Fabrication of devices featuring covalently linked MoS2-graphene heterostructures
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
MSCA-IF-2019-892667
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 Marie Skłodowska-Curie Actions (H2020 Excellent Science - Marie Skłodowska-Curie Actions)
742684
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
842606
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
2017-T1/IND-5562
Consejería de Educación, Juventud y Deporte, Comunidad de Madrid (Consejería de Educación, Juventud y Deporte de la Comunidad de Madrid)
PubMed
35469006
DOI
10.1038/s41557-022-00924-1
PII: 10.1038/s41557-022-00924-1
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The most widespread method for the synthesis of 2D-2D heterostructures is the direct growth of one material on top of the other. Alternatively, flakes of different materials can be manually stacked on top of each other. Both methods typically involve stacking 2D layers through van der Waals forces-such that these materials are often referred to as van der Waals heterostructures-and are stacked one crystal or one device at a time. Here we describe the covalent grafting of 2H-MoS2 flakes onto graphene monolayers embedded in field-effect transistors. A bifunctional molecule featuring a maleimide and a diazonium functional group was used, known to connect to sulfide- and carbon-based materials, respectively. MoS2 flakes were exfoliated, functionalized by reaction with the maleimide moieties and then anchored to graphene by the diazonium groups. This approach enabled the simultaneous functionalization of several devices. The electronic properties of the resulting heterostructure are shown to be dominated by the MoS2-graphene interface.
CEITEC Masaryk University Kamenice 5 Brno Czech Republic
IMDEA Nanociencia C Faraday 9 Ciudad Universitaria de Cantoblanco Madrid Spain
Instituto de Nanociencia y Materiales de Aragón CSIC Universidad de Zaragoza Zaragoza Spain
Networking Research Center on Bioengineering Biomaterials and Nanomedicine Madrid Spain
Zobrazit více v PubMed
Liu, Y. et al. Van der Waals heterostructures and devices. Nat Rev. Mater. 1, 16042 (2016). DOI
Robinson, J. A. Growing vertical in the flatland. ACS Nano 10, 42–45 (2016). PubMed DOI
Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013). PubMed DOI
Yankowitz, M., Ma, Q., Jarillo-Herrero, P. & LeRoy, B. J. Van der Waals heterostructures combining graphene and hexagonal boron nitride. Nat. Rev. Phys. 1, 112–125 (2019). DOI
Neupane, G. P. et al. In-plane isotropic/anisotropic 2D van der Waals heterostructures for future devices. Small 15, e1804733 (2019). PubMed DOI
Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016). PubMed DOI
Jariwala, D., Marks, T. J. & Hersam, M. C. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16, 170–181 (2017). PubMed DOI
Bertolazzi, S., Krasnozhon, D. & Kis, A. Nonvolatile memory cells based on MoS PubMed DOI
Ulstrup, S. et al. Ultrafast band structure control of a two-dimensional heterostructure. ACS Nano 10, 6315–6322 (2016). PubMed DOI
Shi, Y. et al. Van der Waals epitaxy of MoS PubMed DOI
Yu, L. et al. Graphene/MoS PubMed DOI
Lorchat, E. et al. Filtering the photoluminescence spectra of atomically thin semiconductors with graphene. Nat. Nanotechnol. 15, 283–288 (2020). PubMed DOI
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018). PubMed DOI
Kezilebieke, S. et al. Topological superconductivity in a van der Waals heterostructure. Nature 588, 424–428 (2020). PubMed DOI
Zhang, L. et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity. Nature 591, 61–65 (2021). PubMed DOI
Flöry, N. et al. Waveguide-integrated van der Waals heterostructure photodetector at telecom wavelengths with high speed and high responsivity. Nat. Nanotechnol. 15, 118–124 (2020). PubMed DOI PMC
Wang, X. et al. Realization of vertical metal semiconductor heterostructures via solution phase epitaxy. Nat. Commun. 9, 3611 (2018). PubMed DOI PMC
Le, C. T. et al. Effects of interlayer coupling and band offset on second harmonic generation in vertical MoS PubMed DOI
Choi, W. et al. Optoelectronics of multijunction heterostructures of transition metal dichalcogenides. Nano Lett. 20, 1934–1943 (2020). PubMed DOI
Li, C. et al. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev. 47, 4981–5037 (2018). PubMed DOI
Duong, D. L., Yun, S. J. & Lee, Y. H. Van der Waals layered materials: opportunities and challenges. ACS Nano 11, 11803–11830 (2017). PubMed DOI
Vera-Hidalgo, M., Giovanelli, E., Navio, C. & Perez, E. M. Mild covalent functionalization of transition metal dichalcogenides with maleimides: a “click” reaction for 2H-MoS PubMed DOI
Quirós-Ovies, R. et al. Controlled covalent functionalization of 2H‐MoS PubMed DOI
