Host dispersal shapes the population structure of a tick-borne bacterial pathogen

. 2020 Feb ; 29 (3) : 485-501. [epub] 20200109

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31846173

Birds are hosts for several zoonotic pathogens. Because of their high mobility, especially of longdistance migrants, birds can disperse these pathogens, affecting their distribution and phylogeography. We focused on Borrelia burgdorferi sensu lato, which includes the causative agents of Lyme borreliosis, as an example for tick-borne pathogens, to address the role of birds as propagation hosts of zoonotic agents at a large geographical scale. We collected ticks from passerine birds in 11 European countries. B. burgdorferi s.l. prevalence in Ixodes spp. was 37% and increased with latitude. The fieldfare Turdus pilaris and the blackbird T. merula carried ticks with the highest Borrelia prevalence (92 and 58%, respectively), whereas robin Erithacus rubecula ticks were the least infected (3.8%). Borrelia garinii was the most prevalent genospecies (61%), followed by B. valaisiana (24%), B. afzelii (9%), B. turdi (5%) and B. lusitaniae (0.5%). A novel Borrelia genospecies "Candidatus Borrelia aligera" was also detected. Multilocus sequence typing (MLST) analysis of B. garinii isolates together with the global collection of B. garinii genotypes obtained from the Borrelia MLST public database revealed that: (a) there was little overlap among genotypes from different continents, (b) there was no geographical structuring within Europe, and (c) there was no evident association pattern detectable among B. garinii genotypes from ticks feeding on birds, questing ticks or human isolates. These findings strengthen the hypothesis that the population structure and evolutionary biology of tick-borne pathogens are shaped by their host associations and the movement patterns of these hosts.

Behavioural Ecology Department of Biology Ludwig Maximilians University of Munich Planegg Martinsried Germany

Behavioural Ecology Group Department of Systematic Zoology and Ecology Eötvös Loránd University Budapest Hungary

Center for Vector and Infectious Diseases Research National Institute of Health Dr Ricardo Jorge Lisbon Portugal

CIBIO InBIO Research Center in Biodiversity and Genetic Resources University of Porto Porto Portugal

CNRS Department of Biometry and Evolutionary Biology University Lyon 1 University of Lyon Villeurbanne France

Czech Union for Nature Conservation Břeclav Czech Republic

Departamento de Ecología Evolutiva Museo Nacional de Ciencias Naturales Madrid Spain

Department of Anatomy Cell and Developmental Biology Eötvös Loránd University Budapest Hungary

Department of Animal Ecology Netherlands Institute of Ecology Wageningen The Netherlands

Department of Biodiversity Ecology and Evolution Universidad Complutense de Madrid Madrid Spain

Department of Biology and Wildlife Diseases Faculty of Veterinary Hygiene and Ecology University of Veterinary and Pharmaceutical Sciences Brno Brno Czech Republic

Department of Biology Faculty of Medicine Masaryk University Brno Czech Republic

Department of Biology Molecular Ecology and Evolution Lab University of Lund Lund Sweden

Department of Biology University of Turku Turku Finland

Department of Ecology and Evolution Animal Ecology Evolutionary Biology Centre Uppsala University Uppsala Sweden

Department of Ecology and Evolutionary Biology Princeton University Princeton NJ USA

Department of Ecology and Genetics University of Oulu Oulu Finland

Department of Life Sciences CFE Centre for Functional Ecology Science for People and the Planet University of Coimbra Coimbra Portugal

Department of Parasitology and Zoology University of Veterinary Medicine Budapest Hungary

Department of Zoology Palacky University Olomouc Czech Republic

Department of Zoology University of Tartu Tartu Estonia

Division of Evolutionary Biology Faculty of Biology LMU Munich Planegg Martinsried Germany

Evolutionary Physiology Laboratory Max Planck Institute for Ornithology Seewiesen Germany

Finnish Museum of Natural History University of Helsinki Helsinki Finland

Forest Research Institute Hellenic Agricultural Organization DEMETER Thesaloniki Greece

German National Reference Centre for Borrelia Oberschleissheim Germany

Hellenic Bird Ringing Center Athens Greece

Hungarian Biodiversity Research Society Budapest Hungary

Instituto Cavanilles de Biodiversidad y Biología Evolutiva Universidad de Valencia Valencia Spain

Interuniversity Institute for Biostatistics and Statistical Bioinformatics Hasselt University Diepenbeek Belgium

Laboratory of Parasitology and Parasitic Diseases Faculty of Health Sciences School of Veterinary Medicine Aristotle University of Thessaloniki Thessaloniki Greece

