Role of invasive carnivores (Procyon lotor and Nyctereutes procyonoides) in epidemiology of vector-borne pathogens: molecular survey from the Czech Republic

. 2023 Jul 05 ; 16 (1) : 219. [epub] 20230705

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37408071

Grantová podpora
IGA VETUNI 106/2021/FVL Veterinární a Farmaceutická Univerzita Brno
NU23-05-00511 Ministerstvo Zdravotnictví Ceské Republiky

Odkazy

PubMed 37408071
PubMed Central PMC10324142
DOI 10.1186/s13071-023-05834-w
PII: 10.1186/s13071-023-05834-w
Knihovny.cz E-zdroje

BACKGROUND: Vector-borne pathogens (VBPs) are a major threat to humans, livestock and companion animals worldwide. The combined effect of climatic, socioeconomic and host composition changes favours the spread of the vectors, together with the expansion of invasive carnivores contributing to the spread of the pathogens. In Europe, the most widespread invasive species of carnivores are raccoons (Procyon lotor) and raccoon dogs (Nyctereutes procyonoides). This study focused on the detection of four major groups of VBPs namely Babesia, Hepatozoon, Anaplasma phagocytophilum and Bartonella in invasive and native carnivores in the Czech Republic, with the emphasis on the role of invasive carnivores in the eco-epidemiology of said VBPs. METHODS: Spleen samples of 84 carnivores of eight species (Canis aureus, Canis lupus, Lynx lynx, P. lotor, Martes foina, Lutra lutra, Mustela erminea and N. procyonoides) were screened by combined nested PCR and sequencing for the above-mentioned VBPs targeting 18S rRNA and cytB in hemoprotozoa, groEL in A. phagocytophilum, and using multilocus genotyping in Bartonella spp. The species determination is supported by phylogenetic analysis inferred by the maximum likelihood method. RESULTS: Out of 84 samples, 44% tested positive for at least one pathogen. Five different species of VBPs were detected in P. lotor, namely Bartonella canis, Hepatozoon canis, Hepatozoon martis, A. phagocytophilum and Bartonella sp. related to Bartonella washoensis. All C. lupus tested positive for H. canis and one for B. canis. Three VBPs (Hepatozoon silvestris, A. phagocytophilum and Bartonella taylorii) were detected in L. lynx for the first time. Babesia vulpes and yet undescribed species of Babesia, not previously detected in Europe, were found in N. procyonoides. CONCLUSIONS: Wild carnivores in the Czech Republic are hosts of several VBPs with potential veterinary and public health risks. Among the studied carnivore species, the invasive raccoon is the most competent host. Raccoons are the only species in our study where all the major groups of studied pathogens were detected. None of the detected pathogen species were previously detected in these carnivores in North America, suggesting that raccoons adapted to local VBPs rather than introduced new ones. Babesia vulpes and one new, probably imported species of Babesia, were found in raccoon dogs.

Zobrazit více v PubMed

Braks M, Medlock JM, Hubalek Z, Hjertqvist M, Perrin Y, Lancelot R, et al. Vector-borne disease intelligence: strategies to deal with disease burden and threats. Front Public Heal. 2014 doi: 10.3389/fpubh.2014.00280. PubMed DOI PMC

Faburay B. The case for a “one health” approach to combating vector-borne diseases. African J Disabil. 2015;5:1–4. PubMed PMC

Tomassone L, Berriatua E, De Sousa R, Duscher GG, Mihalca AD, Silaghi C, et al. Neglected vector-borne zoonoses in Europe: Into the wild. Vet Parasitol. 2018;251:17–26. doi: 10.1016/j.vetpar.2017.12.018. PubMed DOI

André MR. Diversity of Anaplasma and Ehrlichia/Neoehrlichia agents in terrestrial wild carnivores worldwide: implications for human and domestic animal health and wildlife conservation. Front Vet Sci. 2018 doi: 10.3389/fvets.2018.00293. PubMed DOI PMC

Otranto D, Cantacessi C, Pfeffer M, Dantas-Torres F, Brianti E, Deplazes P, et al. The role of wild canids and felids in spreading parasites to dogs and cats in Europe Part I: Protozoa and tick-borne agents. Vet Parasitol. 2015;213:12–23. doi: 10.1016/j.vetpar.2015.04.022. PubMed DOI

