Controlled Covalent Functionalization of 2 H-MoS2 with Molecular or Polymeric Adlayers

. 2020 May 20 ; 26 (29) : 6629-6634. [epub] 20200331

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32101348

Grantová podpora
307609 FP7 Ideas: European Research Council
742684 H2020 European Research Council
CTQ2017-86060-P Ministerio de Economía y Competitividad
CTQ2016-79419-R Ministerio de Economía y Competitividad
SEV- 2016-0686 Ministerio de Economía y Competitividad

Most air-stable 2D materials are relatively inert, which makes their chemical modification difficult. In particular, in the case of MoS2 , the semiconducting 2 H-MoS2 is much less reactive than its metallic counterpart, 1T-MoS2 . As a consequence, there are hardly any reliable methods for the covalent modification of 2 H-MoS2 . An ideal method for the chemical functionalization of such materials should be both mild, not requiring the introduction of a large number of defects, and versatile, allowing for the decoration with as many different functional groups as possible. Herein, a comprehensive study on the covalent functionalization of 2 H-MoS2 with maleimides is presented. The use of a base (Et3 N) leads to the in situ formation of a succinimide polymer layer, covalently connected to MoS2 . In contrast, in the absence of base, functionalization stops at the molecular level. Moreover, the functionalization protocol is mild (occurs at room temperature), fast (nearly complete in 1 h), and very flexible (11 different solvents and 10 different maleimides tested). In practical terms, the procedures described here allow for the chemist to manipulate 2 H-MoS2 in a very flexible way, decorating it with polymers or molecules, and with a wide range of functional groups for subsequent modification. Conceptually, the spurious formation of an organic polymer might be general to other methods of functionalization of 2D materials, where a large excess of molecular reagents is typically used.

Zobrazit více v PubMed

A. C. Ferrari, F. Bonaccorso, V. Fal′ko, K. S. Novoselov, S. Roche, P. Boggild, S. Borini, F. H. L. Koppens, V. Palermo, N. Pugno, J. A. Garrido, R. Sordan, A. Bianco, L. Ballerini, M. Prato, E. Lidorikis, J. Kivioja, C. Marinelli, T. Ryhanen, A. Morpurgo, J. N. Coleman, V. Nicolosi, L. Colombo, A. Fert, M. Garcia-Hernandez, A. Bachtold, G. F. Schneider, F. Guinea, C. Dekker, M. Barbone, Z. Sun, C. Galiotis, A. N. Grigorenko, G. Konstantatos, A. Kis, M. Katsnelson, L. Vandersypen, A. Loiseau, V. Morandi, D. Neumaier, E. Treossi, V. Pellegrini, M. Polini, A. Tredicucci, G. M. Williams, B. Hee Hong, J.-H. Ahn, J. Min Kim, H. Zirath, B. J. van Wees, H. van der Zant, L. Occhipinti, A. Di Matteo, I. A. Kinloch, T. Seyller, E. Quesnel, X. Feng, K. Teo, N. Rupesinghe, P. Hakonen, S. R. T. Neil, Q. Tannock, T. Lofwander, J. Kinaret, Nanoscale 2015, 7, 4598-4810.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666-669.

M. Xu, T. Liang, M. Shi, H. Chen, Chem. Rev. 2013, 113, 3766-3798.

A. Pakdel, Y. Bando, D. Golberg, Chem. Soc. Rev. 2014, 43, 934-959.

R. Lv, J. A. Robinson, R. E. Schaak, D. Sun, Y. Sun, T. E. Mallouk, M. Terrones, Acc. Chem. Res. 2015, 48, 56-64.

L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H. Wu, D. Feng, X. H. Chen, Y. Zhang, Nat. Nanotechnol. 2014, 9, 372-377.

A. Castellanos-Gomez, L. Vicarelli, E. Prada, J. O. Island, K. L. Narasimha-Acharya, S. I. Blanter, D. J. Groenendijk, M. Buscema, G. A. Steele, J. V. Alvarez, H. W. Zandbergen, J. J. Palacios, H. S. J. van der Zant, 2D Mater. 2014, 1, 25001.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol. 2012, 7, 699-712.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, A. Kis, Nat. Nanotechnol. 2011, 6, 147-150.

Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, ACS Nano 2012, 6, 74-80.

S. Bertolazzi, M. Gobbi, Y. Zhao, P. Samori, C. Backes, Chem. Soc. Rev. 2018, 47, 6845-6888.

S. Ippolito, A. Ciesielski, P. Samori, Chem. Commun. 2019, 55, 8900-8914.

M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, H. Zhang, Nat. Chem. 2013, 5, 263.

S. Karunakaran, S. Pandit, B. Basu, M. De, J. Am. Chem. Soc. 2018, 140, 12634-12644.

R. Canton-Vitoria, H. B. Gobeze, V. M. Blas-Ferrando, J. Ortiz, Y. Jang, F. Fernández-Lázaro, Á. Sastre-Santos, Y. Nakanishi, H. Shinohara, F. D′Souza, Angew. Chem. Int. Ed. 2019, 58, 5768-5773.

S. Bertolazzi, S. Bonacchi, G. Nan, A. Pershin, D. Beljonne, P. Samorì, Adv. Mater. 2017, 29, 1606760.

A. Hirsch, F. Hauke, Angew. Chem. Int. Ed. 2018, 57, 4338-4354;

Angew. Chem. 2018, 130, 4421-4437.

W. Y. Chen, C.-C. Yen, S. Xue, H. Wang, L. Stanciu, ACS Appl. Mater. Interfaces 2019, 11, 34135-34143.

M. Xiao, T. Man, C. Zhu, H. Pei, J. Shi, L. Li, X. Qu, X. Shen, J. Li, ACS Appl. Mater. Interfaces 2018, 10, 7852-7858.

A. J. Molina-Mendoza, L. Vaquero-Garzon, S. Leret, L. de Juan-Fernandez, E. M. Perez, A. Castellanos-Gomez, Chem. Commun. 2016, 52, 14365-14368.

S. H. Yu, Y. Lee, S. K. Jang, J. Kang, J. Jeon, C. Lee, J. Y. Lee, H. Kim, E. Hwang, S. Lee, J. H. Cho, ACS Nano 2014, 8, 8285-8291.

K. C. Knirsch, N. C. Berner, H. C. Nerl, C. S. Cucinotta, Z. Gholamvand, N. McEvoy, Z. Wang, I. Abramovic, P. Vecera, M. Halik, S. Sanvito, G. S. Duesberg, V. Nicolosi, F. Hauke, A. Hirsch, J. N. Coleman, C. Backes, ACS Nano 2015, 9, 6018-6030.

Q. Tang, D.-e. Jiang, Chem. Mater. 2015, 27, 3743-3748.

E. Er, H.-L. Hou, A. Criado, J. Langer, M. Möller, N. Erk, L. M. Liz-Marzán, M. Prato, Chem. Mater. 2019, 31, 5725-5734.

G. Tuci, D. Mosconi, A. Rossin, L. Luconi, S. Agnoli, M. Righetto, C. Pham-Huu, H. Ba, S. Cicchi, G. Granozzi, G. Giambastiani, Chem. Mater. 2018, 30, 8257-8269.

D. Voiry, A. Goswami, R. Kappera, C. d. C. C. e. Silva, D. Kaplan, T. Fujita, M. Chen, T. Asefa, M. Chhowalla, Nat. Chem. 2015, 7, 45.

M. M. Bernal, L. Alvarez, E. Giovanelli, A. Arnaiz, L. Ruiz-Gonzalez, S. Casado, D. Granados, A. M. Pizarro, A. Castellanos-Gomez, E. M. Perez, 2D Mater. 2016, 3, 035014/1-035014/11.

J. Shen, Y. He, J. Wu, C. Gao, K. Keyshar, X. Zhang, Y. Yang, M. Ye, R. Vajtai, J. Lou, P. M. Ajayan, Nano Lett. 2015, 15, 5449-5454.

G. Cunningham, M. Lotya, C. S. Cucinotta, S. Sanvito, S. D. Bergin, R. Menzel, M. S. P. Shaffer, J. N. Coleman, ACS Nano 2012, 6, 3468-3480.