MARE Marine and Environmental Sciences Centre University of Coimbra Coimbra Portugal

Museum and Institute of Zoology Polish Academy of Sciences Warszawa Poland

Museum of the Moravian Wallachia Region Vsetín Czech Republic

National Institute of Public Health and Environment Laboratory for Zoonoses and Environmental Microbiology Bilthoven The Netherlands

Ócsa Bird Ringing Station Ócsa Hungary

School of Biological Sciences University of Aberdeen Aberdeen United Kingdom

Slovenian Museum of Natural History Ljubljana Slovenia

Zobrazit více v PubMed

Amore, G., Tomassone, L., Grego, E., Ragagli, C., Bertolotti, L., Nebbia, P., … Mannelli, A. (2007). Borrelia lusitaniae in immature Ixodes ricinus (Acari: Ixodidae) feeding on common wall lizards in Tuscany, central Italy. Journal of Medical Entomology, 44(2), 303-307.

Bairlein, F., Norris, D. R., Nagel, R., Bulte, M., Voigt, C. C., Fox, J. W., … Schmaljohann, H. (2012). Cross-hemisphere migration of a 25 g songbird. Biology Letters, 8(4), 505-507. https://doi.org/10.1098/rsbl.2011.1223

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 48. https://doi.org/10.18637/jss.v067.i01

Bellet-Edimo, R., Betschart, B., & Gern, L. (2005). Frequency and efficiency of transovarial and subsequent transtadial transmission of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks. Bulletin de la Societé Neuchâteloise des Sciences Naturelles, 128, 117-125.

Bouckaert, R., Vaughan, T. G., Barido-Sottani, J., Duchêne, S., Fourment, M., Gavryushkina, A., … Drummond, A. J. (2019). BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLOS Computational Biology, 15(4), e1006650. https://doi.org/10.1371/journal.pcbi.1006650

Brisson, D., Drecktrah, D., Eggers, C., & Samuels, D. S. (2012). Genetics of Borrelia burgdorferi. Annual Review of Genetics, 46, 515-536.

Brisson, D., & Dykhuizen, D. E. (2004). ospC diversity in Borrelia burgdorferi: Different hosts are different niches. Genetics, 168(2), 713-722.

Casjens, S. R., Fraser-Liggett, C. M., Mongodin, E. F., Qiu, W.-G., Dunn, J. J., Luft, B. J., & Schutzer, S. E. (2011). Whole genome sequence of an unusual Borrelia burgdorferi sensu lato isolate. Journal of Bacteriology, 193(6), 1489-1490. https://doi.org/10.1128/jb.01521-10

Chitimia-Dobler, L., Rieß, R., Kahl, O., Wöfel, S., Dobler, G., Nava, S., & Estrada-Peña, A. (2018). Ixodes inopinatus - Occurring also outside the Mediterranean region. Ticks and Tick-borne Diseases, 9, 196-200. https://doi.org/10.1016/j.ttbdis.2017.09.004

Comstedt, P., Jakobsson, T., & Bergström, S. (2011). Global ecology and epidemiology of Borrelia garinii spirochetes. Infection Ecology and Epidemiology, 1, 9545. https://doi.org/10.3402/iee.v1i0.9545

De Sousa, R., Lopes de Carvalho, I., Santos, A. S., Bernardes, C., Milhano, N., Jesus, J., … Núncio, M. S. (2012). The role of Teira dugesii lizard as potential host for Ixodes ricinus tick-borne pathogens. Applied and Environmental Microbiology, 78, 3767-3769. https://doi.org/10.1128/aem.07945-11

Diakou, A., Norte, A. C., Lopes de Carvalho, I., Núncio, S., Nováková, M., Kautman, M., … Literák, I. (2016). Ticks and tick-borne pathogens in wild birds in Greece. Parasitology Research, 115(5), 2011-2016. https://doi.org/10.1007/s00436-016-4943-3

Didelot, X., Lawson, D., Darling, A., & Falush, D. (2010). Inference of homologous recombination in bacteria using whole-genome sequences. Genetics, 186(4), 1435-1449. https://doi.org/10.1534/genetics.110.120121

Dsouli, N., Younsi-Kabachii, H., Postic, D., Nouira, S., Gern, L., & Bouattour, A. (2006). Reservoir role of the lizard, Psammodromus algirus, in the transmission cycle of Borrelia burgdorferi sensu lato (Spirochaetacea) in Tunisia. Journal of Medical Entomology, 43, 737-742.