Semenza JC, Suk JE. Vector-borne diseases and climate change: a European perspective. FEMS Microbiol Lett. 2018;365:1–9. doi: 10.1093/femsle/fnx244. PubMed DOI PMC

Chala B, Hamde F. Emerging and re-emerging vector-borne infectious diseases and the challenges for control: a review. Front Public Heal. 2021;9:1–10. PubMed PMC

Myśliwy I, Perec-Matysiak A, Hildebrand J. Invasive raccoon (Procyon lotor) and raccoon dog (Nyctereutes procyonoides) as potential reservoirs of tick-borne pathogens: data review from native and introduced areas. Parasit Vectors. 2022 doi: 10.1186/s13071-022-05245-3. PubMed DOI PMC

Kutal M, Belotti E, Volfová J, Mináriková T, Bufka L, Poledník L, et al. Occurrence of large carnivores—Lynx lynx, Canis lupus, and Ursus arctos—and of Felis silvestris in the Czech Republic and western Slovakia in 2012–2016 (Carnivora) Lynx, new Ser. 2017;48:93–107. doi: 10.2478/lynx-2017-0006. DOI

Pyšková K, Kauzál O, Storch D, Horáček I, Pergl J, Pyšek P. Carnivore distribution across habitats in a central-European landscape: a camera trap study. Zookeys. 2018;2018:227–246. doi: 10.3897/zookeys.770.22554. PubMed DOI PMC

Salgado I. Is the raccoon (Procyon lotor) out of control in Europe? Biodivers Conserv. 2018;27:2243–2256. doi: 10.1007/s10531-018-1535-9. DOI

Kauhala K, Kowalczyk R. Invasion of the raccoon dog Nyctereutes procyonoides in Europe: History of colonization, features behind its success, and threats to native fauna. Curr Zool. 2011;57:584–598. doi: 10.1093/czoolo/57.5.584. PubMed DOI PMC

Pyškova K, Storch D, Horaček I, Kauzal O, Pyšek P. Golden jackal (Canis aureus) in the Czech Republic: the first record of a live animal and its long-term persistence in the colonized habitat. Zookeys. 2016;2016:151–163. PubMed PMC

Tedeschi L, Biancolini D, Capinha C, Rondinini C, Essl F. Introduction, spread, and impacts of invasive alien mammal species in Europe. Mamm Rev. 2022;52:252–266. doi: 10.1111/mam.12277. PubMed DOI PMC

Commission E. Commission implementing regulation (EU) 2016/1141 of 13 July 2016 adopting a list of invasive alien species of Union concern pursuant to regulation (EU) No 1143/2014 of the European parliament and of the council. Off J Eur Union. 2016;189:4–8.

Jirku M, Dostál D, Robovský J, Šálek M. Reproduction of the golden jackal (Canis aureus) outside current resident breeding populations in Europe: evidence from the Czech Republic. Mammalia. 2018;82:592–595. doi: 10.1515/mammalia-2017-0141. DOI

Kochmann J, Cunze S, Klimpel S. Climatic niche comparison of raccoons Procyon lotor and raccoon dogs Nyctereutes procyonoides in their native and non-native ranges. Mamm Rev. 2021;51:585–595. doi: 10.1111/mam.12249. DOI

Cunze S, Klimpel S. From the Balkan towards Western Europe: range expansion of the golden jackal (Canis aureus): a climatic niche modeling approach. Ecol Evol. 2022;12:1–12. doi: 10.1002/ece3.9141. PubMed DOI PMC

Dahl F, Åhlén PA. Nest predation by raccoon dog Nyctereutes procyonoides in the archipelago of northern Sweden. Biol Invasions. 2019;21:743–755. doi: 10.1007/s10530-018-1855-4. DOI

Bagrade G, Deksne G, Ozoliņa Z, Howlett SJ, Interisano M, Casulli A, et al. Echinococcus multilocularis in foxes and raccoon dogs: an increasing concern for Baltic countries. Parasit Vectors. 2016;9:1–9. doi: 10.1186/s13071-016-1891-9. PubMed DOI PMC

Lombardo A, Brocherel G, Donnini C, Fichi G, Mariacher A, Diaconu EL, et al. First report of the zoonotic nematode Baylisascaris procyonis in non-native raccoons (Procyon lotor) from Italy. Parasit Vectors. 2022;15:1–5. doi: 10.1186/s13071-021-05116-3. PubMed DOI PMC

