Rotational relaxation rate of 1,6-diphenyl-1,3,5-hexatriene in cytoplasmic membranes of Bacillus subtilis. A new model of heterogeneous rotations
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
2125290
DOI
10.1007/bf02821406
Knihovny.cz E-zdroje
- MeSH
- Bacillus subtilis metabolismus ultrastruktura MeSH
- buněčná membrána metabolismus MeSH
- difenylhexatrien analogy a deriváty metabolismus MeSH
- fluorescenční polarizace MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- difenylhexatrien MeSH
The temperature dependence of fluorescence anisotropy, lifetime and differential tangent of 1,6-diphenyl-1,3,5-hexatriene (DPH) and its polar trimethylammonium derivative (TMA-DPH) were investigated in cytoplasmic membranes of Bacillus subtilis. The fluorescence parameters were compared in the two types of membranes prepared from bacteria cultivated at 20 and 40 degrees C. Steady-state anisotropy measurements showed that within a broad range of temperatures, membranes cultivated at 20 degrees C exhibit significantly lower values than those prepared from cells cultivated at 40 degrees C. The temperature dependence of lifetime and differential tangent measurements (differential polarized phase fluorimetry) were fully consistent with steady-state anisotropy data of both DPH and TMA-DPH. The low anisotropy values in the case of TMA-DPH could be explained by a shorter lifetime and higher temperature-induced decrease as compared with DPH. Surprisingly, the temperature dependence of rotational rate R calculated according to the model of hindered rotations (Lakowicz 1983) gave misleading results. When increasing the temperature from 5 to 25 degrees C, a marked drop of rotational relaxation rate was observed. The minimum R values were measured between 25 and 30 degrees C and further increase of temperature (up to 60 degrees C) was reflected as increase of the R values. Therefore, a new model of "heterogeneous rotations" was developed. This model assumes that even at low temperatures (approaching 0 degrees C) where the differential tangent reaches zero, a fraction of fast rotating molecules exists. The ratio between fast and slowly rotating molecules may be expressed by this model, the newly calculated rotational rates are fully consistent with anisotropy, lifetime and differential tangent measurements and represent the monotonically increasing function of temperature.
Zobrazit více v PubMed
J Biochem. 1978 Jun;83(6):1687-92 PubMed
Science. 1978 Jun 23;200(4348):1399-401 PubMed
Biochemistry. 1981 Dec 22;20(26):7333-8 PubMed
J Bacteriol. 1976 Jan;125(1):211-9 PubMed
Biochemistry. 1979 Feb 6;18(3):520-7 PubMed
Biochim Biophys Acta. 1978 Dec 15;515(4):367-94 PubMed
Biochim Biophys Acta. 1979 May 25;573(2):308-20 PubMed
J Bacteriol. 1971 Apr;106(1):25-30 PubMed
Eur Biophys J. 1986;13(6):323-30 PubMed
Biophys J. 1978 Oct;24(1):213-31 PubMed
Biochimie. 1976;58(1-2):99-108 PubMed
Proc Natl Acad Sci U S A. 1974 Feb;71(2):522-5 PubMed
Arch Biochem Biophys. 1987 Jan;252(1):245-58 PubMed
Biochemistry. 1979 Feb 6;18(3):508-19 PubMed
Biochemistry. 1976 Oct 5;15(20):4529-37 PubMed
Folia Microbiol (Praha). 1988;33(3):161-9 PubMed
Eur J Biochem. 1970 Feb;12(3):496-501 PubMed
Folia Microbiol (Praha). 1988;33(3):170-7 PubMed
Folia Microbiol (Praha). 1988;33(1):1-9 PubMed
Biochemistry. 1985 Jan 15;24(2):376-83 PubMed
Biochim Biophys Acta. 1977 Nov 1;470(3):395-411 PubMed
J Biol Chem. 1974 Apr 25;249(8):2652-7 PubMed
Biochemistry. 1976 Oct 5;15(20):4521-8 PubMed