Dubska, L., Literak, I., Kocianova, E., Taragelova, V., Sverakova, V., & Sychra, O. (2011). Synanthropic birds influence the distribution of Borrelia species: Analysis of Ixodes ricinus ticks feeding on passerine birds. Applied and Environmental Microbiology, 77, 1115-1117. https://doi.org/10.1128/aem.02278-10

Dubska, L., Literak, I., Kocianova, E., Taragelova, V., & Sychra, O. (2009). Differential role of passerine birds in distribution of Borrelia spirochetes, based on data from ticks collected from birds during the postbreeding migration period in central Europe. Applied and Environmental Microbiology, 75(3), 596-602. https://doi.org/10.1128/AEM.01674-08

EDC (2018). European Centre for Disease Prevention and Control and European Food Safety Authority. Mosquito maps [internet]. Stockholm, Sweden: ECDC. Retrieved from https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/tick-maps

Eisen, L., & Lane, R. S. (2002). Vectors of Borrelia burgdorferi sensu lato. In J. Gray, O. Kahl, R. S. Lane, & G. Stanek (Eds.), Lyme borreliosis: Biology, epidemiology and control (pp. 91-115). New York, NY: CAB Publishing.

Estrada-Peña, A., Bouattour, A., Camicas, J.-L., & Walker, A. R. (2004). Ticks of domestic animals in the Mediterranean Region - A guide to identification of species. Zaragoza, Spain: University of Zaragoza.

Estrada-Peña, A., D'Amico, G., Palomar, A. M., Dupraz, M., Fonville, M., Heylen, D., … Mihalca, A. D. (2017). A comparative test of ixodid tick identification by a network of European researchers. Ticks and Tick Borne Diseases, 8(4), 540-546. https://doi.org/10.1016/j.ttbdis.2017.03.001

Estrada-Peña, A., Nava, S., & Petney, T. (2014). Description of all the stages of Ixodes inopinatus n. sp. (Acari: Ixodidae). Ticks and Tick Borne Diseases, 5, 734-743. https://doi.org/10.1016/j.ttbdis.2014.05.003

Francisco, A. P., Bugalho, M., Ramirez, M., & Carriço, J. A. (2009). Global optimal eBURST analysis of multilocus typing data using a graphic matroid approach. BMC Bioinformatics, 10(1), 152. https://doi.org/10.1186/1471-2105-10-152

Fukunaga, M., Hamase, A., Okada, K., Inoue, H., Tsuruta, Y., Miyamoto, K., & Nakao, M. (1996). Characterization of spirochetes isolated from ticks (Ixodes tanuki, Ixodes turdus, and Ixodes columnae) and comparison of the sequences with those of Borrelia burgdorferi sensu lato strains. Applied and Environmental Microbiology, 62(7), 2338-2344.

Gómez-Díaz, E., Boulinier, T., Sertour, N., Cornet, M., Ferquel, E., & McCoy, K. D. (2011). Genetic structure of marine Borrelia garinii and population admixture with the terrestrial cycle of Lyme borreliosis. Environmental Microbiology, 13(9), 2453-2467. https://doi.org/10.1111/j.1462-2920.2011.02515.x

Gray, J. S., Dautel, H., Estrada-Peña, A., Kahl, O., & Lindgren, E. (2009). Effects of climate change on ticks and tick-borne diseases in Europe. Interdisciplinary Perspectives on Infectious Diseases, 2009, 593232. https://doi.org/10.1155/2009/593232

Gylfe, A., Bergstrom, S., Lunstrom, J., & Olsen, B. (2000). Epidemiology - Reactivation of Borrelia infection in birds. Nature, 403(6771), 724-725.

Hanincova, K., Taragelova, V., Koci, J., Schafer, S. M., Hails, R., Ullmann, A. J., … Kurtenbach, K. (2003). Association of Borrelia garinii and B. valaisiana with songbirds in Slovakia. Applied and Environmental Microbiology, 69, 2825-2830. https://doi.org/10.1128/aem.69.5.2825-2830.2003

Hasegawa, M., Kishino, H., & Yano, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22(2), 160-174. https://doi.org/10.1007/BF02101694

Hasle, G., Bjune, G. A., Midthjell, L., Røed, K. H., & Leinaas, H. P. (2011). Transport of Ixodes ricinus infected with Borrelia species to Norway by northward-migrating passerine birds. Ticks and Tick-borne Diseases, 2(1), 37-43. https://doi.org/10.1016/j.ttbdis.2010.10.004

Heylen, D. (2016). Ecological interactions between songbirds, ticks, and Borrelia burgdorferi s.l. in Europe. In M. A. H. Braks, S. E. van Wieren, W. Takken, & H. Sprong (Eds.), Ecology and control of vector-borne diseases (Vol. 4, pp. 91-101). Wageningen, Netherlands: Wageningen Academic Publishers.