Levin ML, Nicholson WL, Massung RF, Sumner JW, Fish D. Comparison of the reservoir competence of medium-sized mammals and Peromyscus leucopus for Anaplasma phagocytophilum in Connecticut. Vector Borne Zoonotic Dis. 2002;2:125–136. doi: 10.1089/15303660260613693. PubMed DOI

Henn JB, Chomel BB, Boulouis HJ, Kasten RW, Murray WJ, Bar-Gal GK, et al. Bartonella rochalimae in raccoons, coyotes, and red foxes. Emerg Infect Dis. 2009;15:1984–1987. doi: 10.3201/eid1512.081692. PubMed DOI PMC

Bai Y, Gilbert A, Fox K, Osikowicz L, Kosoy M. Bartonella rochalimae and B. vinsonii subsp. berkhoffii in wild carnivores from Colorado, USA. J Wildl Dis. 2016;52:844–849. doi: 10.7589/2016-01-015. PubMed DOI PMC

Garrett KB, Hernandez SM, Balsamo G, Barron H, Beasley JC, Brown JD, et al. Prevalence, distribution, and diversity of cryptic Piroplasm infections in raccoons from selected areas of the United States and Canada. Int J Parasitol Parasit Wildl. 2019;9:224–233. doi: 10.1016/j.ijppaw.2019.05.007. PubMed DOI PMC

Modarelli JJ, Westrich BJ, Milholland M, Tietjen M, Castro-Arellano I, Medina RF, et al. Prevalence of protozoan parasites in small and medium mammals in Texas, USA. Int J Parasitol Parasit Wildl. 2020;11:229–234. doi: 10.1016/j.ijppaw.2020.02.005. PubMed DOI PMC

Hildebrand J, Buńkowska-Gawlik K, Adamczyk M, Gajda E, Merta D, Popiołek M, et al. The occurrence of Anaplasmataceae in European populations of invasive carnivores. Ticks Tick Borne Dis. 2018;9:934–937. doi: 10.1016/j.ttbdis.2018.03.018. PubMed DOI

Allen KE, Yabsley MJ, Johnson EM, Reichard MV, Panciera RJ, Ewing SA, et al. Novel Hepatozoon in vertebrates from the southern United States. J Parasitol. 2011;97:648–653. doi: 10.1645/GE-2672.1. PubMed DOI

Kang JG, Chae JB, Cho YK, Jo YS, Shin NS, Lee H, et al. Molecular detection of Anaplasma, Bartonella, and Borrelia theileri in raccoon dogs (Nyctereutes procyonoides) in Korea. Am J Trop Med Hyg. 2018;98:1061–1068. doi: 10.4269/ajtmh.17-0380. PubMed DOI PMC

Mizukami M, Sato S, Nabeshima K, Kabeya H, Ueda D, Suzuki K, et al. Molecular survey of Bartonella rochalimae in Japanese raccoon dogs (Nyctereutes procyonoides viverrinus) J Wildl Dis. 2020;56:560–567. doi: 10.7589/2019-06-162. PubMed DOI

Han JI, Lee SJ, Jang HJ, Na KJ. Asymptomatic Babesia microti-like parasite infection in wild raccoon dogs (Nyctereutes procyonoides) in South Korea. J Wildl Dis. 2010;46:632–635. doi: 10.7589/0090-3558-46.2.632. PubMed DOI

Duscher T, Hodžić A, Glawischnig W, Duscher GG. The raccoon dog (Nyctereutes procyonoides) and the raccoon (Procyon lotor)—their role and impact of maintaining and transmitting zoonotic diseases in Austria Central Europe. Parasitol Res. 2017;116:1411–1416. doi: 10.1007/s00436-017-5405-2. PubMed DOI PMC

Szewczyk T, Werszko J, Myczka AW, Laskowski Z, Karbowiak G. Molecular detection of Anaplasma phagocytophilum in wild carnivores in north-eastern Poland. Parasit Vectors. 2019;12:1–5. doi: 10.1186/s13071-019-3734-y. PubMed DOI PMC

Sukara R, Chochlakis D, Ćirović D, Penezić A, Mihaljica D, Ćakić S, et al. Golden jackals (Canis aureus) as hosts for ticks and tick-borne pathogens in Serbia. Ticks Tick Borne Dis. 2018;9:1090–1097. doi: 10.1016/j.ttbdis.2018.04.003. PubMed DOI

