miR-431-5p regulates apoptosis of cardiomyocytes after acute myocardial infarction via targeting selenoprotein T
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
35043644
PubMed Central
PMC8997672
DOI
10.33549/physiolres.934683
PII: 934683
Knihovny.cz E-zdroje
- MeSH
- apoptóza * genetika MeSH
- infarkt myokardu * genetika metabolismus MeSH
- kardiomyocyty metabolismus MeSH
- lidé MeSH
- mikro RNA genetika metabolismus MeSH
- myši MeSH
- reperfuzní poškození myokardu * metabolismus MeSH
- selenoproteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mikro RNA MeSH
- MIRN431 microRNA, human MeSH Prohlížeč
- MIRN431 microRNA, mouse MeSH Prohlížeč
- selenoprotein T, mouse MeSH Prohlížeč
- selenoproteiny MeSH
Acute myocardial infarction (AMI) represents the acute manifestation of coronary artery disease. In recent years, microRNAs (miRNAs) have been extensively studied in AMI. This study focused on the role of miR-431-5p in AMI and its effect on cardiomyocyte apoptosis after AMI. The expression of miR-431-5p was analyzed by quantitative real-time PCR (qRT-PCR). By interfering with miR-431-5p in hypoxia-reoxygenation (H/R)-induced HL-1 cardiomyocytes, the effect of miR-431-5p on cardiomyocyte apoptosis after AMI was examined. The interaction between miR-431-5p and selenoprotein T (SELT) mRNA was verified by dual-luciferase reporter assay. Cell apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and flow cytometry. Cell viability was examined by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide (MTT) assay. The results of qRT-PCR showed that the expression of miR-431-5p in AMI myocardial tissues and H/R-induced HL-1 cardiomyocytes was significantly increased. After interfering with miR-431-5p, the expression of SELT in HL-1 cells was up-regulated, cell apoptosis was decreased, cell viability was increased, and lactate dehydrogenase (LDH) activity was decreased. The dual-luciferase reporter assay confirmed the targeting relationship between miR-431-5p and SELT1 3' untranslated region (UTR). In H/R-induced HL-1 cells, the simultaneous silencing of SELT and miR-431-5p resulted in a decrease of Bcl-2 expression, an increase of Bax expression, and an increase of cleaved-caspase 3 expression compared with silencing miR-431-5p alone. Also, cell viability was decreased, while LDH activity was increased by the simultaneous silencing of SELT and miR-431-5p. Interfering miR-431-5p protected cardiomyocytes from AMI injury via restoring the expression of SELT, providing new ideas for the treatment of AMI.
Zobrazit více v PubMed
Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, et al. Executive summary: heart disease and stroke statistics--2012 update: A report from the American Heart Association. Circulation. 2012;125:188–197. doi: 10.1161/CIR.0b013e3182456d46. PubMed DOI
Reed GW, Rossi JE, Cannon CP. Acute myocardial infarction. Lancet. 2017;389:197–210. doi: 10.1016/S0140-6736(16)30677-8. PubMed DOI
Lekkas P, Georgiou ES, Kontonika M, Mouchtouri ET, Mourouzis I, Pantos C, Kolettis TM. Intracerebroventricular endothelin receptor-A blockade in rats decreases phase-II ventricular tachyarrhythmias during acute myocardial infarction. Physiol Res. 2019;68:867–871. doi: 10.33549/physiolres.934135. PubMed DOI
Nichols M, Townsend N, Scarborough P, Rayner M. Cardiovascular disease in Europe 2014: Epidemiological update. Eur Heart J. 2014;35:2950–959. doi: 10.1093/eurheartj/ehu299. PubMed DOI
Nazir S, Tachamo N, Lohani S, Hingorani R, Poudel DR, Donato A. Acute myocardial infarction and antiphospholipid antibody syndrome: A systematic review. Coron Artery Dis. 2017;28:332–335. doi: 10.1097/MCA.0000000000000476. PubMed DOI