Heylen, D., Fonville, M., Docters van Leeuwen, A., Stroo, A., Duisterwinkel, M., van Wieren, S., … Sprong, H. (2017). Pathogen communities of songbird-derived ticks in Europe's low countries. Parasites & Vectors, 10(1), 497. https://doi.org/10.1186/s13071-017-2423-y

Heylen, D., Krawczyk, A., Lopes de Carvalho, I., Núncio, M. S., Sprong, H., & Norte, A. C. (2017). Bridging of cryptic Borrelia cycles in European songbirds. Environmental Microbiology, 19, 1857-1867. https://doi.org/10.1111/1462-2920.13685

Heylen, D., Matthysen, E., Fonville, M., & Sprong, H. (2014). Songbirds as general transmitters but selective amplifiers of Borrelia burgdorferi sensu lato genotypes in Ixodes rinicus ticks. Environmental Microbiology, 16(9), 2859-2868. https://doi.org/10.1111/1462-2920.12304

Heylen, D. J. A., Sprong, H., Krawczyk, A., Van Houtte, N., Genné, D., Gomez-Chamorro, A., … Voordouw, M. J. (2017). Inefficient co-feeding transmission of Borrelia afzelii in two common European songbirds. Scientific Reports, 7, 39596. https://doi.org/10.1038/srep39596

Heylen, D., Sprong, H., van Oers, K., Fonville, M., Leirs, H., & Matthysen, E. (2014). Are the specialized bird ticks, Ixodes arboricola and I. frontalis, competent vectors for Borrelia burgdorferi sensu lato? Environmental Microbiology, 16(4), 1081-1089. https://doi.org/10.1111/1462-2920.12332

Heylen, D., Tijsse, E., Fonville, M., Matthysen, E., & Sprong, H. (2013). Transmission dynamics of Borrelia burgdorferi s.l. in a bird tick community. Environmental Microbiology, 15(2), 663-673. https://doi.org/10.1111/1462-2920.12059

Hillyard, P. D. (1996). Ticks of North-West Europe. London, UK: Backhuys Publishers.

Hoen, A. G., Margos, G., Bent, S. J., Diuk-Wasser, M. A., Barbour, A., Kurtenbach, K., & Fish, D. (2009). Phylogeography of Borrelia burgdorferi in the eastern United States reflects multiple independent Lyme disease emergence events. Proceedings of the National Academy of Sciences of the United States of America, 106(35), 15013-15018. https://doi.org/10.1073/pnas.0903810106

Hubalek, Z. (2009). Epidemiology of Lyme borreliosis. Current Problems in Dermatology, 37, 31-50. https://doi.org/10.1159/000213069

Humair, P.-F., & Gern, L. (2000). The wild hidden face of Lyme borreliosis in Europe. Microbes and Infection, 2(8), 915-922. https://doi.org/10.1016/S1286-4579(00)00393-2

Humair, P. F., Postic, D., Wallich, R., & Gern, L. (1998). An avian reservoir (Turdus merula) of the Lyme borreliosis spirochetes. International Journal of Medical Microbiology Virology Parasitology Infectious Diseases, 287, 521-538. https://doi.org/10.1016/S0934-8840(98)80194-1

Jacquot, M., Gonnet, M., Ferquel, E., Abrial, D., Claude, A., Gasqui, P., … Bailly, X. (2014). Comparative population genomics of the Borrelia burgdorferi species complex reveals high degree of genetic isolation among species and underscores benefits and constraints to studying intra-specific epidemiological processes. PLoS ONE, 9(4), e94384. https://doi.org/10.1371/journal.pone.0094384

Johnson, B. J., Happ, C. M., Mayer, L. W., & Piesman, J. (1992). Detection of Borrelia burgdorferi in ticks by species-specific amplification gene. American Journal of Tropical Medicine and Hygiene, 47, 730-741.

Jolley, K. A., & Maiden, M. C. (2010). BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinformatics, 11(1), 595. https://doi.org/10.1186/1471-2105-11-595

Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772-780. https://doi.org/10.1093/molbev/mst010

Kipp, S., Goedecke, A., Dorn, W., Wilske, B., & Fingerle, V. (2006). Role of birds in Thuringia, Germany, in the natural cycle of Borrelia burgdorferi sensu lato, the Lyme disease spirochaete. International Journal of Medical Microbiology, 296(Suppl 40), 125-128. https://doi.org/10.1016/j.ijmm.2006.01.001