Marciano O, Gutiérrez R, Morick D, King R, Nachum-Biala Y, Baneth G, et al. Detection of Bartonella spp. in wild carnivores, hyraxes, hedgehog and rodents from Israel. Parasitology. 2016;143:1232–1242. doi: 10.1017/S0031182016000603. PubMed DOI

Mitková B, Hrazdilová K, D’Amico G, Duscher GG, Suchentrunk F, Forejtek P, et al. Eurasian golden jackal as host of canine vector-borne protists. Parasit Vectors. 2017;10:1–11. doi: 10.1186/s13071-017-2110-z. PubMed DOI PMC

Millán J, Proboste T, Fernández de Mera IG, Chirife AD, de la Fuente J, Altet L. Molecular detection of vector-borne pathogens in wild and domestic carnivores and their ticks at the human-wildlife interface. Ticks Tick Borne Dis. 2016;7:284–290. doi: 10.1016/j.ttbdis.2015.11.003. PubMed DOI

Sgroi G, Iatta R, Veneziano V, Bezerra-Santos MA, Lesiczka P, Hrazdilová K, et al. Molecular survey on tick-borne pathogens and Leishmania infantum in red foxes (Vulpes vulpes) from southern Italy. Ticks Tick Borne Dis. 2021;12:101669. doi: 10.1016/j.ttbdis.2021.101669. PubMed DOI

Lesiczka PM, Rudenko N, Golovchenko M, Juránková J, Daněk O, Modrý D, et al. Red fox (Vulpes vulpes) play an important role in the propagation of tick-borne pathogens. Ticks Tick Borne Dis. 2023;14:102076. doi: 10.1016/j.ttbdis.2022.102076. PubMed DOI

Commission E. Council directive 92/43/ECC. Off J Eur Union. 1992;94:40–52.

Greco G, Zarea AAK, Sgroi G, Tempesta M, D’Alessio N, Lanave G, et al. Zoonotic Bartonella species in Eurasian wolves and other free-ranging wild mammals from Italy. Zoonoses Public Health. 2021;68:316–326. doi: 10.1111/zph.12827. PubMed DOI PMC

Hodžić A, Georges I, Postl M, Duscher GG, Jeschke D, Szentiks CA, et al. Molecular survey of tick-borne pathogens reveals a high prevalence and low genetic variability of Hepatozoon canis in free-ranging grey wolves (Canis lupus) in Germany. Ticks Tick Borne Dis. 2020;11:101389. doi: 10.1016/j.ttbdis.2020.101389. PubMed DOI

Beck A, Huber D, Polkinghorne A, Kurilj AG, Benko V, Mrljak V, et al. The prevalence and impact of Babesia canis and Theileria sp. in free-ranging grey wolf (Canis lupus) populations in Croatia. Parasit Vectors. 2017;10:1–9. doi: 10.1186/s13071-017-2106-8. PubMed DOI PMC

Orkun Ö. Description of a novel Babesia sp. genotype from a naturally infected Eurasian lynx (Lynx lynx) in Anatolia, Turkey, with remarks on its morphology and phylogenetic relation to other Piroplasmid species. Ticks Tick Borne Dis. 2022;13:102026. doi: 10.1016/j.ttbdis.2022.102026. PubMed DOI

Panait LC, Mihalca AD, Modrý D, Juránková J, Ionică AM, Deak G, et al. Three new species of Cytauxzoon in European wild felids. Vet Parasitol. 2021;290:109344. doi: 10.1016/j.vetpar.2021.109344. PubMed DOI

Orkun Ö, Emir H. Identification of tick-borne pathogens in ticks collected from wild animals in Turkey. Parasitol Res. 2020;119:3083–3091. doi: 10.1007/s00436-020-06812-2. PubMed DOI

Hrazdilová K, Lesiczka PM, Bardoň J, Vyroubalová Š, Šimek B, Zurek L, et al. Wild boar as a potential reservoir of zoonotic tick-borne pathogens. Ticks Tick Borne Dis. 2021 doi: 10.1016/j.ttbdis.2020.101558. PubMed DOI

La Scola B, Zeaiter Z, Khamis A, Raoult D. Gene-sequence-based criteria for species definition in bacteriology: the Bartonella paradigm. Trends Microbiol. 2003;11:318–321. doi: 10.1016/S0966-842X(03)00143-4. PubMed DOI