Takemura G, Fujiwara H. Morphological aspects of apoptosis in heart diseases. J Cell Mol Med. 2006;10:56–75. doi: 10.1111/j.1582-4934.2006.tb00291.x. PubMed DOI PMC
Anderson ME, Brown JH, Bers DM. CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol. 2011;51:468–473. doi: 10.1016/j.yjmcc.2011.01.012. PubMed DOI PMC
Gajarsa JJ, Kloner RA. Left ventricular remodeling in the post-infarction heart: a review of cellular, molecular mechanisms, and therapeutic modalities. Heart Fail Rev. 2011;16:13–21. doi: 10.1007/s10741-010-9181-7. PubMed DOI
Cong L, Su Y, Wei D, Qian L, Xing D, Pan J, Chen Y, Huang M. Catechin relieves hypoxia/reoxygenation-induced myocardial cell apoptosis via down-regulating lncRNA MIAT. J Cell Mol Med. 2020;24:2356–2368. doi: 10.1111/jcmm.14919. PubMed DOI PMC
Wang Y, Ju C, Hu J, Huang K, Yang L. PRMT4 overexpression aggravates cardiac remodeling following myocardial infarction by promoting cardiomyocyte apoptosis. Biochem Biophys Res Commun. 2019;520:645–650. doi: 10.1016/j.bbrc.2019.10.085. PubMed DOI
Rocca C, Boukhzar L, Granieri MC, Alsharif I, Mazza R, Lefranc B, Tota B, Leprince J, Cerra MC, Anouar Y, Angelone T. A selenoprotein T-derived peptide protects the heart against ischaemia/reperfusion injury through inhibition of apoptosis and oxidative stress. Acta Physiol (Oxf) 2018;223:e13067. doi: 10.1111/apha.13067. PubMed DOI
Cui Y, Bai Y, Wang XD, Liu B, Zhao Z, Wang LS. Differential expression of miRNA in rat myocardial tissues under psychological and physical stress. Exp Ther Med. 2014;7:901–906. doi: 10.3892/etm.2014.1504. PubMed DOI PMC
Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y, Cai L. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin. 2018;39:1073–1084. doi: 10.1038/aps.2018.30. PubMed DOI PMC
Wang C, Jing Q. Non-coding RNAs as biomarkers for acute myocardial infarction. Acta Pharmacol Sin. 2018;39:1110–119. doi: 10.1038/aps.2017.205. PubMed DOI PMC
Huo KG, Richer C, Berillo O, Mahjoub N, Fraulob-Aquino JC, Barhoumi T, Ouerd S, Coelho SC, Sinnett D, Paradis P, Schiffrin EL. miR-431-5p knockdown protects against angiotensin II-induced hypertension and vascular injury. Hypertension. 2019;73:1007–1017. doi: 10.1161/HYPERTENSIONAHA.119.12619. PubMed DOI
Rapa I, Votta A, Felice B, Righi L, Giorcelli J, Scarpa A, Speel EJ, Scagliotti GV, Papotti M, Volante M. Identification of microRNAs differentially expressed in lung carcinoid subtypes and progression. Neuroendocrinology. 2015;101:246–255. doi: 10.1159/000381454. PubMed DOI
Li H, Tang C, Zhu X, Zhang W, Abudupataer M, Ding S, Duan C, Yang X, Ge J. Histamine deficiency facilitates coronary microthrombosis after myocardial infarction by increasing neutrophil-platelet interactions. J Cell Mol Med. 2020;24:3504–3520. doi: 10.1111/jcmm.15037. PubMed DOI PMC
Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M. Deciphering miRNAs’ action through miRNA editing. Int J Mol Sci. 2019;20:6249. doi: 10.3390/ijms20246249. PubMed DOI PMC
Boon RA, Dimmeler S. MicroRNAs in myocardial infarction. Nat Rev Cardiol. 2015;12:135–142. doi: 10.1038/nrcardio.2014.207. PubMed DOI
Chen Y, Zhao Y, Chen W, Xie L, Zhao ZA, Yang J, Chen Y, Lei W, Shen Z. MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction. Stem Cell Res Ther. 2017;8:268. doi: 10.1186/s13287-017-0722-z. PubMed DOI PMC
Zheng HF, Sun J, Zou ZY, Zhang Y, Hou GY. MiRNA-488-3p suppresses acute myocardial infarction-induced cardiomyocyte apoptosis via targeting ZNF791. Eur Rev Med Pharmacol Sci. 2019;23:4932–4939. doi: 10.26355/eurrev_201906_18083. PubMed DOI