Kurtenbach, K., Carey, D., Hoodless, A. N., Nuttall, P. A., & Randolph, S. E. (1998). Competence of pheasants as reservoirs for Lyme disease spirochetes. Journal of Medical Entomology, 35(1), 77-81. https://doi.org/10.1093/jmedent/35.1.77

Kurtenbach, K., De Michelis, S., Etti, S., Schafer, S. M., Sewell, H. S., Brade, V., & Kraiczy, P. (2002). Host association of Borrelia burgdorferi sensu lato - The key role of host complement. Trends in Microbiology, 10(2), 74-79. https://doi.org/10.1016/S0966-842X(01)02298-3

Kurtenbach, K., Gatewood, A., Bent, S. J., Vollmer, S. A., Ogden, N. H., & Margos, G. (2010). Population biology of Lyme Borreliosis spirochetes. In D. A. Robinson, D. Falush, & E. J. Feil (Eds.), Bacterial population genetics in infectious disease. New Jersey: John Wiley & Sons, Inc.

Kurtenbach, K., Hanincova, K., Tsao, J. I., Margos, G., Fish, D., & Ogden, N. H. (2006). Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nature Reviews Microbiology, 4(9), 660-669. https://doi.org/10.1038/nrmicro1475

Kurtenbach, K., Peacey, M., Rijpkema, S. G., Hoodless, A. N., Nuttall, P. A., & Randolph, S. E. (1998). Differential transmission of the genospecies of Borrelia burgdorferi sensu lato by game birds and small rodents in England. Applied and Environmental Microbiology, 64, 1169-1174. https://doi.org/10.1128/AEM.64.4.1169-1174.1998

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82, 1-26.

Laaksonen, M., Sajanti, E., Sormunen, J. J., Penttinen, R., Hanninen, J., Ruohomaki, K., … Klemola, T. (2017). Crowdsourcing-based nationwide tick collection reveals the distribution of Ixodes ricinus and I. persulcatus and associated pathogens in Finland. Emerging Microbes and Infection, 6(5), e31. https://doi.org/10.1038/emi.2017.17

LoGiudice, K., Ostfeld, R. S., Schmidt, K. A., & Keesing, F. (2003). The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk. Proceedings of the National Academy of Sciences of the United States of America, 100(2), 567-571. https://doi.org/10.1073/pnas.0233733100

Lommano, E., Bertaiola, L., Dupasquier, C., & Gern, L. (2012). Infections and coinfections of questing Ixodes ricinus ticks by emerging zoonotic pathogens in Western Switzerland. Applied and Environmental Microbiology, 78(13), 4606-4612. https://doi.org/10.1128/aem.07961-11

Lopes de Carvalho, I., Zé-Zé, L., Alves, A., Pardal, S., Lopes, R. J., Mendes, L., & Núncio, M. S. (2012). Borrelia garinii and Francisella tularensis subsp holarctica detected in migratory shorebirds in Portugal. European Journal of Wildlife Research, 58, 857-861. https://doi.org/10.1007/s10344-012-0617-3

Mangold, A. J., Bargues, M. D., & Mas-Coma, S. (1998). Mitochondrial 16S rDNA sequences and phylogenetic relationships of species of Rhipicephalus and other tick genera among Metastriata (Acari: Ixodidae). Parasitology Research, 84(6), 478-484. https://doi.org/10.1007/s004360050433

Mannelli, A., Nebbia, P., Tramuta, C., Grego, E., Tomassone, L., Ainardi, R., … Meneguz, P. G. (2005). Borrelia burgdorferi sensu lato infection in larval Ixodes ricinus (Acari: Ixodidae) feeding on blackbirds in northwestern Italy. Journal of Medical Entomology, 42(2), 168-175.

Margos, G., Chu, C. Y., Takano, A., Jiang, B. G., Liu, W., Kurtenbach, K., … Kawabata, H. (2015). Borrelia yangtzensis sp. nov. a rodent associated species in Asia is related to B. valaisiana. International Journal of Systematic and Evolutionary Microbiology, 65, 3836-3840. https://doi.org/10.1099/ijsem.0.000491

Margos, G., Gatewood, A. G., Aanensen, D. M., Hanincova, K., Terekhova, D., Vollmer, S. A., … Kurtenbach, K. (2008). MLST of housekeeping genes captures geographic population structure and suggests a European origin of Borrelia burgdorferi. Proceedings of the National Academy of Sciences, 105(25), 8730-8735. https://doi.org/10.1073/pnas.0800323105

Margos, G., Tsao, J. I., Castillo-Ramírez, S., Girard, Y. A., Hamer, S. A., Hoen, A. G., … Ogden, N. H. (2012). Two boundaries separate Borrelia burgdorferi populations in North America. Applied and Environmental Microbiology, 78(17), 6059-6067. https://doi.org/10.1128/aem.00231-12