Majerová K, Hönig V, Houda M, Papežík P, Fonville M, Sprong H, et al. Hedgehogs, squirrels, and blackbirds as sentinel hosts for active surveillance of Borrelia miyamotoi and Borrelia burgdorferi complex in urban and rural environments. Microorganisms. 2020;8:1–16. doi: 10.3390/microorganisms8121908. PubMed DOI PMC

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–1649. doi: 10.1093/bioinformatics/bts199. PubMed DOI PMC

Jahfari S, Coipan EC, Fonville M, Van Leeuwen AD, Hengeveld P, Heylen D, et al. Circulation of four Anaplasma phagocytophilum ecotypes in Europe. Parasit Vectors. 2014;7:1–11. doi: 10.1186/1756-3305-7-365. PubMed DOI PMC

Kalyaanamoorthy S, Minh BQ, Wong TKF, Von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–589. doi: 10.1038/nmeth.4285. PubMed DOI PMC

Minh BQ, Nguyen MAT, Von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30:1188–1195. doi: 10.1093/molbev/mst024. PubMed DOI PMC

Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI

Jalovecka M, Sojka D, Ascencio M, Schnittger L. Babesia life cycle—when phylogeny meets biology. Trends Parasitol. 2019;35:356–368. doi: 10.1016/j.pt.2019.01.007. PubMed DOI

Jaarsma RI, Sprong H, Takumi K, Kazimirova M, Silaghi C, Mysterud A, et al. Anaplasma phagocytophilum evolves in geographical and biotic niches of vertebrates and ticks. Parasit Vectors. 2019;12:1–17. doi: 10.1186/s13071-019-3583-8. PubMed DOI PMC

Kjær LJ, Jensen LM, Chriél M, Bødker R, Petersen HH. The raccoon dog (Nyctereutes procyonoides) as a reservoir of zoonotic diseases in Denmark. Int J Parasitol Parasites Wildl. 2021;16:175–182. doi: 10.1016/j.ijppaw.2021.09.008. PubMed DOI PMC

Hulva P, Černá Bolfíková B, Woznicová V, Jindřichová M, Benešová M, Mysłajek RW, et al. Wolves at the crossroad: fission–fusion range biogeography in the Western Carpathians and Central Europe. Divers Distrib. 2018;24:179–192. doi: 10.1111/ddi.12676. DOI

Klitgaard K, Chriél M, Isbrand A, Jensen TK, Bødker R. Identification of Dermacentor reticulatus ticks carrying Rickettsia raoultii on migrating jackal Denmark. Emerg Infect Dis. 2017;23:2072–2074. doi: 10.3201/eid2312.170919. PubMed DOI PMC

García JT, García FJ, Alda F, González JL, Aramburu MJ, Cortés Y, et al. Recent invasion and status of the raccoon (Procyon lotor) in Spain. Biol Invasions. 2012;14:1305–1310. doi: 10.1007/s10530-011-0157-x. DOI

Walter KS, Pepin KM, Webb CT, Gaff HD, Krause PJ, Pitzer VE, et al. Invasion of two tick-borne diseases across New England: harnessing human surveillance data to capture underlying ecological invasion processes. Proc R Soc B Biol Sci. 2016 doi: 10.1098/rspb.2016.0834. PubMed DOI PMC

Erdélyi K, Mezosi L, Vladov S, Földvári G. Fatal acute babesiosis in captive grey wolves (Canis lupus) due to Babesia canis. Ticks Tick Borne Dis. 2014;5:281–283. doi: 10.1016/j.ttbdis.2013.11.003. PubMed DOI

Daněk O, Hrazdilová K, Kozderková D, Jirků D, Modrý D. The distribution of Dermacentor reticulatus in the Czech Republic re-assessed: citizen science approach to understanding the current distribution of the Babesia canis vector. Parasit Vectors. 2022 doi: 10.1186/s13071-022-05242-6. PubMed DOI PMC

Křivánková J, Lásková K, Sitařová B, Hrazdilová K, Modrý D, Hanzlíček D. Autochthonous babesiosis in a dog—a description of clinical case. Veterinarstvi. 2018;68:763–766.