Aavik E, Lumivuori H, Leppänen O, Wirth T, Häkkinen SK, Bräsen JH, Beschorner U, Zeller T, Braspenning M, van Criekinge W, Mäkinen K, Ylä-Herttuala S. Global DNA methylation analysis of human atherosclerotic plaques reveals extensive genomic hypomethylation and reactivation at imprinted locus 14q32 involving induction of a miRNA cluster. Eur Heart J. 2015;36:993–1000. doi: 10.1093/eurheartj/ehu437. PubMed DOI
Moghadaszadeh B, Beggs AH. Selenoproteins and their impact on human health through diverse physiological pathways. Physiology (Bethesda) 2006;21:307–315. doi: 10.1152/physiol.00021.2006. PubMed DOI PMC
Prevost G, Arabo A, Jian L, Quelennec E, Cartier D, Hassan S, Falluel-Morel A, Tanguy Y, Gargani S, Lihrmann I, Kerr-Conte J, Lefebvre H, Pattou F, Anouar Y. The PACAP-regulated gene selenoprotein T is abundantly expressed in mouse and human β-cells and its targeted inactivation impairs glucose tolerance. Endocrinology. 2013;154:3796–3806. doi: 10.1210/en.2013-1167. PubMed DOI
Castex MT, Arabo A, Bénard M, Roy V, Le Joncour V, Prévost G, Bonnet JJ, Anouar Y, Falluel-Morel A. Selenoprotein T deficiency leads to neurodevelopmental abnormalities and hyperactive behavior in mice. Mol Neurobiol. 2016;53:5818–5832. doi: 10.1007/s12035-015-9505-7. PubMed DOI
Boukhzar L, Hamieh A, Cartier D, Tanguy Y, Alsharif I, Castex M, Arabo A, El Hajji S, Bonnet JJ, Errami M, Falluel-Morel A, Chagraoui A, Lihrmann I, Anouar Y. Selenoprotein T exerts an essential oxidoreductase activity that protects dopaminergic neurons in mouse models of Parkinson’s disease. Antioxid Redox Signal. 2016;24:557–574. doi: 10.1089/ars.2015.6478. PubMed DOI PMC
Huang J, Bao D, Lei CT, Tang H, Zhang CY, Su H, Zhang C. Selenoprotein T protects against cisplatin-induced acute kidney injury through suppression of oxidative stress and apoptosis. FASEB J. 2020;34:11983–11996. doi: 10.1096/fj.202000180RR. PubMed DOI
Rocca C, Pasqua T, Boukhzar L, Anouar Y, Angelone T. Progress in the emerging role of selenoproteins in cardiovascular disease: focus on endoplasmic reticulum-resident selenoproteins. Cell Mol Life Sci. 2019;76:3969–3985. doi: 10.1007/s00018-019-03195-1. PubMed DOI PMC
Torrealba N, Navarro-Marquez M, Garrido V, Pedrozo Z, Romero D, Eura Y, Villalobos E, Roa JC, Chiong M, Kokame K, Lavandero S. Herpud1 negatively regulates pathological cardiac hypertrophy by inducing IP3 receptor degradation. Sci Rep. 2017;7:13402. doi: 10.1038/s41598-017-13797-z. PubMed DOI PMC
Bildyug N. Extracellular matrix in regulation of contractile system in cardiomyocytes. Int J Mol Sci. 2019;20:5054. doi: 10.3390/ijms20205054. PubMed DOI PMC
Chen T, Zhu H, Wang Y, Zhao P, Chen J, Sun J, Zhang X, Zhu G. Apoptosis of bone marrow mesenchymal stromal/stem cells via the MAPK and endoplasmic reticulum stress signaling pathways. Am J Transl Res. 2018;10:2555–2566. doi: 10.1155/2018/9501747. PubMed DOI PMC
Meng K, Jiao J, Zhu RR, Wang BY, Mao XB, Zhong YC, Zhu ZF, Yu KW, Ding Y, Xu WB, Yu J, Zeng QT, Peng YD. The long noncoding RNA hotair regulates oxidative stress and cardiac myocyte apoptosis during ischemia-reperfusion injury. Oxid Med Cell Longev. 2020;2020:1645249. doi: 10.1155/2020/1645249. PubMed DOI PMC
Gao X, Zhang S, Wang D, Cheng Y, Jiang Y, Liu Y. (Pro)renin receptor contributes to hypoxia/reoxygenation-induced apoptosis and autophagy in myocardial cells via the beta-catenin signaling pathway. Physiol Res. 2020;69:427–438. doi: 10.33549/physiolres.934210. PubMed DOI PMC
Ellagic acid attenuates muscle atrophy in STZ-induced diabetic mice