Margos, G., Vollmer, S. A., Ogden, N. H., & Fish, D. (2011). Population genetics, taxonomy, phylogeny and evolution of Borrelia burgdorferi sensu lato. Infection, Genetics and Evolution, 11(7), 1545-1563. https://doi.org/10.1016/j.meegid.2011.07.022

McCoy, K. D., Chapuis, E., Tirard, C., Boulinier, T., Michalakis, Y., Bohec, C. L., … Gauthier-Clerc, M. (2005). Recurrent evolution of host-specialized races in a globally distributed parasite. Proceedings of the Royal Society B: Biological Sciences, 272(1579), 2389-2395. https://doi.org/10.1098/rspb.2005.3230

Michalik, J., Wodecka, B., Skoracki, M., Sikora, B., & Stanczak, J. (2008). Prevalence of avian-associated Borrelia burgdorferi s.l. genospecies in Ixodes ricinus ticks collected from blackbirds (Turdus merula) and song thrushes (T. philomelos). International Journal of Medical Microbiology, 298, 129-138.

Miyamoto, K., & Masuzawa, T. (2002). Ecology of Borrelia burgdorferi sensu lato in Japan and East Asia. In J. Gray, O. Kahl, R. S. Lane, & G. Stanek (Eds.), Lyme borreliosis: Biology, epidemiology and control (pp. 201-222). Oxford, UK: CABI International.

Munro, H. J., Ogden, N. H., Lindsay, L. R., Robertson, G. J., Whitney, H., & Lang, A. S. (2017). Evidence for Borrelia bavariensis infections of Ixodes uriae within seabird colonies of the North Atlantic Ocean. Applied and Environmental Microbiology, 83, e01087-e1117. https://doi.org/10.1128/aem.01087-17

Nei, M. (1987). Molecular evolutionary genetics. New York, NY: Columbia University Press.

Norte, A. C., Alves da Silva, A., Alves, J., da Silva, L. P., Núncio, M. S., Escudero, R., & Lopes de Carvalho, I. (2014). The importance of lizards and small mammals as reservoirs for Borrelia lusitaniae in Portugal. Environmental Microbiology Reports, 7, 188-193. https://doi.org/10.1111/1758-2229.12218

Norte, A. C., da Silva, L. P., Tenreiro, P., Felgueiras, M. S., Araújo, P. M., Lopes, P. B., … Lopes de Carvalho, I. (2015). Patterns of tick infestation and their Borrelia burgdorferi s.l. infection in wild birds in Portugal. Ticks and Tick-borne Diseases, 6, 743-750. https://doi.org/10.1016/j.ttbdis.2015.06.010

Norte, A., de Carvalho, I., Ramos, J., Gonçalves, M., Gern, L., & Núncio, M. (2012). Diversity and seasonal patterns of ticks parasitizing wild birds in western Portugal. Experimental and Applied Acarology, 58, 327-339. https://doi.org/10.1007/s10493-012-9583-4

Norte, A. C., Lopes de Carvalho, I., Núncio, M. S., Ramos, J. A., & Gern, L. (2013). Blackbirds Turdus merula as competent reservoirs for Borrelia turdi and Borrelia valaisiana in Portugal: Evidence from a xenodiagnostic experiment. Environmental Microbiology Reports, 5, 604-607. https://doi.org/10.1111/1758-2229.12058

Norte, A. C., Ramos, J. A., Gern, L., Núncio, M. S., & Lopes de Carvalho, I. (2013). Birds as reservoirs for Borrelia burgdorferi s.l. in western Europe: Circulation of B. turdi and other genospecies in bird-tick cycles in Portugal. Environmental Microbiology, 15, 386-397. https://doi.org/10.1111/j.1462-2920.2012.02834.x

Ogden, N. H., Lindsay, L. R., Hanincova, K., Barker, I. K., Bigras-Poulin, M., Charron, D. F., … Thompson, R. A. (2008). Role of migratory birds in introduction and range expansion of Ixodes scapularis ticks and of Borrelia burgdorferi and Anaplasma phagocytophilum in Canada. Applied and Environmental Microbiology, 74(6), 1780-1790. https://doi.org/10.1128/AEM.01982-07

Olsen, B., Jaenson, T. G. T., & Bergstrom, S. (1995). Prevalence of Borrelia burgdorferi sensu lato-infected ticks on migrating birds. Applied and Environmental Microbiology, 61(8), 3082-3087.