Jinnai M, Kawabuchi-Kurata T, Tsuji M, Nakajima R, Fujisawa K, Nagata S, et al. Molecular evidence for the presence of new Babesia species in feral raccoons (Procyon lotor) in Hokkaido. Japan Vet Parasitol. 2009;162:241–247. doi: 10.1016/j.vetpar.2009.03.016. PubMed DOI

Hirata H, Omobowale T, Adebayo O, Asanuma N, Haraguchi A, Murakami Y, et al. Identification and phylogenetic analysis of Babesia parasites in domestic dogs in Nigeria. J Vet Med Sci. 2022;84:338–341. doi: 10.1292/jvms.21-0636. PubMed DOI PMC

Masatani T, Hayashi K, Andoh M, Tateno M, Endo Y, Asada M, et al. Detection and molecular characterization of Babesia, Theileria, and Hepatozoon species in hard ticks collected from Kagoshima, the southern region in Japan. Ticks Tick Borne Dis. 2017;8:581–587. doi: 10.1016/j.ttbdis.2017.03.007. PubMed DOI

Wei F, Song M, Liu H, Wang B, Wang S, Wang Z, et al. Molecular detection and characterization of zoonotic and veterinary pathogens in ticks from Northeastern China. Front Microbiol. 2016 doi: 10.3389/fmicb.2016.01913. PubMed DOI PMC

Sang C, Yang Y, Dong Q, Xu B, Liu G, Hornok S, et al. Molecular survey of Babesia spp. in red foxes (Vulpes vulpes), Asian badgers (Meles leucurus) and their ticks in China. Ticks Tick Borne Dis. 2021;12:1–6. doi: 10.1016/j.ttbdis.2021.101710. PubMed DOI

Liu X, Yang M, Liu G, Zhao S, Yuan W, Xiao R, et al. Molecular evidence of Rickettsia raoultii, “Candidatus Rickettsia barbariae” and a novel Babesia genotype in marbled polecats (Vormela peregusna) at the China-Kazakhstan border. Parasit Vectors. 2018;11:1–5. doi: 10.1186/s13071-018-3033-z. PubMed DOI PMC

Rubel F, Brugger K, Walter M, Vogelgesang JR, Didyk YM, Fu S, et al. Geographical distribution, climate adaptation and vector competence of the Eurasian hard tick Haemaphysalis concinna. Ticks Tick Borne Dis. 2018;9:1080–1089. doi: 10.1016/j.ttbdis.2018.04.002. PubMed DOI

Swanson SJ, Neitzel D, Reed KD, Belongia EA. Coinfections acquired from Ixodes ticks. Clin Microbiol Rev. 2006;19:708–727. doi: 10.1128/CMR.00011-06. PubMed DOI PMC

Van Riper III, C, Van Riper SG., Goff M. L, Laird M. The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecol Monogr. 1986;56:327–344. doi: 10.2307/1942550. DOI

Hrazdilová K, Rybářová M, Široký P, Votýpka J, Zintl A, Burgess H, et al. Diversity of Babesia spp. in cervid ungulates based on the 18S rDNA and cytochrome c oxidase subunit I phylogenies. Infect Genet Evol. 2020;77:104060. doi: 10.1016/j.meegid.2019.104060. PubMed DOI

Lee S, Hong Y, Il CD, Jang HK, Goo YK, Xuan X. Evolutionary analysis of Babesia vulpes and Babesia microti-like parasites. Parasi Vectors. 2022;15:1–8. doi: 10.1186/s13071-022-05528-9. PubMed DOI PMC

Battisti E, Zanet S, Khalili S, Trisciuoglio A, Hertel B, Ferroglio E. Molecular survey on vector-borne pathogens in Alpine wild carnivorans. Front Vet Sci. 2020;7:1–9. doi: 10.3389/fvets.2020.00001. PubMed DOI PMC

Kuručki M, Tomanović S, Sukara R, Ćirović D. High prevalence and genetic variability of Hepatozoon canis in grey wolf (Canis lupus L. 1758) population in Serbia. Animals. 2022;12:3335. doi: 10.3390/ani12233335. PubMed DOI PMC

Criado-Fornelio A, Martín-Pérez T, Verdú-Expósito C, Reinoso-Ortiz SA, Pérez-Serrano J. Molecular epidemiology of parasitic protozoa and Ehrlichia canis in wildlife in Madrid (central Spain) Parasitol Res. 2018;117:2291–2298. doi: 10.1007/s00436-018-5919-2. PubMed DOI

Giannelli A, Latrofa MS, Nachum-Biala Y, Hodžić A, Greco G, Attanasi A, et al. Three different Hepatozoon species in domestic cats from southern Italy. Ticks Tick Borne Dis. 2017;8:721–724. doi: 10.1016/j.ttbdis.2017.05.005. PubMed DOI

