Direct Magnetic Evidence, Functionalization, and Low-Temperature Magneto-Electron Transport in Liquid-Phase Exfoliated FePS3
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36651757
PubMed Central
PMC9933618
DOI
10.1021/acsnano.2c11654
Knihovny.cz E-zdroje
- Klíčová slova
- FePS3, electron transport, liquid-phase exfoliation, magnetic van der Waals, magnon, two-dimensional,
- Publikační typ
- časopisecké články MeSH
Magnetism and the existence of magnetic order in a material is determined by its dimensionality. In this regard, the recent emergence of magnetic layered van der Waals (vdW) materials provides a wide playground to explore the exotic magnetism arising in the two-dimensional (2D) limit. The magnetism of 2D flakes, especially antiferromagnetic ones, however, cannot be easily probed by conventional magnetometry techniques, being often replaced by indirect methods like Raman spectroscopy. Here, we make use of an alternative approach to provide direct magnetic evidence of few-layer vdW materials, including antiferromagnets. We take advantage of a surfactant-free, liquid-phase exfoliation (LPE) method to obtain thousands of few-layer FePS3 flakes that can be quenched in a solvent and measured in a conventional SQUID magnetometer. We show a direct magnetic evidence of the antiferromagnetic transition in FePS3 few-layer flakes, concomitant with a clear reduction of the Néel temperature with the flake thickness, in contrast with previous Raman reports. The quality of the LPE FePS3 flakes allows the study of electron transport down to cryogenic temperatures. The significant through-flake conductance is sensitive to the antiferromagnetic order transition. Besides, an additional rich spectra of electron transport excitations, including secondary magnetic transitions and potentially magnon-phonon hybrid states, appear at low temperatures. Finally, we show that the LPE is additionally a good starting point for the mass covalent functionalization of 2D magnetic materials with functional molecules. This technique is extensible to any vdW magnetic family.
D Foundry Instituto de Ciencia de Materiales de Madrid 28049 Madrid Spain
Departamento de Química Inorgánica Universidad Complutense de Madrid 28040 Madrid Spain
IMDEA Nanociencia C Faraday 9 Ciudad Universitaria de Cantoblanco 28049 Madrid Spain
Zobrazit více v PubMed
Onsager L. Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition. Phys. Rev. 1944, 65, 117–149. 10.1103/PhysRev.65.117. DOI
Kosterlitz J. M.; Thouless D. J. Ordering, Metastability and Phase Transitions in Two-Dimensional Systems. J. Phys. C Solid State Phys. 1973, 6, 1181–1203. 10.1088/0022-3719/6/7/010. PubMed DOI
Tokura Y.; Kanazawa N. Magnetic Skyrmion Materials. Chem. Rev. 2021, 121, 2857–2897. 10.1021/acs.chemrev.0c00297. PubMed DOI