Palomar, A. M., Portillo, A., Santibáñez, P., Mazuelas, D., Roncero, L., Gutiérrez, O., & Oteo, J. A. (2016). Presence of Borrelia turdi and Borrelia valaisiana (Spirochaetales: Spirochaetaceae) in ticks removed from birds in the North of Spain, 2009-2011. Journal of Medical Entomology, 54, 243-246.

Paradis, E. (2010). pegas: An R package for population genetics with an integrated-modular approach. Bioinformatics, 26(3), 419-420. https://doi.org/10.1093/bioinformatics/btp696

Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics, 20(2), 289-290. https://doi.org/10.1093/bioinformatics/btg412

Pérez-Eid, C. (2007). Les tiques: Identification, biologie, importance médicale et veterinaire. Lavoisier: Editions Medicales Internationales TEC&DOC.

Poupon, M.-A., Lommano, E., Humair, P.-F., Douet, V., Rais, O., Schaad, M., … Gern, L. (2006). Prevalence of Borrelia burgdorferi sensu lato in ticks collected from migratory birds in Switzerland. Applied and Environmental Microbiology, 72(1), 976-979. https://doi.org/10.1128/AEM.72.1.976-979.2006

R Core Team (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from http://www.R-project.org/

Raberg, L., Hagstrom, A., Andersson, M., Bartkova, S., Scherman, K., Strandh, M., & Tschirren, B. (2017). Evolution of antigenic diversity in the tick-transmitted bacterium Borrelia afzelii: A role for host specialization? Journal of Evolutionary Biology, 30(5), 1034-1041.

Radulović, Z., Milutinovic, M., Tomanovic, S., & Mulenga, A. (2010). Detection of Borrelia-specific 16S rRNA sequence in total RNA extracted from Ixodes ricinus ticks. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 62, 862-867. https://doi.org/10.1590/S0102-09352010000400015

Rambaut, A., Suchard, M. A., Xie, D., & Drummond, A. J. (2014). Tracer v1.6. Retrieved from http://beast.bio.ed.ac.uk/Tracer/

Randolph, S. E., Gern, L., & Nuttall, P. A. (1996). Co-feeding ticks: Epidemiological significance for tick-borne pathogen transmission. Parasitology Today, 12(12), 472-479. https://doi.org/10.1016/S0169-4758(96)10072-7

Rauter, C., & Hartung, T. (2005). Prevalence of Borrelia burgdorferi sensu lato genospecies in Ixodes ricinus ticks in Europe: A metaanalysis. Applied and Environmental Microbiology, 71, 7203-7216. https://doi.org/10.1128/aem.71.11.7203-7216.2005

Reed, K. D., Meece, J. K., Henkel, J. S., & Shukla, S. K. (2003). Birds, migration and emerging zoonoses: West Nile virus, Lyme disease, influenza A and enteropathogens. Clinical and Medical Research, 1, 5-12. https://doi.org/10.3121/cmr.1.1.5

Rijpkema, A. G. T., Molkenboer, M. J. C. H., Schouls, L. M., Jongejan, F., & Schellekens, J. F. P. (1995). Simultaneous detection and genotyping of three genomic groups of Borrelia burgdorferi sensu lato in Dutch Ixodes ricinus Ticks by characterization of the amplified intergenic spacer region between 5S and 23S rRNA genes. Journal of Clinical Microbiology, 33, 3091-3095.

Santos-Silva, M. M., Beati, L., Santos, A. S., De Sousa, R., Núncio, M. S., Melo, P., … Bacellar, F. (2011). The hard-tick fauna of mainland Portugal (Acari: Ixodidae): An update on geographical distribution and known associations with hosts and pathogens. Experimental and Applied Acarology, 55(1), 85-121. https://doi.org/10.1007/s10493-011-9440-x

Schreiber, E. A., & J. Burger (Eds.) (2001). Biology of marine birds. Boca Raton. FL: CRC Press.

Schwan, T. G., & Piesman, J. (2002). Vector interactions and molecular adaptations of Lyme disease and relapsing fever spirochetes associated with transmission by ticks. Emerging Infectious Diseases, 8(2), 115-121. https://doi.org/10.3201/eid0802.010198

Sonenshine, D. E., & Mather, T. N. (1994). Ecological dynamics of tick-borne zoonoses. New York, NY: Oxford University Press.

Strnad, M., Hönig, V., Růžek, D., Grubhoffer, L., & Rego, R. O. M. (2017). Europe-Wide Meta-Analysis of Borrelia burgdorferi Sensu Lato Prevalence in Questing Ixodes ricinus Ticks. Applied and Environmental Microbiology, 83, e00609-00617.