Van As M, Netherlands EC, Smit NJ. Molecular characterisation and morphological description of two new species of Hepatozoon Miller, 1908 (Apicomplexa: Adeleorina: Hepatozoidae) infecting leukocytes of African leopards Panthera pardus pardus (L.) Parasit Vectors. 2020;13:1–16. PubMed PMC

Ortuño M, Nachum-Biala Y, García-Bocanegra I, Resa M, Berriatua E, Baneth G. An epidemiological study in wild carnivores from Spanish Mediterranean ecosystems reveals association between Leishmania infantum, Babesia spp. and Hepatozoon spp. infection and new hosts for Hepatozoon martis, Hepatozoon canis and Sarcocystis spp. Transbound Emerg Dis. 2022;69:2110–2125. doi: 10.1111/tbed.14199. PubMed DOI

Hodžić A, Alić A. Hepatozoon silvestris: an emerging feline vector-borne pathogen in Europe? Trends Parasitol. 2023;39:163–166. doi: 10.1016/j.pt.2022.12.001. PubMed DOI

Richards CS. Hepatozoon procyonis, n. sp., from the raccoon. J Protozool. 1961;8:360–362. doi: 10.1111/j.1550-7408.1961.tb01229.x. DOI

da Silva MRL, Fornazari F, Martins TF, Hippólito AG, Rolim LS, Bisca JM, et al. A survey of hemoparasites and ectoparasites in Nasua nasua Linnaeus, 1766 with a redescription of Hepatozoon procyonis Richards, 1961 based on morphological and molecular data. Parasitol Res. 2018;117:2159–2169. doi: 10.1007/s00436-018-5903-x. PubMed DOI

Huhn C, Winter C, Wolfsperger T, Wüppenhorst N, Strašek Smrdel K, Skuballa J, et al. Analysis of the population structure of Anaplasma phagocytophilum using multilocus sequence typing. PLoS ONE. 2014;9:e93725. doi: 10.1371/journal.pone.0093725. PubMed DOI PMC

Langenwalder DB, Silaghi C, Nieder M, Pfeffer M, Von Loewenich FD. Co-infection, reinfection and superinfection with Anaplasma phagocytophilum strains in a cattle herd based on ankA gene and multilocus sequence typing. Parasit Vectors. 2020;13:1–12. doi: 10.1186/s13071-020-04032-2. PubMed DOI PMC

Hornok S, Boldogh SA, Takács N, Sándor AD, Tuska-Szalay B. Zoonotic ecotype-I of Anaplasma phagocytophilum in sympatric wildcat, pine marten and red squirrel-Short communication. Acta Vet Hung. 2022;70:215–219. doi: 10.1556/004.2022.00021. PubMed DOI

Bartoszewicz M, Okarma H, Zalewski A, Szczȩsna J. Ecology of the raccoon (Procyon lotor) from western Poland. Ann Zool Fennici. 2008;45:291–298. doi: 10.5735/086.045.0409. DOI

Hofmeester TR, Krawczyk AI, Van Leeuwen AD, Fonville M, Montizaan MGE, Van Den Berge K, et al. Role of mustelids in the life-cycle of ixodid ticks and transmission cycles of four tick-borne pathogens. Parasit Vectors. 2018;11:1–13. doi: 10.1186/s13071-018-3126-8. PubMed DOI PMC

Stigum VM, Jaarsma RI, Sprong H, Rolandsen CM, Mysterud A. Infection prevalence and ecotypes of Anaplasma phagocytophilum in moose Alces alces, red deer Cervus elaphus, roe deer Capreolus capreolus and Ixodes ricinus ticks from Norway. Parasit Vectors. 2019;12:1–8. doi: 10.1186/s13071-018-3256-z. PubMed DOI PMC

Duľa M, Nicol C, Bojda M, Labuda J, Slamka M, Kutal M. The first insight into hunting and feeding behaviour of the Eurasian lynx in the Western Carpathians. Mammal Res. 2022;68:237. doi: 10.1007/s13364-022-00662-2. DOI

Lesiczka PM, Hrazdilová K, Majerová K, Fonville M, Sprong H, Hönig V, et al. The role of peridomestic animals in the eco-epidemiology of Anaplasma phagocytophilum. Microb Ecol. 2021;82:602. doi: 10.1007/s00248-021-01704-z. PubMed DOI

