.011 PubMed DOI

Mukhacheva TA, Shaikhova DR, Kovalev SY, von Loewenich FD (2020) Phylogeographical diversity of Anaplasma phagocytophilum in the Asian part of Russia based on multilocus sequence typing and analysis of the ankA gene. Infect Genet Evol 80:104234. https://doi.org/10.1016/j.meegid.2020.104234 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...