Materials Suitable for Osteochondral Regeneration
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
39035913
PubMed Central
PMC11256084
DOI
10.1021/acsomega.4c04789
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Osteochondral defects affect articular cartilage, calcified cartilage, and subchondral bone. The main problem that they cause is a different behavior of cell tissue in the osteochondral and bone part. Articular cartilage is composed mainly of collagen II, glycosaminoglycan (GAG), and water, and has a low healing ability due to a lack of vascularization. However, bone tissue is composed of collagen I, proteoglycans, and inorganic composites such as hydroxyapatite. Due to the discrepancy between the characters of these two parts, it is difficult to find materials that will meet all the structural and other requirements for effective regeneration. When designing a scaffold for an osteochondral defect, a variety of materials are available, e.g., polymers (synthetic and natural), inorganic particles, and extracellular matrix (ECM) components. All of them require the accurate characterization of the prepared materials and a number of in vitro and in vivo tests before they are applied to patients. Taken in concert, the final material needs to mimic the structural, morphological, chemical, and cellular demands of the native tissue. In this review, we present an overview of the structure and composition of the osteochondral part, especially synthetic materials with additives appropriate for healing osteochondral defects. Finally, we summarize in vitro and in vivo methods suitable for evaluating materials for restoring osteochondral defects.
Zobrazit více v PubMed
Bedell M. L.; Wang Z.; Hogan K. J.; Torres A. L.; Pearce H. A.; Chim L. K.; Grande-Allen K. J.; Mikos A. G. The effect of multi-material architecture on the ex vivo osteochondral integration of bioprinted constructs. Acta Biomater. 2023, 155, 99–112. 10.1016/j.actbio.2022.11.014. PubMed DOI PMC
Cheng J.; Shen K.; Zuo Q.; Yan K.; Zhang X.; Liang W.; Fan W. A xenogeneic decellularized multiphasic scaffold for repair of osteochondral defects in a rabbit model. Mater. Des. 2023, 225, 111450.10.1016/j.matdes.2022.111450. DOI
De Mori A.; Peña Fernández M.; Blunn G.; Tozzi G.; Roldo M. 3D printing and electrospinning of composite hydrogel for cartilage and bone tissue engineering. Polymers 2018, 10, 285.10.3390/polym10030285. PubMed DOI PMC
Abere D. V.; Ojo S. A.; Oyatogun G. M.; Paredes-Epinosa M. B.; Niluxsshun M. G. H.; Hakami A. Mechanical and Morphological Characterization of nano-hydroxyapatite (nHA) for bone regeneration: mini review. Biomed. Eng. Adv. 2022, 4, 100056.10.1016/j.bea.2022.100056. DOI
Lin X.; Chen J.; Qiu P.; Zhang Q.; Wang S.; Su M.; Chen Y.; Jin K.; Qin A.; Fan S.; Chen P.; Zhao X. Biphasic hierarchical extracellular matrix scaffold for osteochondral defect regeneration. Osteoarthritis Cartilage 2018, 26, 433–444. 10.1016/j.joca.2017.12.001. PubMed DOI
Banihashemian A.; Benisi S. Z.; Hosseinzadeh S.; Shojaei S. Biomimetic biphasic scaffolds in osteochondral tissue engineering: Their composition, structure and consequences. Acta Histochem. 2023, 125, 152023.10.1016/j.acthis.2023.152023. PubMed DOI
Chen R.; Pye J. S.; Li J.; Little C. B.; Li J. J. Multiphasic scaffolds for the repair of osteochondral defects: Outcomes of preclinical studies. Bioact. Mater. 2023, 27, 505–545. 10.1016/j.bioactmat.2023.04.016. PubMed DOI PMC
Rajzer I.; Kurowska A.; Frankova J.; Sklenářová R.; Nikodem A.; Dziadek M.; Jabłoński A.; Janusz J.; Szczygieł P.; Ziąbka M. 3D-printed polycaprolactone implants modified with bioglass and Zn- Dopped Bioglass. Materials (Basel.) 2023, 16, 1061.10.3390/ma16031061. PubMed DOI PMC
Wei W.; Dai H. Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges. Bioact. Mater. 2021, 6, 4830–4855. 10.1016/j.bioactmat.2021.05.011. PubMed DOI PMC
Zhou L.; GJVM V. O.; Malda J.; Stoddart M. J.; Lai Y.; Richards R. G.; Ki-wai Ho K.; Qin L. Innovative tissue-engineering strategies for osteochondral defect repair and regeneration: Current progress and challenges. Adv. Healthc. Mater. 2020, 9, 2001008.10.1002/adhm.202001008. PubMed DOI
Wang T.; Xu W.; Zhao X.; Bai B.; Hua Y.; Tang J.; Chen F.; Liu Y.; Wang Y.; Zhou G.; Cao Y. Repair of osteochondral defects mediated by double-layer scaffold with natural osteochondral-biomimetic microenvironment and interface. Mater. Today Bio 2022, 14, 100234.10.1016/j.mtbio.2022.100234. PubMed DOI PMC
Gupta R.; Goel A.; Pruthi M. Treatment options for osteochondral defects. J. Orthop. Trauma 2010, 1, 16–22. 10.1016/S0976-5662(11)60004-0. DOI
Chartrain N. A.; Gilchrist K. H.; Ho V. B.; Klarmann G. J. 3D bioprinting for the repair of articular cartilage and osteochondral tissue. Bioprinting 2022, 28, e0023910.1016/j.bprint.2022.e00239. DOI
Steele J. A. M.; Moore A. C.; St-Pierre J. P.; McCullen S. D.; Gormley A. C.; Horgan C. C.; Black C. R. M.; Meinert C.; Klein T.; Saifzadeh S.; Steck R.; Ren J.; Woodruff M. A.; Stevens M. M. In vitro and in vivo investigation of a zonal microstructured scaffold for osteochondral defect repair. Biomaterials 2022, 286, 121548.10.1016/j.biomaterials.2022.121548. PubMed DOI PMC
Dong Y.; Sun X.; Zhang Z.; Liu Y.; Zhang L.; Zhang X.; Huang Y.; Zhao Y.; Qi C.; Midgley A. C.; Wang S.; Yang Q. Regional and sustained dual-release of growth factors from biomimetic tri-layer scaffolds for the repair of large-scale osteochondral defects. Appl. Mater. Today 2020, 19, 100548.10.1016/j.apmt.2019.100548. DOI
Chu R. R. Chondral and osteochondral injury and repair response. Oper. Technol. Orthop. 2001, 2, 72–75.
Mendes L. F.; Bosmans K.; Van Hoven I.; Viseu S. R.; Maréchal M.; Luyten F. P. Developmental engineering of living implants for deep osteochondral joint surface defect. Bone 2020, 139, 115520.10.1016/j.bone.2020.115520. PubMed DOI
Siddiqui S.; Arshad M. Osteogenic potential of punica granatum trough matrix mineralization, cell cycle progression and runx2 gene expression in primary rat osteoblasts. J. Pharm. Sci. 2014, 22, 72.10.1186/s40199-014-0072-7. PubMed DOI PMC
Ha S. W.; Jang H. L.; Nam K. T.; Beck G. R. Nano-hydroxyapatite modulates osteoblast lineage commitment by stimulation of DNA methylation and regulation of gene expression. Biomaterials 2015, 65, 32–42. 10.1016/j.biomaterials.2015.06.039. PubMed DOI PMC
Deng X.; Tan S.; Zhu D.; Sun Y.; Yu J.; Meng X.; Zheng L.; Liu Y. The combined effect of oleonuezhenide and wedelolactone on proliferation and osteoblastogenesis of bone marrow mesenchymal stem cells. Phytomedicine 2019, 65, 153103.10.1016/j.phymed.2019.153103. PubMed DOI
Dvorakova J.; Wiesnerova L.; Chocholata P.; Kulda V.; Landsmann L.; Cedikova M.; Kripnerova M.; Eberlova L.; Babuska V. Human cells with osteogenic potential in bone tissue research. Biomed. Eng. Online 2023, 22, 33.10.1186/s12938-023-01096-w. PubMed DOI PMC
Karner C. M.; Long F. Nutrient uptake and metabolism in osteoblasts. Curr. Opin. Endocr. Metab. Res. 2023, 30, 100447.10.1016/j.coemr.2023.100447. DOI
Deng Z.; Zhang Q.; Zhao Z.; Li Y.; Chen X.; Lin Z.; Deng Z.; Liu J.; Duan L.; Wang D.; Li W. Crosstalk between immune cells and bone cells or chondrocytes. In. Immunopharmacol. 2021, 101, 108179.10.1016/j.intimp.2021.108179. PubMed DOI