Verzhbitskiy I. A.; Kurebayashi H.; Cheng H.; Zhou J.; Khan S.; Feng Y. P.; Eda G. Controlling the Magnetic Anisotropy in Cr2Ge2Te6 by Electrostatic Gating. Nat. Electron. 2020, 3, 460–465. 10.1038/s41928-020-0427-7. DOI
Broholm C.; Cava R. J.; Kivelson S. A.; Nocera D. G.; Norman M. R.; Senthil T. Quantum Spin Liquids. Science. 2020, 367, eaay066810.1126/science.aay0668. PubMed DOI
Deng Y.; Yu Y.; Song Y.; Zhang J.; Wang N. Z.; Sun Z.; Yi Y.; Wu Y. Z.; Wu S.; Zhu J.; et al. Gate-Tunable Room-Temperature Ferromagnetism in Two-Dimensional Fe3GeTe2. Nature 2018, 563, 94–99. 10.1038/s41586-018-0626-9. PubMed DOI
Wang Z.; Sapkota D.; Taniguchi T.; Watanabe K.; Mandrus D.; Morpurgo A. F. Tunneling Spin Valves Based on Fe 3 GeTe 2 /HBN/Fe 3 GeTe 2 van Der Waals Heterostructures. Nano Lett. 2018, 18, 4303–4308. 10.1021/acs.nanolett.8b01278. PubMed DOI
Gibertini M.; Koperski M.; Morpurgo A. F.; Novoselov K. S. Magnetic 2D Materials and Heterostructures. Nat. Nanotechnol. 2019, 14, 408–419. 10.1038/s41565-019-0438-6. PubMed DOI
Gong C.; Li L.; Li Z.; Ji H.; Stern A.; Xia Y.; Cao T.; Bao W.; Wang C.; Wang Y.; et al. Discovery of Intrinsic Ferromagnetism in Two-Dimensional van Der Waals Crystals. Nature 2017, 546, 265–269. 10.1038/nature22060. PubMed DOI
Bonilla M.; Kolekar S.; Ma Y.; Diaz H. C.; Kalappattil V.; Das R.; Eggers T.; Gutierrez H. R.; Phan M.-H.; Batzill M. Strong Room-Temperature Ferromagnetism in VSe2Monolayers on van Der Waals Substrates. Nat. Nanotechnol. 2018, 13, 289–293. 10.1038/s41565-018-0063-9. PubMed DOI
Klein D. R.; MacNeill D.; Lado J. L.; Soriano D.; Navarro-Moratalla E.; Watanabe K.; Taniguchi T.; Manni S.; Canfield P.; Fernández-Rossier J.; et al. Probing Magnetism in 2D van Der Waals Crystalline Insulators via Electron Tunneling. Science 2018, 360, 1218–1222. 10.1126/science.aar3617. PubMed DOI
Huang B.; Clark G.; Navarro-Moratalla E.; Klein D. R.; Cheng R.; Seyler K. L.; Zhong D.; Schmidgall E.; McGuire M. A.; Cobden D. H.; et al. Layer-Dependent Ferromagnetism in a van Der Waals Crystal down to the Monolayer Limit. Nature 2017, 546, 270–273. 10.1038/nature22391. PubMed DOI
Lee J.-U.; Lee S.; Ryoo J. H.; Kang S.; Kim T. Y.; Kim P.; Park C.-H.; Park J.-G.; Cheong H. Ising-Type Magnetic Ordering in Atomically Thin FePS 3. Nano Lett. 2016, 16, 7433–7438. 10.1021/acs.nanolett.6b03052. PubMed DOI
Wang X.; Du K.; Liu Y. Y. F.; Hu P.; Zhang J.; Zhang Q.; Owen M. H. S.; Lu X.; Gan C. K.; Sengupta P.; et al. Raman Spectroscopy of Atomically Thin Two-Dimensional Magnetic Iron Phosphorus Trisulfide (FePS3) Crystals. 2D Mater. 2016, 3, 031009.10.1088/2053-1583/3/3/031009. DOI
Granata C.; Vettoliere A. Nano Superconducting Quantum Interference Device: A Powerful Tool for Nanoscale Investigations. Phys. Rep. 2016, 614, 1–69. 10.1016/j.physrep.2015.12.001. DOI