Szekeres, S., Majláthová, V., Majláth, I., & Földvári, G. (2016). Neglected hosts: The role of lacertid lizards and medium-sized mammals in the eco-epidemiology of Lyme borreliosis. In M. A. H. Braks, S. E. Van Wieren, W. Takken, & H. Sprong (Eds.), Ecology and prevention of Lyme borreliosis. Ecology and control of vector-borne diseases (Vol. 4, pp. 103-126). Wageningen, the Netherlands: Wageningen Academic Publishers.

Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123(3), 585-595.

Talleklint, L., & Jaenson, T. G. (1994). Transmission of Borrelia burgdorferi s.l. from mammal reservoirs to the primary vector of Lyme borreliosis, Ixodes ricinus (Acari: Ixodidae), in Sweden. Journal of Medical Entomology, 31(6), 880-886.

Taragel'ova, V., Koci, J., Hanincova, K., Kurtenbach, K., Derdakova, M., Ogden, N. H., … Labuda, M. (2008). Blackbirds and song thrushes constitute a key reservoir of Borrelia garinii, the causative agent of borreliosis in Central Europe. Applied and Environmental Microbiology, 74, 1289-1293. https://doi.org/10.1128/aem.01060-07

Thomas, N. J., Hunter, D. B., & Atkinson, C. T. (2007). Infectious diseases of wild birds. Oxford, UK: Wiley-Blackwell.

Toma, L., Mancini, F., Di Luca, M., Cecere, J. G., Bianchi, R., Khoury, C., … Ciervo, A. (2014). Detection of microbial agents in ticks collected from migratory birds in central Italy. Vector Borne and Zoonotic Diseases, 14(3), 199-205. https://doi.org/10.1089/vbz.2013.1458

Tveten, A.-K. (2013). Prevalence of Borrelia burgdorferi sensu stricto, Borrelia afzelii, Borrelia garinii, and Borrelia valaisiana in Ixodes ricinus ticks from the northwest of Norway. Scandinavian Journal of Infectious Diseases, 45(9), 681-687. https://doi.org/10.3109/00365548.2013.799288

van Duijvendijk, G., Coipan, C., Wagemakers, A., Fonville, M., Ersöz, J., Oei, A., … Sprong, H. (2016). Larvae of Ixodes ricinus transmit Borrelia afzelii and B. miyamotoi to vertebrate hosts. Parasites & Vectors, 9(1), 1-7. https://doi.org/10.1186/s13071-016-1389-5

Vaughan, T. G., Welch, D., Drummond, A. J., Biggs, P. J., George, T., & French, N. P. (2017). Inferring ancestral recombination graphs from bacterial genomic data. Genetics, 205(2), 857-870. https://doi.org/10.1534/genetics.116.193425

Vollmer, S. A., Bormane, A., Dinnis, R. E., Seelig, F., Dobson, A. D. M., Aanensen, D. M., … Margos, G. (2011). Host migration impacts on the phylogeography of Lyme Borreliosis spirochaete species in Europe. Environmental Microbiology, 13(1), 184-192. https://doi.org/10.1111/j.1462-2920.2010.02319.x

Vollmer, S., Feil, E. J., Chu, C.-Y., Raper, S. L., Cao, W.-C., Kurtenbach, K., … Margos, G. (2013). Spatial spread and demographic expansion of Lyme borreliosis spirochaetes in Eurasia. Poster presented at the ICLB2013.

Vuong, H. B., Canham, C. D., Fonseca, D. M., Brisson, D., Morin, P. J., Smouse, P. E., & Otsfeld, R. S. (2014). Occurrence and transmission efficiencies of Borrelia burgdorferi ospC types in avian and mammalian wildlife. Infection, Genetics and Evolution, 27, 594-600. https://doi.org/10.1016/j.meegid.2013.12.011

Wilhelmsson, P., Lindblom, P., Fryland, L., Ernerudh, J., Forsberg, P., & Lindgren, P.-E. (2013). Prevalence, diversity, and load of Borrelia species in ticks that have fed on humans in regions of Sweden and Åland Islands, Finland with different Lyme Borreliosis incidences. PLoS ONE, 8(11), e81433. https://doi.org/10.1371/journal.pone.0081433

Zhioua, E., Bouattour, A., Hu, C. M., Gharbi, M., Aeschliman, A., Ginsberg, H. S., & Gern, L. (1999). Infection of Ixodes ricinus (Acari: Ixodidae) by Borrelia burgdorferi sensu lato in North Africa. Journal of Medical Entomology, 36(2), 216-218. https://doi.org/10.1093/jmedent/36.2.216

Zobrazit více v PubMed

GENBANK
MH068784, MH157920

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace