Carnivore distribution across habitats in a central-European landscape: a camera trap study

. 2018 ; (770) : 227-246. [epub] 20180704

Status PubMed-not-MEDLINE Jazyk angličtina Země Bulharsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30002596

Quantitative data on local variation in patterns of occurrence of common carnivore species, such as the red fox, European badger, or martens in central Europe are largely missing. We conducted a study focusing on carnivore ecology and distribution in a cultural landscape with the use of modern technology. We placed 73 automated infra-red camera traps into four different habitats differing in water availability and canopy cover (mixed forest, wetland, shrubby grassland and floodplain forest) in the Polabí region near Prague, Czech Republic. Each habitat was represented by three or four spatially isolated sites within which the camera traps were distributed. During the year of the study, we recorded nine carnivore species, including the non-native golden jackal. Habitats with the highest numbers of records pooled across all species were wetland (1279) and shrubby grassland (1014); fewer records were made in mixed (876) and floodplain forest (734). Habitat had a significant effect on the number of records of badger and marten, and a marginally significant effect on fox. In terms of seasonal dynamics, there were significant differences in the distribution of records among seasons in fox, marginally significant in least weasel, and the occurrence among seasons did not differ for badger and marten. In the summer, fox and marten were more active than expected by chance during the day, while the pattern was opposite in winter when they were more active during the night. Our findings on habitat preferences and circadian and seasonal activity provided the first quantitative data on patterns whose existence was assumed on the basis of conventional wisdom. Our study demonstrates the potential of a long-term monitoring approach based on infra-red camera traps. Generally, the rather frequent occurrence of recorded species indicates that most carnivore species are thriving in current central-European landscapes characterized by human-driven disturbances and urbanization.

Zobrazit více v PubMed

Ahumada JA, Silva CEF, Gajapersad K, Hallam C, Hurtado J, Martin E, McWilliam A, Mugerwa B, O’Brien T, Rovero F, Sheil D, Spironello WR, Winarni N, Andelman SJ. (2011) Community structure and diversity of tropical forest mammals: data from a global camera trap network. Philosophical Transactions of the Royal Society London B 366: 2703–2711. 10.1098/rstb.2011.0115 PubMed DOI PMC

Anděra M. (2017a) Mapování druhů. Savci v České republice. Biological Library – BioLib. http://www.biolib.cz

Anděra M. (2017b) Mapa rozšíření

Anděra M, Červený J. (2009) Velcí savci v České republice. Rozšíření, historie a ochrana. 2. Šelmy (Carnivora). Národní muzeum, Praha, 216 pp.

Anděra M, Gaisler J. (2012) Savci ČR. Academia, Praha, 288 pp.

Anděra M, Hanzal V. (1996) Atlas rozšíření savců v České republice. Předběžná verze. II. Šelmy (Carnivora). Národní muzeum, Praha, 64 pp.

Anděra M, Horáček I. (2005) Poznáváme naše savce. Sobotáles, Praha, 327 pp.

Baruš V, Bauerová Z, Kokeš J, Král B, Lusk S, Pelikán J, Sládek J, Zejda J, Zima J. (1989) Červená kniha ohrožených a vzácných druhů rostlin a živočichů ČSSR. 2. Kruhoústí, ryby, obojživelníci, plazi, savci. Státní zemědělské nakladatelství, Praha, 136 pp.

Baruš V, Zejda J. (1981) The European otter (

Bateman PW, Fleming PA. (2012) Big city life: carnivores in urban environments. Journal of Zoology 287: 1–23. 10.1111/j.1469-7998.2011.00887.x DOI

Braczkowski AR, Balme GA, Dickman A, Fattebert J, Johnson P, Dickerson T, Macdonald DW, Hunter L. (2016) Scent lure effect on camera-trap based leopard density estimates. PLoS ONE 11: e0151033. 10.1371/journal.pone.0151033 PubMed DOI PMC

Burton AC, Neilson E, Moreira D, Ladle A, Steenweg R, Fisher JT, Bayne E, Boutin S. (2015) Wildlife camera trapping: a review and recommendations for linking surveys to ecological processes. Journal of Applied Ecology 52: 675–685. 10.1111/1365-2664.12432 DOI

CENIA (2012) CORINE Land Cover 2012. Česká agentura životního prostředí, http://www1.cenia.cz/www/node/595

Český statistický úřad (2016) Počet obyvatel v regionech soudržnosti, krajích a okresech České republiky k 1. 1. 2016. https://www.czso.cz/csu/czso/pocet-obyvatel-v-obcich

Crawley MJ. (2007) The R book. Wiley and Sons, Chichester. 10.1002/9780470515075 DOI

Drygala F, Stier N, Zoller H, Boegelsack K, Mix HM, Roth M. (2008) Habitat use of the raccon dog ( DOI

Drygala F, Zoller H. (2013) Spatial use and interaction of the invasive raccoon dog and the native red fox in Central Europe: competition or coexistence? European Journal of Wildlife Research 59: 683–691. 10.1007/s10344-013-0722-y DOI

Foster RJ, Harmsen BJ. (2012) A critique of density estimation from camera-trap data. Journal of Wildlife Management 76: 224–236. 10.1002/jwmg.275 DOI

Harris S, Yalden D. (2008) Mammals of the British Isles: handbook. Fourth edition. The Mammal Society, London, 799 pp.

Hunter L. (2011) Carnivores of the world. Princeton University Press, Princeton, 240 pp.

Jennelle CS, Runge MC, MacKenzie DI. (2002) The use of photographic rates to estimate densities of tigers and other cryptic mammals: a comment on misleading conclusions. Animal Conservation 5: 119–120. 10.1017/S1367943002002160 DOI

Kaplan Z. (2012) Flora and phytogeography of the Czech Republic. Preslia 84: 505–573.

Karanth KU. (1995) Estimating tiger DOI

Karanth KU, Nichols JD. (1998) Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79: 2852–2862. 10.1890/0012-9658(1998)079[2852:EOTDII]2.0.CO;2 DOI

Kauhala K. (1995) Changes in distribution of the European badger

Kauhala K, Salonen L. (2012) Does a non-invasive method – latrine surveys – reveal habitat preferences of raccoon dogs and badgers? Mammalian Biology 77: 264–270. 10.1016/j.mambio.2012.02.007 DOI

Kutal M. (2017) Pozvolný návrat vlků a dalších šelem. Fórum ochrany přírody 2017/1: 33–36.

Kutal M, Váňa M, Bojda M, Turbaková B, Krojerová J, Hulva P, Černá Bolfíková B, Woznicová V, Pospíšková J, Beneš J, Kutalová L, Kristianová J, Machková J, Flousek J, Šimurda J, Kafka P, Žák L, Tomášek V, Romportl D. (2016) Monitoring velkých šelem a kočky divoké ve vybraných lokalitách soustavy Natura 2000. Hnutí DUHA, Olomouc. http://monitoring.selmy.cz/data/publications/studie-monitoring-n2000-final.pdf

Lozano J, Casanovas JG, Virgós E, Zorilla JM. (2013) The competitor release effect applied to carnivore species: how red foxes can increase in numbers when persecuted. Animal Biodiversity and Conservation 36.1: 37–46.

Macdonald DW. (1979) Helpers in fox society. Nature 282: 69–71. 10.1038/282069a0 DOI

Manzo E, Bartolommei P, Rowcliffe JM, Cozzolino R. (2011) Estimation of population density of European pine marten in central Italy using camera trapping. Acta Theriologica 57: 165–172. 10.1007/s13364-011-0055-8 DOI

Matouch O, Vitásek J, Semerád Z, Malena M. (2006) Elimination of rabies in the Czech republic. Developmental Biology 125: 141–143. PubMed

Matouch O, Vitásek J, Semerád Z, Malena M. (2007) Rabies-free status of the Czech republic after 15 years of oral vaccination. Revue Scientifique et Technique 26: 577–584. 10.20506/rst.26.3.1762 PubMed DOI

Matyáštík T, Bičík V, Řehák L. (2000) Jezevec lesní, jeho biologie a význam v ekosystému. Venator, Praha, 191 pp.

Mazák V. (1964) Několik poznámek o rodu

McCallum J. (2013) Changing use of camera traps in mammalian field research: habitats, taxa and study types. Mammal Review 43: 196–206. 10.1111/j.1365-2907.2012.00216.x DOI

McDonald RA, Abramov AV, Stubbe M, Herrero J, Maran T, Tikhonov A, Cavallini P, Kranz A, Giannatos G, Kryštufek B, Reid F. (2016)

O’Connell AF, Nichols JD, Karanth KU. (2011) Camera traps in animal ecology. Methods and analyses. Springer, New York, 271 pp 10.1007/978-4-431-99495-4 DOI

Preisler J. (1998) Sarkoptový svrab u divoce žijících lišek obecných (

Pyšková K. (2017) Nepůvodní druhy šelem v České republice. Forum ochrany přírody 2017/3: 44–45.

Pyšková K, Storch D, Horáček I, Kauzál O, Pyšek P. (2016) Golden jackal ( PubMed DOI PMC

Řehák J, Řeháková B. (1986) Analýza kategorizovaných dat v sociologii. Academia, Prague, 397 pp.

Rowcliffe JM, Field J, Turvey ST, Carbone C. (2008) Estimating animal density using camera traps without the need for individual recognition. Journal of Applied Ecology 45: 1228–1236. 10.1111/j.1365-2664.2008.01473.x DOI

Samson C, Raymond M. (2009) Daily activity pattern and time budget of stoats ( DOI

Shulman B, Wagner BD, Grunwald GK, Engeman RM. (2016) Evaluation of estimation quality of a general paradigm for indexing animal abundance when observations are counts. Ecological Informatics 32: 194–201. 10.1016/j.ecoinf.2016.02.004 DOI

Sidorovich VE, Polozov AG, Lauzhel GO, Krasko DA. (2000) Dietary overlap among generalist carnivores in relation to the impact of the introduced raccoon dog

Skumatov D, Abramov AV, Herrero J, Kitchener A, Maran T, Kranz A, Sándor A, Saveljev A, Savour-Soubelet A, Guinot-Ghestem M, Zuberogoitia I, Birks JDS, Weber A, Melisch R, Ruette S. (2016)

Sollmann R, Mohamed A, Samejima H, Wilting A. (2013) Risky business or simple solution: relative abundance indices from camera-trapping. Biological Conservation 159: 405–412. 10.1016/j.biocon.2012.12.025 DOI

Stokstad E. (2015) Bringing back the aurochs. Science 350: 1144–1147. 10.1126/science.350.6265.1144 PubMed DOI

Trolle M, Kery M. (2003) Estimation of ocelot density in the Pantanal using capture–recapture analysis of camera trapping data. Journal of Mammalogy 84: 607–614. 10.1644/1545-1542(2003)084<0607:EOODIT>2.0.CO;2 DOI

Wilson G, Delahay RJ. (2001) A review of methods to estimate the abundance of terrestrial carnivores using field signs and observation. Wildlife Research 28: 151–164. 10.1071/WR00033 DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...