José Martínez-Pérez M.; Koelle D. NanoSQUIDs: Basics & Recent Advances. Phys. Sci. Rev. 2017, 2, 20175001.10.1515/psr-2017-5001. DOI
McCreary A.; Simpson J. R.; Mai T. T.; McMichael R. D.; Douglas J. E.; Butch N.; Dennis C.; Valdés Aguilar R.; Hight Walker A. R. Quasi-Two-Dimensional Magnon Identification in Antiferromagnetic FeP S3 via Magneto-Raman Spectroscopy. Phys. Rev. B 2020, 101, 64416.10.1103/PhysRevB.101.064416. PubMed DOI PMC
Coak M. J.; Jarvis D. M.; Hamidov H.; Wildes A. R.; Paddison J. A. M.; Liu C.; Haines C. R. S.; Dang N. T.; Kichanov S. E.; Savenko B. N.; et al. Emergent Magnetic Phases in Pressure-Tuned van Der Waals Antiferromagnet FePS3. Phys. Rev. X 2021, 11, 11024.10.1103/PhysRevX.11.011024. DOI
Zhu W.; Gan W.; Muhammad Z.; Wang C.; Wu C.; Liu H.; Liu D.; Zhang K.; He Q.; Jiang H.; et al. Exfoliation of Ultrathin FePS3 Layers as a Promising Electrocatalyst for the Oxygen Evolution Reaction. Chem. Commun. 2018, 54, 4481–4484. 10.1039/C8CC01076E. PubMed DOI
Rule K. C.; McIntyre G. J.; Kennedy S. J.; Hicks T. J. Single-Crystal and Powder Neutron Diffraction Experiments on FeP S3: Search for the Magnetic Structure. Phys. Rev. B 2007, 76, 134402.10.1103/PhysRevB.76.134402. DOI
Joy P. A.; Vasudevan S. Magnetism in the Layered Transition-Metal Thiophosphates MPS3. Phys. Rev. B 1992, 46, 5425.10.1103/PhysRevB.46.5425. PubMed DOI
Wang Y.; Ying J.; Zhou Z.; Sun J.; Wen T.; Zhou Y.; Li N.; Zhang Q.; Han F.; Xiao Y.; et al. Emergent Superconductivity in an Iron-Based Honeycomb Lattice Initiated by Pressure-Driven Spin-Crossover. Nat. Commun. 2018, 9, 1914.10.1038/s41467-018-04326-1. PubMed DOI PMC
Xu H.; Wang S. W.; Ouyang J. M.; He X.; Chen H.; Li Y. B.; Liu Y.; Chen R.; Yang J. B. Surface Modification of Multilayer FePS3 by Ga Ion Irradiation. Sci. Rep. 2019, 9, 15219.10.1038/s41598-019-51714-8. PubMed DOI PMC
Šiškins M.; Lee M.; Mañas-Valero S.; Coronado E.; Blanter Y. M.; van der Zant H. S. J.; Steeneken P. G. Magnetic and Electronic Phase Transitions Probed by Nanomechanical Resonators. Nat. Commun. 2020, 11, 2698.10.1038/s41467-020-16430-2. PubMed DOI PMC
Niu Y.; Villalva J.; Frisenda R.; Sanchez-Santolino G.; Ruiz-González L.; Pérez E. M.; García-Hernández M.; Burzurí E.; Castellanos-Gomez A. Mechanical and Liquid Phase Exfoliation of Cylindrite: A Natural van Der Waals Superlattice with Intrinsic Magnetic Interactions. 2D Mater. 2019, 6, 035023.10.1088/2053-1583/ab1a4c. DOI
Burzurí E.; Vera-Hidalgo M.; Giovanelli E.; Villalva J.; Castellanos-Gomez A.; Pérez E. M. Simultaneous Assembly of van Der Waals Heterostructures into Multiple Nanodevices. Nanoscale 2018, 10, 7966–7970. 10.1039/C8NR01045E. PubMed DOI
Yu Z.; Peng J.; Liu Y.; Liu W.; Liu H.; Guo Y. Amine-Assisted Exfoliation and Electrical Conductivity Modulation toward Few-Layer FePS3 Nanosheets for Efficient Hydrogen Evolution. J. Mater. Chem. A 2019, 7, 13928–13934. 10.1039/C9TA03256H. DOI