Vázquez Sulleiro, M. et al. Covalent cross-linking of 2H-MoS PubMed DOI
Villalva, J. et al. Covalent modification of franckeite with maleimides: connecting molecules and van der Waals heterostructures. Nanoscale Horizons 6, 551–558 (2021). PubMed DOI
Bahr, J. L. & Tour, J. M. Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem. Mater. 13, 3823–3824 (2001). DOI
Strano, M. S. et al. Electronic structure control of single-walled carbon nanotube functionalization. Science 301, 1519–1522 (2003). PubMed DOI
Bahr, J. L. et al. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. J. Am. Chem. Soc. 123, 6536–6542 (2001). PubMed DOI
Paulus, G. L., Wang, Q. H. & Strano, M. S. Covalent electron transfer chemistry of graphene with diazonium salts. Acc. Chem. Res. 46, 160–170 (2013). PubMed DOI
Lomeda, J. R. et al. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 130, 16201–16206 (2008). PubMed DOI
Liu, Y., Zhao, Y., Jiao, L. & Chen, J. A graphene-like MoS DOI
Yang, L. et al. Lattice strain effects on the optical properties of MoS PubMed DOI PMC
Mahouche-Chergui, S., Gam-Derouich, S., Mangeney, C. & Chehimi, M. M. Aryl diazonium salts: a new class of coupling agents for bonding polymers, biomacromolecules and nanoparticles to surfaces. Chem. Soc. Rev. 40, 4143–4166 (2011). PubMed DOI
Boukerma, K., Chehimi, M. M., Pinson, J. & Blomfield, C. X-ray photoelectron spectroscopy evidence for the covalent bond between an iron surface and aryl groups attached by the electrochemical reduction of diazonium salts. Langmuir 19, 6333–6335 (2003). DOI
Lomeda, J. R. et al. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 130, 16201–16206 (2008). PubMed DOI
Chu, X. S. et al. Direct covalent chemical functionalization of unmodified two-dimensional molybdenum disulfide. Chem. Mater. 30, 2112–2128 (2018). DOI
Li, D. O., Chu, X. S. & Wang, Q. H. Reaction kinetics for the covalent functionalization of two-dimensional MoS PubMed DOI
Benson, E. E. et al. Balancing the hydrogen evolution reaction, surface energetics, and stability of metallic MoS PubMed DOI
Chen, X. et al. Covalent bisfunctionalization of two-dimensional molybdenum disulfide. Angew. Chem. Int. Ed. 60, 13484–13492 (2021). DOI
Fan, J.-H. et al. Resonance Raman scattering in bulk 2H-MX DOI
Knirsch, K. C. et al. Basal-plane functionalization of chemically exfoliated molybdenum disulfide by diazonium salts. ACS Nano 9, 6018–6030 (2015). PubMed DOI
Mignuzzi, S. et al. Effect of disorder on Raman scattering of single-layer MoS DOI
Assresahegn, B. D., Brousse, T. & Bélanger, D. Advances on the use of diazonium chemistry for functionalization of materials used in energy storage systems. Carbon 92, 362–381 (2015). DOI
Bahr, J. L. & Tour, J. M. Highly functionalized carbon nanotubes using in situ generated diazonium compounds. Chem. Mater. 13, 3823–3824 (2001). DOI
Wang, Y. et al. Photoelectrochemical immunosensing of tetrabromobisphenol A based on the enhanced effect of dodecahedral gold nanocrystals/MoS DOI
Ryu, S. et al. Atmospheric oxygen binding and hole doping in deformed graphene on a SiO PubMed DOI
Wang, Q. H. et al. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nat. Chem. 4, 724–732 (2012). PubMed DOI
Fan, X. Y., Nouchi, R., Yin, L. C. & Tanigaki, K. Effects of electron-transfer chemical modification on the electrical characteristics of graphene. Nanotechnology 21, 475208 (2010). PubMed DOI
Farmer, D. B. et al. Chemical doping and electron–hole conduction asymmetry in graphene devices. Nano Lett. 9, 388–392 (2009). PubMed DOI
Sinitskii, A. et al. Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 4, 1949–1954 (2010). PubMed DOI
Pham, T. et al. MoS DOI
Zhang, W. et al. Ultrahigh-gain photodetectors based on atomically thin graphene–MoS PubMed DOI PMC
Ippolito, S. et al. Covalently interconnected transition metal dichalcogenide networks via defect engineering for high-performance electronic devices. Nat. Nanotechnol. 16, 592–598 (2021). PubMed DOI
Gbadamasi, S. et al. Interface chemistry of two-dimensional heterostructures–fundamentals to applications. Chem. Soc. Rev. 50, 4684–4729 (2021). PubMed DOI
Bottari, G., de la Torre, G., Guldi, D. M. & Torres, T. Covalent and noncovalent phthalocyanine−carbon nanostructure systems: synthesis, photoinduced electron transfer, and application to molecular photovoltaics. Chem. Rev. 110, 6768–6816 (2010). PubMed DOI
Martín, N. et al. Electronic communication in tetrathiafulvalene (TTF)/C60 systems: toward molecular solar energy conversion materials? Acc. Chem. Res. 40, 1015–1024 (2007). PubMed DOI
Villalva, J. et al. Spin-state-dependent electrical conductivity in single-walled carbon nanotubes encapsulating spin-crossover molecules. Nat. Commun. 12, 1578 (2021). PubMed DOI PMC