J. N. Coleman, M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, I. V. Shvets, S. K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G. T. Kim, G. S. Duesberg, T. Hallam, J. J. Boland, J. J. Wang, J. F. Donegan, J. C. Grunlan, G. Moriarty, A. Shmeliov, R. J. Nicholls, J. M. Perkins, E. M. Grieveson, K. Theuwissen, D. W. McComb, P. D. Nellist, V. Nicolosi, Science 2011, 331, 568-571.

M. J. Kade, D. J. Burke, C. J. Hawker, J. Polym. Sci. Part A 2010, 48, 743-750.

C. E. Hoyle, C. N. Bowman, Angew. Chem. Int. Ed. 2010, 49, 1540-1573;

Angew. Chem. 2010, 122, 1584-1617.

J. M. J. M. Ravasco, H. Faustino, A. Trindade, P. M. P. Gois, Chem. Eur. J. 2019, 25, 43-59.

M. Vera-Hidalgo, E. Giovanelli, C. Navio, E. M. Perez, J. Am. Chem. Soc. 2019, 141, 3767-3771.

J. Greenwood, T. H. Phan, Y. Fujita, Z. Li, O. Ivasenko, W. Vanderlinden, H. Van Gorp, W. Frederickx, G. Lu, K. Tahara, Y. Tobe, H. Uji-i, S. F. L. Mertens, S. De Feyter, ACS Nano 2015, 9, 5520-5535.

L. Assies, C. Fu, P. Kovaříček, Z. Bastl, K. A. Drogowska, J. Lang, V. L. P. Guerra, P. Samorì, E. Orgiu, D. F. Perepichka, M. Kalbáč, J. Mater. Chem. C 2019, 7, 12240-12247.

E. Giovanelli, A. Castellanos-Gomez, E. M. Perez, ChemPlusChem 2017, 82, 732-741.

X. S. Chu, D. O. Li, A. A. Green, Q. H. Wang, J. Mater. Chem. C 2017, 5, 11301-11309.

X. S. Chu, A. Yousaf, D. O. Li, A. A. Tang, A. Debnath, D. Ma, A. A. Green, E. J. G. Santos, Q. H. Wang, Chem. Mater. 2018, 30, 2112-2128.

C. Backes, N. C. Berner, X. Chen, P. Lafargue, P. LaPlace, M. Freeley, G. S. Duesberg, J. N. Coleman, A. R. McDonald, Angew. Chem. Int. Ed. 2015, 54, 2638-2642;

Angew. Chem. 2015, 127, 2676-2680.

X. Chen, N. C. Berner, C. Backes, G. S. Duesberg, A. R. McDonald, Angew. Chem. Int. Ed. 2016, 55, 5803-5808;

Angew. Chem. 2016, 128, 5897-5902.

H. C. Haas, R. L. MacDonald, J. Polym. Sci. 2003, 11, 327-343.

K. Kojima, N. Yoda, C. Marvel, J. Polym. Sci. A-1: Polym. Chem. 1966, 4, 1121-1134..

U. S. Sahu, S. Bhadani, Macromol. Rapid Commun. 1982, 3, 103-107.

A. López-Moreno, B. Nieto-Ortega, M. Moffa, A. de Juan, M. M. Bernal, J. P. Fernández-Blázquez, J. J. Vilatela, D. Pisignano, E. M. Pérez, ACS Nano 2016, 10, 8012-8018.

S. Hussain, M. A. Shehzad, D. Vikraman, M. F. Khan, J. Singh, D.-C. Choi, Y. Seo, J. Eom, W.-G. Lee, J. Jung, Nanoscale 2016, 8, 4340-4347.

K. Kalantar-zadeh, J. Z. Ou, ACS Sens. 2016, 1, 5-16.

M. Pumera, A. H. Loo, TrAC Trends Anal. Chem. 2014, 61, 49-53.

W. Zhang, P. Zhang, Z. Su, G. Wei, Nanoscale 2015, 7, 18364-18378.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Fabrication of devices featuring covalently linked MoS2-graphene heterostructures

. 2022 Jun ; 14 (6) : 695-700. [epub] 20220425

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...