Xu D.; Guo Z.; Tu Y.; Li X.; Chen Y.; Chen Z.; Tian B.; Chen S.; Shi Y.; Li Y.; et al. Controllable Nonlinear Optical Properties of Different-Sized Iron Phosphorus Trichalcogenide (FePS3) Nanosheets. Nanophotonics 2020, 9, 4555–4564. 10.1515/nanoph-2020-0336. DOI
Wang H.; Li Z.; Li Y.; Yang B.; Chen J.; Lei L.; Wang S.; Hou Y. An Exfoliated Iron Phosphorus Trisulfide Nanosheet with Rich Sulfur Vacancy for Efficient Dinitrogen Fixation and Zn-N2 Battery. Nano Energy 2021, 81, 105613.10.1016/j.nanoen.2020.105613. DOI
Lam D.; Lebedev D.; Kuo L.; Sangwan V. K.; Szydłowska B. M.; Ferraresi F.; Söll A.; Sofer Z.; Hersam M. C. Liquid-Phase Exfoliation of Magnetically and Optoelectronically Active Ruthenium Trichloride Nanosheets. ACS Nano 2022, 16, 11315–11324. 10.1021/acsnano.2c04888. PubMed DOI
Martín-Pérez L.; Burzurí E. Optimized Liquid-Phase Exfoliation of Magnetic van Der Waals Heterostructures: Towards the Single Layer and Deterministic Fabrication of Devices. Molecules 2021, 26, 7371.10.3390/molecules26237371. PubMed DOI PMC
Backes C.; Szydłowska B. M.; Harvey A.; Yuan S.; Vega-Mayoral V.; Davies B. R.; Zhao P. L.; Hanlon D.; Santos E. J. G.; Katsnelson M. I.; et al. Production of Highly Monolayer Enriched Dispersions of Liquid-Exfoliated Nanosheets by Liquid Cascade Centrifugation. ACS Nano 2016, 10, 1589–1601. 10.1021/acsnano.5b07228. PubMed DOI
Backes C.; Hanlon D.; Szydlowska B. M.; Harvey A.; Smith R. J.; Higgins T. M.; Coleman J. N. Preparation of Liquid-Exfoliated Transition Metal Dichalcogenide Nanosheets with Controlled Size and Thickness: A State of the Art Protocol. J. Vis. Exp. 2016, 2016, 10–13. 10.3791/54806. PubMed DOI PMC
Scagliotti M.; Jouanne M.; Balkanski M.; Ouvrard G. Spin Dependent Phonon Raman Scattering in Antiferromagnetic FePS3 Layer-Type Compound. Solid State Commun. 1985, 54, 291–294. 10.1016/0038-1098(85)91087-7. DOI
Scagliotti M.; Jouanne M.; Balkanski M.; Ouvrard G.; Benedek G. Raman Scattering in Antiferromagnetic FePS3 and FePSe3 Crystals. Phys. Rev. B 1987, 35, 7097–7104. 10.1103/PhysRevB.35.7097. PubMed DOI
Sourisseau C.; Forgerit J. P.; Mathey Y. Vibrational Study of the [P2S4–6] Anion, of Some MPS3 Layered Compounds (M = Fe, Co, Ni, In2 3), and of Their Intercalates with [Co(Η5-C5H5)+2] Cations. J. Solid State Chem. 1983, 49, 134–149. 10.1016/0022-4596(83)90107-X. DOI
Ghosh A.; Palit M.; Maity S.; Dwij V.; Rana S.; Datta S. Spin-Phonon Coupling and Magnon Scattering in Few-Layer Antiferromagnetic FePS3. Phys. Rev. B 2021, 103, 064431.10.1103/PhysRevB.103.064431. DOI
Du K. Z.; Wang X. Z.; Liu Y.; Hu P.; Utama M. I. B.; Gan C. K.; Xiong Q.; Kloc C. Weak Van Der Waals Stacking, Wide-Range Band Gap, and Raman Study on Ultrathin Layers of Metal Phosphorus Trichalcogenides. ACS Nano 2016, 10, 1738–1743. 10.1021/acsnano.5b05927. PubMed DOI
Ouvrard G.; Brec R.; Rouxel J. Structural Determination of Some MPS3 Layered Phases (M = Mn, Fe, Co, Ni and Cd). Mater. Res. Bull. 1985, 20, 1181–1189. 10.1016/0025-5408(85)90092-3. DOI
Li X.; Fang Y.; Wang J.; Wei B.; Qi K.; Hoh H. Y.; Hao Q.; Sun T.; Wang Z.; Yin Z.; et al. High-Yield Electrochemical Production of Large-Sized and Thinly Layered NiPS 3 Flakes for Overall Water Splitting. Small 2019, 15, 1902427.10.1002/smll.201902427. PubMed DOI
Brotons-Alcázar I.; Torres-Cavanillas R.; Morant-Giner M.; Cvikl M.; Mañas-Valero S.; Forment-Aliaga A.; Coronado E. Molecular Stabilization of Chemically Exfoliated Bare MnPS 3 Layers. Dalt. Trans. 2021, 50, 16281–16289. 10.1039/D1DT02536H. PubMed DOI
Velický M.; Toth P. S.; Rakowski A. M.; Rooney A. P.; Kozikov A.; Woods C. R.; Mishchenko A.; Fumagalli L.; Yin J.; Zólyomi V.; et al. Exfoliation of Natural van Der Waals Heterostructures to a Single Unit Cell Thickness. Nat. Commun. 2017, 8, 14410.10.1038/ncomms14410. PubMed DOI PMC
Molina-Mendoza A. J.; Giovanelli E.; Paz W. S.; Niño M. A.; Island J. O.; Evangeli C.; Aballe L.; Foerster M.; van der Zant H. S. J.; Rubio-Bollinger G.; et al. Franckeite as a Naturally Occurring van Der Waals Heterostructure. Nat. Commun. 2017, 8, 14409.10.1038/ncomms14409. PubMed DOI PMC
Landau D. P. Finite-Size Behavior of the Simple-Cubic Ising Lattice. Phys. Rev. B 1976, 14, 255–262. 10.1103/PhysRevB.14.255. DOI
Farle M.; Baberschke K.; Stetter U.; Aspelmeier A.; Gerhardter F. Thickness-Dependent Curie Temperature of Gd(0001)/W(110) and Its Dependence on the Growth Conditions. Phys. Rev. B 1993, 47, 11571–11574. 10.1103/PhysRevB.47.11571. PubMed DOI
Krupke R.; Hennrich F.; Weber H. B.; Kappes M. M.; Löhneysen H. v. Simultaneous Deposition of Metallic Bundles of Single-Walled Carbon Nanotubes Using Ac-Dielectrophoresis. Nano Lett. 2003, 3, 1019–1023. 10.1021/nl0342343. DOI
Penzo E.; Palma M.; Chenet D. A.; Ao G.; Zheng M.; Hone J. C.; Wind S. J. Directed Assembly of Single Wall Carbon Nanotube Field Effect Transistors. ACS Nano 2016, 10, 2975–2981. 10.1021/acsnano.6b00353. PubMed DOI
Engel M.; Farmer D. B.; Azpiroz J. T.; Seo J.-W. T.; Kang J.; Avouris P.; Hersam M. C.; Krupke R.; Steiner M. Graphene-Enabled and Directed Nanomaterial Placement from Solution for Large-Scale Device Integration. Nat. Commun. 2018, 9, 4095.10.1038/s41467-018-06604-4. PubMed DOI PMC
Cully J. J.; Swett J. L.; Willick K.; Baugh J.; Mol J. A. Graphene Nanogaps for the Directed Assembly of Single-Nanoparticle Devices. Nanoscale 2021, 13, 6513–6520. 10.1039/D1NR01450A. PubMed DOI
Dugay J.; Giménez-Marqués M.; Kozlova T.; Zandbergen H. W.; Coronado E.; van der Zant H. S. J. Spin Switching in Electronic Devices Based on 2D Assemblies of Spin-Crossover Nanoparticles. Adv. Mater. 2015, 27, 1288–1293. 10.1002/adma.201404441. PubMed DOI