Krügel M, Król N, Kempf VAJ, Pfeffer M, Obiegala A. Emerging rodent-associated Bartonella: a threat for human health? Parasit Vectors. 2022;15:1–19. doi: 10.1186/s13071-022-05162-5. PubMed DOI PMC

Kosoy M, McKee C, Albayrak L, Fofanov Y. Genotyping of Bartonella bacteria and their animal hosts: current status and perspectives. Parasitology. 2018;145:543–562. doi: 10.1017/S0031182017001263. PubMed DOI

Kosoy M, Murray M, Gilmore RD, Bai Y, Gage KL. Bartonella strains from ground squirrels are identical to Bartonella washoensis isolated from a human patient. J Clin Microbiol. 2003;41:645–650. doi: 10.1128/JCM.41.2.645-650.2003. PubMed DOI PMC

Oksi J, Rantala S, Kilpinen S, Silvennoinen R, Vornanen M, Veikkolainen V, et al. Cat scratch disease caused by Bartonella grahamii in an immunocompromised patient. J Clin Microbiol. 2013;51:2781–2784. doi: 10.1128/JCM.00910-13. PubMed DOI PMC

Inoue K, Maruyama S, Kabeya H, Hagiya K, Izumi Y, Une Y, et al. Exotic small mammals as potential reservoirs of zoonotic Bartonella spp. Emerg Infect Dis. 2009;15:526–532. doi: 10.3201/eid1504.081223. PubMed DOI PMC

Sato S, Kabeya H, Fujinaga Y, Inoue K, Une Y, Yoshikawa Y, et al. Bartonella jaculi sp. nov., Bartonella callosciuri sp. nov., Bartonella pachyuromydis sp. nov. and Bartonella acomydis sp. nov., isolated from wild Rodentia. Int J Syst Evol Microbiol. 2013;63:1734–1740. doi: 10.1099/ijs.0.041939-0. PubMed DOI

Carrasco SE, Chomel BB, Gill VA, Kasten RW, Maggi RG, Breitschwerdt EB, et al. Novel Bartonella infection in northern and southern sea otters (Enhydra lutris kenyoni and Enhydra lutris nereis) Vet Microbiol. 2014;170:325–334. doi: 10.1016/j.vetmic.2014.02.021. PubMed DOI

Hwang J, Gottdenker NL. Bartonella species in raccoons and feral cats, Georgia, USA. Emerg Infect Dis. 2013;19:1167–1168. doi: 10.3201/eid1907.130010. PubMed DOI PMC

Bown KJ, Bennett M, Begon M. Flea-borne Bartonella grahamii and Bartonella taylorii in bank voles. Emerg Infect Dis. 2004;10:684–687. doi: 10.3201/eid1004.030455. PubMed DOI PMC

Fenton H, McBurney S, Elsmo EJ, Cleveland CA, Yabsley MJ. Lesions associated with Bartonella taylorii–like bacterium infection in a free-ranging, young-of-the-year raccoon from Prince Edward Island Canada. J Vet Diagnostic Investig. 2021;33:362–365. doi: 10.1177/1040638720988515. PubMed DOI PMC

Chomel BB, Molia S, Kasten RW, Borgo GM, Stuckey MJ, Maruyama S, et al. Isolation of Bartonella henselae and two new Bartonella subspecies, Bartonella koehlerae subspecies boulouisii subsp. nov and Bartonella koehlerae subspecies. bothieri subsp. nov. in free-ranging Californian mount. PLoS ONE. 2016;11:1–21. doi: 10.1371/journal.pone.0148299. PubMed DOI PMC

de Amaral RB, Cardozo MV, de Varani AM, Gonçalves LR, Furquim MEC, Dias CM, et al. Bartonella machadoae sp. nov. isolated from wild rodents in the Pantanal wetland. Acta Trop. 2022;229:106368. doi: 10.1016/j.actatropica.2022.106368. PubMed DOI

Aliyu M, Zohora F, Akbar S-Y. Spleen in innate and adaptive immunity regulation. AIMS Allergy Immunol. 2021;5:1–17. doi: 10.3934/Allergy.2021001. DOI

Hornok S, Horváth G, Takács N, Kontschán J, Szoke K, Farkas R. Molecular identification of badger-associated Babesia sp. DNA in dogs: updated phylogeny of Piroplasms infecting Caniformia. Parasit Vectors. 2018;11:1–6. doi: 10.1186/s13071-018-2794-8. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...