• This record comes from PubMed

Fabrication of devices featuring covalently linked MoS2-graphene heterostructures

. 2022 Jun ; 14 (6) : 695-700. [epub] 20220425

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media print-electronic

Document type Journal Article

Grant support
MSCA-IF-2019-892667 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions)
742684 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
842606 EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
2017-T1/IND-5562 Consejería de Educación, Juventud y Deporte, Comunidad de Madrid (Consejería de Educación, Juventud y Deporte de la Comunidad de Madrid)

Links

PubMed 35469006
DOI 10.1038/s41557-022-00924-1
PII: 10.1038/s41557-022-00924-1
Knihovny.cz E-resources

The most widespread method for the synthesis of 2D-2D heterostructures is the direct growth of one material on top of the other. Alternatively, flakes of different materials can be manually stacked on top of each other. Both methods typically involve stacking 2D layers through van der Waals forces-such that these materials are often referred to as van der Waals heterostructures-and are stacked one crystal or one device at a time. Here we describe the covalent grafting of 2H-MoS2 flakes onto graphene monolayers embedded in field-effect transistors. A bifunctional molecule featuring a maleimide and a diazonium functional group was used, known to connect to sulfide- and carbon-based materials, respectively. MoS2 flakes were exfoliated, functionalized by reaction with the maleimide moieties and then anchored to graphene by the diazonium groups. This approach enabled the simultaneous functionalization of several devices. The electronic properties of the resulting heterostructure are shown to be dominated by the MoS2-graphene interface.

See more in PubMed

Liu, Y. et al. Van der Waals heterostructures and devices. Nat Rev. Mater. 1, 16042 (2016). DOI

Robinson, J. A. Growing vertical in the flatland. ACS Nano 10, 42–45 (2016). PubMed DOI

Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013). PubMed DOI

Yankowitz, M., Ma, Q., Jarillo-Herrero, P. & LeRoy, B. J. Van der Waals heterostructures combining graphene and hexagonal boron nitride. Nat. Rev. Phys. 1, 112–125 (2019). DOI

Neupane, G. P. et al. In-plane isotropic/anisotropic 2D van der Waals heterostructures for future devices. Small 15, e1804733 (2019). PubMed DOI

Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016). PubMed DOI

Jariwala, D., Marks, T. J. & Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16, 170–181 (2017). PubMed DOI

Bertolazzi, S., Krasnozhon, D. & Kis, A. Nonvolatile memory cells based on MoS PubMed DOI

Ulstrup, S. et al. Ultrafast band structure control of a two-dimensional heterostructure. ACS Nano 10, 6315–6322 (2016). PubMed DOI

Shi, Y. et al. Van der Waals epitaxy of MoS PubMed DOI

Yu, L. et al. Graphene/MoS PubMed DOI

Lorchat, E. et al. Filtering the photoluminescence spectra of atomically thin semiconductors with graphene. Nat. Nanotechnol. 15, 283–288 (2020). PubMed DOI

Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). PubMed DOI

Kezilebieke, S. et al. Topological superconductivity in a van der Waals heterostructure. Nature 588, 424–428 (2020). PubMed DOI

Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021). PubMed DOI

Flöry, N. et al. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nat. Nanotechnol. 15, 118–124 (2020). PubMed DOI PMC

Wang, X. et al. Realization of vertical metal semiconductor heterostructures via solution phase epitaxy. Nat. Commun. 9, 3611 (2018). PubMed DOI PMC

Le, C. T. et al. Effects of interlayer coupling and band offset on second harmonic generation in vertical MoS PubMed DOI

Choi, W. et al. Optoelectronics of multijunction heterostructures of transition metal dichalcogenides. Nano Lett. 20, 1934–1943 (2020). PubMed DOI

Li, C. et al. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev. 47, 4981–5037 (2018). PubMed DOI

Duong, D. L., Yun, S. J. & Lee, Y. H. Van der Waals layered materials: opportunities and challenges. ACS Nano 11, 11803–11830 (2017). PubMed DOI

Vera-Hidalgo, M., Giovanelli, E., Navio, C. & Perez, E. M. Mild covalent functionalization of transition metal dichalcogenides with maleimides: a “click” reaction for 2H-MoS PubMed DOI

Quirós-Ovies, R. et al. Controlled covalent functionalization of 2H‐MoS PubMed DOI

Vázquez Sulleiro, M. et al. Covalent cross-linking of 2H-MoS PubMed DOI

Villalva, J. et al. Covalent modification of franckeite with maleimides: connecting molecules and van der Waals heterostructures. Nanoscale Horizons 6, 551–558 (2021). PubMed DOI

Bahr, J. L. & Tour, J. M. Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem. Mater. 13, 3823–3824 (2001). DOI

Strano, M. S. et al. Electronic structure control of single-walled carbon nanotube functionalization. Science 301, 1519–1522 (2003). PubMed DOI

Bahr, J. L. et al. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J. Am. Chem. Soc. 123, 6536–6542 (2001). PubMed DOI

Paulus, G. L., Wang, Q. H. & Strano, M. S. Covalent electron transfer chemistry of graphene with diazonium salts. Acc. Chem. Res. 46, 160–170 (2013). PubMed DOI

Lomeda, J. R. et al. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 130, 16201–16206 (2008). PubMed DOI

Liu, Y., Zhao, Y., Jiao, L. & Chen, J. A graphene-like MoS DOI

Yang, L. et al. Lattice strain effects on the optical properties of MoS PubMed DOI PMC

Mahouche-Chergui, S., Gam-Derouich, S., Mangeney, C. & Chehimi, M. M. Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. Chem. Soc. Rev. 40, 4143–4166 (2011). PubMed DOI

Boukerma, K., Chehimi, M. M., Pinson, J. & Blomfield, C. X-ray photoelectron spectroscopy evidence for the covalent bond between an iron surface and aryl groups attached by the electrochemical reduction of diazonium salts. Langmuir 19, 6333–6335 (2003). DOI

Lomeda, J. R. et al. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 130, 16201–16206 (2008). PubMed DOI

Chu, X. S. et al. Direct covalent chemical functionalization of unmodified two-dimensional molybdenum disulfide. Chem. Mater. 30, 2112–2128 (2018). DOI

Li, D. O., Chu, X. S. & Wang, Q. H. Reaction kinetics for the covalent functionalization of two-dimensional MoS PubMed DOI

Benson, E. E. et al. Balancing the hydrogen evolution reaction, surface energetics, and stability of metallic MoS PubMed DOI

Chen, X. et al. Covalent bisfunctionalization of two-dimensional molybdenum disulfide. Angew. Chem. Int. Ed. 60, 13484–13492 (2021). DOI

Fan, J.-H. et al. Resonance Raman scattering in bulk 2H-MX DOI

Knirsch, K. C. et al. Basal-plane functionalization of chemically exfoliated molybdenum disulfide by diazonium salts. ACS Nano 9, 6018–6030 (2015). PubMed DOI

Mignuzzi, S. et al. Effect of disorder on Raman scattering of single-layer MoS DOI

Assresahegn, B. D., Brousse, T. & Bélanger, D. Advances on the use of diazonium chemistry for functionalization of materials used in energy storage systems. Carbon 92, 362–381 (2015). DOI

Bahr, J. L. & Tour, J. M. Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem. Mater. 13, 3823–3824 (2001). DOI

Wang, Y. et al. Photoelectrochemical immunosensing of tetrabromobisphenol A based on the enhanced effect of dodecahedral gold nanocrystals/MoS DOI

Ryu, S. et al. Atmospheric oxygen binding and hole doping in deformed graphene on a SiO PubMed DOI

Wang, Q. H. et al. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nat. Chem. 4, 724–732 (2012). PubMed DOI

Fan, X. Y., Nouchi, R., Yin, L. C. & Tanigaki, K. Effects of electron-transfer chemical modification on the electrical characteristics of graphene. Nanotechnology 21, 475208 (2010). PubMed DOI

Farmer, D. B. et al. Chemical doping and electron–hole conduction asymmetry in graphene devices. Nano Lett. 9, 388–392 (2009). PubMed DOI

Sinitskii, A. et al. Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4, 1949–1954 (2010). PubMed DOI

Pham, T. et al. MoS DOI

Zhang, W. et al. Ultrahigh-gain photodetectors based on atomically thin graphene–MoS PubMed DOI PMC

Ippolito, S. et al. Covalently interconnected transition metal dichalcogenide networks via defect engineering for high-performance electronic devices. Nat. Nanotechnol. 16, 592–598 (2021). PubMed DOI

Gbadamasi, S. et al. Interface chemistry of two-dimensional heterostructures–fundamentals to applications. Chem. Soc. Rev. 50, 4684–4729 (2021). PubMed DOI

Bottari, G., de la Torre, G., Guldi, D. M. & Torres, T. Covalent and noncovalent phthalocyanine−carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics. Chem. Rev. 110, 6768–6816 (2010). PubMed DOI

Martín, N. et al. Electronic communication in tetrathiafulvalene (TTF)/C60 systems: toward molecular solar energy conversion materials? Acc. Chem. Res. 40, 1015–1024 (2007). PubMed DOI

Villalva, J. et al. Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules. Nat. Commun. 12, 1578 (2021). PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...