Nieto-Ortega B.; Villalva J.; Vera-Hidalgo M.; Ruiz-González L.; Burzurí E.; Pérez E. M. Band-Gap Opening in Metallic Single-Walled Carbon Nanotubes by Encapsulation of an Organic Salt. Angew. Chemie Int. Ed. 2017, 56, 12240–12244. 10.1002/anie.201705258. PubMed DOI
Villalva J.; Develioglu A.; Montenegro-Pohlhammer N.; Sánchez-de-Armas R.; Gamonal A.; Rial E.; García-Hernández M.; Ruiz-Gonzalez L.; Costa J. S.; Calzado C. J.; et al. Spin-State-Dependent Electrical Conductivity in Single-Walled Carbon Nanotubes Encapsulating Spin-Crossover Molecules. Nat. Commun. 2021, 12, 1578.10.1038/s41467-021-21791-3. PubMed DOI PMC
Shi S.; Feng Y.; Li B.; Zhang H.; Li Q.; Mo Z.; Zhou X.; Lu Z.; Dang W.; Lin X.; et al. Broadband and High-Performance SnS2/FePS3/Graphene van Der Waals Heterojunction Photodetector. Appl. Phys. Lett. 2022, 120, 081101.10.1063/5.0083272. DOI
Ramos M.; Carrascoso F.; Frisenda R.; Gant P.; Mañas-Valero S.; Esteras D. L.; Baldoví J. J.; Coronado E.; Castellanos-Gomez A.; Calvo M. R. Ultra-Broad Spectral Photo-Response in FePS3 Air-Stable Devices. npj 2D Mater. Appl. 2021, 5, 19.10.1038/s41699-021-00199-z. DOI
Ou Z.; Wang T.; Tang J.; Zong X.; Wang W.; Guo Q.; Xu Y.; Zhu C.; Wang L.; Huang W.; et al. Enabling and Controlling Negative Photoconductance of FePS3 Nanosheets by Hot Carrier Trapping. Adv. Opt. Mater. 2020, 8, 2000201.10.1002/adom.202000201. DOI
Mayorga-Martinez C. C.; Sofer Z.; Sedmidubský D.; Huber Š.; Eng A. Y. S.; Pumera M. Layered Metal Thiophosphite Materials: Magnetic, Electrochemical, and Electronic Properties. ACS Appl. Mater. Interfaces 2017, 9, 12563–12573. 10.1021/acsami.6b16553. PubMed DOI
Sun Y. J.; Tan Q. H.; Liu X. L.; Gao Y. F.; Zhang J. Probing the Magnetic Ordering of Antiferromagnetic MnPS3 by Raman Spectroscopy. J. Phys. Chem. Lett. 2019, 10, 3087–3093. 10.1021/acs.jpclett.9b00758. PubMed DOI
Kargar F.; Coleman E. A.; Ghosh S.; Lee J.; Gomez M. J.; Liu Y.; Magana A. S.; Barani Z.; Mohammadzadeh A.; Debnath B.; et al. Phonon and Thermal Properties of Quasi-Two-Dimensional FePS3 and MnPS3 Antiferromagnetic Semiconductors. ACS Nano 2020, 14, 2424–2435. 10.1021/acsnano.9b09839. PubMed DOI
Takano Y.; Arai N.; Arai A.; Takahashi Y.; Takase K.; Sekizawa K. Magnetic Properties and Specific Heat of MPS3 (M = Mn, Fe, Zn). J. Magn. Magn. Mater. 2004, 272–276, E593–E595. 10.1016/j.jmmm.2003.12.621. DOI
Wildes A. R.; Harris M. J.; Godfrey K. W. Two-Dimensional Critical Fluctuations in MnPS3. J. Magn. Magn. Mater. 1998, 177–181, 143–144. 10.1016/S0304-8853(97)00666-5. DOI
Vaclavkova D.; Palit M.; Wyzula J.; Ghosh S.; Delhomme A.; Maity S.; Kapuscinski P.; Ghosh A.; Veis M.; Grzeszczyk M.; et al. Magnon Polarons in the van Der Waals Antiferromagnet Fe PS 3. Phys. Rev. B 2021, 104, 134437.10.1103/PhysRevB.104.134437. DOI
