Controlled Covalent Functionalization of 2 H-MoS2 with Molecular or Polymeric Adlayers
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
307609
FP7 Ideas: European Research Council
742684
H2020 European Research Council
CTQ2017-86060-P
Ministerio de Economía y Competitividad
CTQ2016-79419-R
Ministerio de Economía y Competitividad
SEV- 2016-0686
Ministerio de Economía y Competitividad
PubMed
32101348
DOI
10.1002/chem.202000068
Knihovny.cz E-zdroje
- Klíčová slova
- 2D materials, MoS2, click chemistry, covalent functionalization, maleimide,
- Publikační typ
- časopisecké články MeSH
Most air-stable 2D materials are relatively inert, which makes their chemical modification difficult. In particular, in the case of MoS2 , the semiconducting 2 H-MoS2 is much less reactive than its metallic counterpart, 1T-MoS2 . As a consequence, there are hardly any reliable methods for the covalent modification of 2 H-MoS2 . An ideal method for the chemical functionalization of such materials should be both mild, not requiring the introduction of a large number of defects, and versatile, allowing for the decoration with as many different functional groups as possible. Herein, a comprehensive study on the covalent functionalization of 2 H-MoS2 with maleimides is presented. The use of a base (Et3 N) leads to the in situ formation of a succinimide polymer layer, covalently connected to MoS2 . In contrast, in the absence of base, functionalization stops at the molecular level. Moreover, the functionalization protocol is mild (occurs at room temperature), fast (nearly complete in 1 h), and very flexible (11 different solvents and 10 different maleimides tested). In practical terms, the procedures described here allow for the chemist to manipulate 2 H-MoS2 in a very flexible way, decorating it with polymers or molecules, and with a wide range of functional groups for subsequent modification. Conceptually, the spurious formation of an organic polymer might be general to other methods of functionalization of 2D materials, where a large excess of molecular reagents is typically used.
CEITEC Masaryk University Kamenice 5 62500 Brno Czech Republic
IMDEA Nanociencia Ciudad Universitaria de Cantoblanco C Faraday 9 28049 Madrid Spain
Instituto de Ciencia de Materiales de Aragon 50018 Zaragoza Spain
Networking Research Center on Bioengineering Biomaterials and Nanomedicine 28029 Madrid Spain
Zobrazit více v PubMed
A. C. Ferrari, F. Bonaccorso, V. Fal′ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, J. Kinaret, Nanoscale 2015, 7, 4598-4810.
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666-669.
M. Xu, T. Liang, M. Shi, H. Chen, Chem. Rev. 2013, 113, 3766-3798.
A. Pakdel, Y. Bando, D. Golberg, Chem. Soc. Rev. 2014, 43, 934-959.
R. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. Sun, T. E. Mallouk, M. Terrones, Acc. Chem. Res. 2015, 48, 56-64.
L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, Y. Zhang, Nat. Nanotechnol. 2014, 9, 372-377.
A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, H. S. J. van der Zant, 2D Mater. 2014, 1, 25001.
Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol. 2012, 7, 699-712.
B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 2011, 6, 147-150.
Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, ACS Nano 2012, 6, 74-80.
S. Bertolazzi, M. Gobbi, Y. Zhao, P. Samori, C. Backes, Chem. Soc. Rev. 2018, 47, 6845-6888.
S. Ippolito, A. Ciesielski, P. Samori, Chem. Commun. 2019, 55, 8900-8914.
M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, H. Zhang, Nat. Chem. 2013, 5, 263.
S. Karunakaran, S. Pandit, B. Basu, M. De, J. Am. Chem. Soc. 2018, 140, 12634-12644.
R. Canton-Vitoria, H. B. Gobeze, V. M. Blas-Ferrando, J. Ortiz, Y. Jang, F. Fernández-Lázaro, Á. Sastre-Santos, Y. Nakanishi, H. Shinohara, F. D′Souza, Angew. Chem. Int. Ed. 2019, 58, 5768-5773.
S. Bertolazzi, S. Bonacchi, G. Nan, A. Pershin, D. Beljonne, P. Samorì, Adv. Mater. 2017, 29, 1606760.
A. Hirsch, F. Hauke, Angew. Chem. Int. Ed. 2018, 57, 4338-4354;
Angew. Chem. 2018, 130, 4421-4437.
W. Y. Chen, C.-C. Yen, S. Xue, H. Wang, L. Stanciu, ACS Appl. Mater. Interfaces 2019, 11, 34135-34143.
M. Xiao, T. Man, C. Zhu, H. Pei, J. Shi, L. Li, X. Qu, X. Shen, J. Li, ACS Appl. Mater. Interfaces 2018, 10, 7852-7858.
A. J. Molina-Mendoza, L. Vaquero-Garzon, S. Leret, L. de Juan-Fernandez, E. M. Perez, A. Castellanos-Gomez, Chem. Commun. 2016, 52, 14365-14368.
S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, J. H. Cho, ACS Nano 2014, 8, 8285-8291.
K. C. Knirsch, N. C. Berner, H. C. Nerl, C. S. Cucinotta, Z. Gholamvand, N. McEvoy, Z. Wang, I. Abramovic, P. Vecera, M. Halik, S. Sanvito, G. S. Duesberg, V. Nicolosi, F. Hauke, A. Hirsch, J. N. Coleman, C. Backes, ACS Nano 2015, 9, 6018-6030.
Q. Tang, D.-e. Jiang, Chem. Mater. 2015, 27, 3743-3748.
E. Er, H.-L. Hou, A. Criado, J. Langer, M. Möller, N. Erk, L. M. Liz-Marzán, M. Prato, Chem. Mater. 2019, 31, 5725-5734.
G. Tuci, D. Mosconi, A. Rossin, L. Luconi, S. Agnoli, M. Righetto, C. Pham-Huu, H. Ba, S. Cicchi, G. Granozzi, G. Giambastiani, Chem. Mater. 2018, 30, 8257-8269.
D. Voiry, A. Goswami, R. Kappera, C. d. C. C. e. Silva, D. Kaplan, T. Fujita, M. Chen, T. Asefa, M. Chhowalla, Nat. Chem. 2015, 7, 45.
M. M. Bernal, L. Alvarez, E. Giovanelli, A. Arnaiz, L. Ruiz-Gonzalez, S. Casado, D. Granados, A. M. Pizarro, A. Castellanos-Gomez, E. M. Perez, 2D Mater. 2016, 3, 035014/1-035014/11.
J. Shen, Y. He, J. Wu, C. Gao, K. Keyshar, X. Zhang, Y. Yang, M. Ye, R. Vajtai, J. Lou, P. M. Ajayan, Nano Lett. 2015, 15, 5449-5454.
G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, J. N. Coleman, ACS Nano 2012, 6, 3468-3480.
J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, V. Nicolosi, Science 2011, 331, 568-571.
M. J. Kade, D. J. Burke, C. J. Hawker, J. Polym. Sci. Part A 2010, 48, 743-750.
C. E. Hoyle, C. N. Bowman, Angew. Chem. Int. Ed. 2010, 49, 1540-1573;
Angew. Chem. 2010, 122, 1584-1617.
J. M. J. M. Ravasco, H. Faustino, A. Trindade, P. M. P. Gois, Chem. Eur. J. 2019, 25, 43-59.
M. Vera-Hidalgo, E. Giovanelli, C. Navio, E. M. Perez, J. Am. Chem. Soc. 2019, 141, 3767-3771.
J. Greenwood, T. H. Phan, Y. Fujita, Z. Li, O. Ivasenko, W. Vanderlinden, H. Van Gorp, W. Frederickx, G. Lu, K. Tahara, Y. Tobe, H. Uji-i, S. F. L. Mertens, S. De Feyter, ACS Nano 2015, 9, 5520-5535.
L. Assies, C. Fu, P. Kovaříček, Z. Bastl, K. A. Drogowska, J. Lang, V. L. P. Guerra, P. Samorì, E. Orgiu, D. F. Perepichka, M. Kalbáč, J. Mater. Chem. C 2019, 7, 12240-12247.
E. Giovanelli, A. Castellanos-Gomez, E. M. Perez, ChemPlusChem 2017, 82, 732-741.
X. S. Chu, D. O. Li, A. A. Green, Q. H. Wang, J. Mater. Chem. C 2017, 5, 11301-11309.
X. S. Chu, A. Yousaf, D. O. Li, A. A. Tang, A. Debnath, D. Ma, A. A. Green, E. J. G. Santos, Q. H. Wang, Chem. Mater. 2018, 30, 2112-2128.
C. Backes, N. C. Berner, X. Chen, P. Lafargue, P. LaPlace, M. Freeley, G. S. Duesberg, J. N. Coleman, A. R. McDonald, Angew. Chem. Int. Ed. 2015, 54, 2638-2642;
Angew. Chem. 2015, 127, 2676-2680.
X. Chen, N. C. Berner, C. Backes, G. S. Duesberg, A. R. McDonald, Angew. Chem. Int. Ed. 2016, 55, 5803-5808;
Angew. Chem. 2016, 128, 5897-5902.
H. C. Haas, R. L. MacDonald, J. Polym. Sci. 2003, 11, 327-343.
K. Kojima, N. Yoda, C. Marvel, J. Polym. Sci. A-1: Polym. Chem. 1966, 4, 1121-1134..
U. S. Sahu, S. Bhadani, Macromol. Rapid Commun. 1982, 3, 103-107.
A. López-Moreno, B. Nieto-Ortega, M. Moffa, A. de Juan, M. M. Bernal, J. P. Fernández-Blázquez, J. J. Vilatela, D. Pisignano, E. M. Pérez, ACS Nano 2016, 10, 8012-8018.
S. Hussain, M. A. Shehzad, D. Vikraman, M. F. Khan, J. Singh, D.-C. Choi, Y. Seo, J. Eom, W.-G. Lee, J. Jung, Nanoscale 2016, 8, 4340-4347.
K. Kalantar-zadeh, J. Z. Ou, ACS Sens. 2016, 1, 5-16.
M. Pumera, A. H. Loo, TrAC Trends Anal. Chem. 2014, 61, 49-53.
W. Zhang, P. Zhang, Z. Su, G. Wei, Nanoscale 2015, 7, 18364-18378.
Fabrication of devices featuring covalently linked MoS2-graphene heterostructures