Ghazaryan D.; Greenaway M. T.; Wang Z.; Guarochico-Moreira V. H.; Vera-Marun I. J.; Yin J.; Liao Y.; Morozov S. V.; Kristanovski O.; Lichtenstein A. I.; et al. Magnon-Assisted Tunnelling in van Der Waals Heterostructures Based on CrBr3. Nat. Electron. 2018, 1, 344–349. 10.1038/s41928-018-0087-z. DOI
Guo Y.; Xu K.; Wu C.; Zhao J.; Xie Y. Surface Chemical-Modification for Engineering the Intrinsic Physical Properties of Inorganic Two-Dimensional Nanomaterials. Chem. Soc. Rev. 2015, 44, 637–646. 10.1039/C4CS00302K. PubMed DOI
Wetzl C.; Silvestri A.; Garrido M.; Hou H.-L.; Criado A.; Prato M. The Covalent Functionalization of Surface-Supported Graphene - An Update. Angew. Chemie Int. Ed. 2022, 54, 10734–10750. 10.1002/anie.202212857. PubMed DOI
Wei T.; Hauke F.; Hirsch A. Evolution of Graphene Patterning: From Dimension Regulation to Molecular Engineering. Adv. Mater. 2021, 33, 2104060.10.1002/adma.202104060. PubMed DOI PMC
Bertolazzi S.; Gobbi M.; Zhao Y.; Backes C.; Samorì P. Molecular Chemistry Approaches for Tuning the Properties of Two-Dimensional Transition Metal Dichalcogenides. Chem. Soc. Rev. 2018, 47, 6845–6888. 10.1039/C8CS00169C. PubMed DOI
Criado A.; Melchionna M.; Marchesan S.; Prato M. The Covalent Functionalization of Graphene on Substrates. Angew. Chemie Int. Ed. 2015, 54, 10734–10750. 10.1002/anie.201501473. PubMed DOI
Vázquez Sulleiro M.; Develioglu A.; Quirós-Ovies R.; Martín-Pérez L.; Martín Sabanés N.; Gonzalez-Juarez M. L.; Gómez I. J.; Vera-Hidalgo M.; Sebastián V.; Santamaría J.; et al. Fabrication of Devices Featuring Covalently Linked MoS2-Graphene Heterostructures. Nat. Chem. 2022, 14, 695–700. 10.1038/s41557-022-00924-1. PubMed DOI
Vera-Hidalgo M.; Giovanelli E.; Navío C.; Pérez E. M. Mild Covalent Functionalization of Transition Metal Dichalcogenides with Maleimides: A “Click” Reaction for 2H-MoS 2 and WS 2. J. Am. Chem. Soc. 2019, 141, 3767–3771. 10.1021/jacs.8b10930. PubMed DOI
Villalva J.; Moreno-Da Silva S.; Villa P.; Ruiz-González L.; Navío C.; Garcia-Orrit S.; Vega-Mayoral V.; Cabanillas-González J.; Castellanos-Gomez A.; Giovanelli E.; et al. Covalent Modification of Franckeite with Maleimides: Connecting Molecules and van Der Waals Heterostructures. Nanoscale Horizons 2021, 6, 551–558. 10.1039/D1NH00147G. PubMed DOI
Sourisseau C.; Forgerit J. P.; Mathey Y. Vibrational Study of the [P2S4–6] Anion, of Some MPS3 Layered Compounds (M = Fe, Co, Ni, In23), and of Their Intercalates with [Co(Η5-C5H5)+2] Cations. J. Solid State Chem. 1983, 49, 134–149. 10.1016/0022-4596(83)90107-X. DOI
Horcas I.; Fernández R.; Gómez-Rodríguez J. M.; Colchero J.; Gómez-Herrero J.; Baro A. M. WSXM: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology. Rev. Sci. Instrum. 2007, 78, 013705.10.1063/1.2432410. PubMed DOI