Prideaux M.; Wijenayaka A. R.; Kumarasinghe D. D.; Ormsby R. T.; Evdokiou A.; Findlay D. M.; Atkins G. J. Saos2 osteosarcoma cell as an in vitro model for studying the transition of human of osteoblasts to osteocytes. Calcif. Tissue Int. 2014, 95, 183–193. 10.1007/s00223-014-9879-y. PubMed DOI
Kim G. M.; Park H.; Lee S. J. Roles of osteoclasts-associated receptor in rheumatoid arthritis and osteoarthritis. Joint Bone Spine 2022, 89, 105400.10.1016/j.jbspin.2022.105400. PubMed DOI
Cai X.; Zheng Y.; Ren F.; Zhang S.; Wu L.; Yao Y. Secretory phosphoprotein 1 secreted fibroblasts-like synoviocytes promotes osteoclasts formation via PI3K/AKT signalling in collagen-induced arthritis. Biomed. Pharmacother. 2022, 155, 113687.10.1016/j.biopha.2022.113687. PubMed DOI
Babaji P.; Devanna R.; Jagtap K.; Chaurasia V. R.; Jerry J. J.; Choudhury B. K.; Duhan D. The Cell Biology and Role of Resorptive Cells in Diseases: A Review. Ann. Afr. Med. 2017, 16, 39–45. 10.4103/aam.aam_97_16. PubMed DOI PMC
Chen Z.-H.; Wu J.-J.; Guo D.-Y.; Li Y.-Y.; Chen M.-N.; Zhang Z.-Y.; Yuan Z.-D.; Zhang K.-W.; Chen W.-W.; Tian F.; Ye J.-X.; Li X.; Yuan F.-L. Physiological functions of podosomes: From structure and function to therapy implications in osteoclast biology of bone resorption. Ageing Res. Rev. 2023, 85, 101842.10.1016/j.arr.2023.101842. PubMed DOI
Everts V.; Jansen I. D. C.; de Vries T. J. Mechanism of bone resorption. Bone 2022, 163, 116499.10.1016/j.bone.2022.116499. PubMed DOI
Yang J.; Zhang Y. S.; Yue K.; Khademhosseini A. Cell-laden hydrogel for osteochondral and cartilage tissue engineering. Acta Biomater. 2017, 57, 1–25. 10.1016/j.actbio.2017.01.036. PubMed DOI PMC
Cao Z.; Wang H.; Chen J.; Zhang Y.; Mo Q.; Zhang P.; Wang M.; Liu H.; Bao X.; Sun Y.; Zhang W.; Yao Q. Silk-based hydrogel incorporated with metal-organic framework nanozymes for enhanced osteochondral regeneration. Bioact. Mater. 2023, 20, 221–242. 10.1016/j.bioactmat.2022.05.025. PubMed DOI PMC
Pirosa A.; Gottardi R.; Alexander P. G.; Puppi D.; Chiellini F.; Tuan R. S. An in vitro chondro-osteo-vascular triphasic model of the osteochondral complex. Biomaterials 2021, 272, 120773.10.1016/j.biomaterials.2021.120773. PubMed DOI
Pesesse L.; Sanchez C.; Henrotin Y. Osteochondral plate angiogenesis: a new treatment target in osteoarthritis. Join Bone Spine 2011, 78, 144–149. 10.1016/j.jbspin.2010.07.001. PubMed DOI
Esteves A. V. M.; Martins M. I.; Soares P.; Rodrigues M. A.; Lopes M. A.; Santos J. D. Additive manufacturing of ceramic alumina/calcium phosphate structures by DLP 3D printing. Mater. Chem. Phys. 2022, 276, 125417.10.1016/j.matchemphys.2021.125417. DOI
Łączka M.; Cholewa-Kowalska K.; Osyczka A. M. Bioactivity and osteoconductivity of glasses and glassceramics and threir material determinats. Ceram. Int. 2016, 42, 14313–14325. 10.1016/j.ceramint.2016.06.077. DOI
Critchley S.; Sheehy E. J.; Cunniffe G.; Diaz-Payno P.; Carroll S. F.; Jeon O.; Alsberg E.; Brama P. A.J.; Kelly D. J. 3D printing of fibre-reinforced cartilaginous templates for the regeneration of osteochondral defect. Acta Biomater. 2020, 113, 130–143. 10.1016/j.actbio.2020.05.040. PubMed DOI
Han J.; Wu J.; Xiang X.; Xie L.; Chen R.; Li L.; Ma K.; Sun Q.; Yang R.; Huang T.; Tong L.; Zhu L.; Wang H.; Wen C.; Zhao Y.; Wang J. Biodegradable BBG/PCL composite scaffold fabricated by selective laser sintering for directed regeneration of critical-sized bone defect. Mater. Des. 2023, 225, 111543.10.1016/j.matdes.2022.111543. DOI
Donate R.; Paz R.; Moriche R.; Sayagués M. J.; Alemán- Domínguez M. E.; Monzón M. An overview of polymeric composite scaffold with piezoelectric properties for improvement bone regeneration. Mater. Des. 2023, 231, 112085.10.1016/j.matdes.2023.112085. DOI
Yang M.; Zhang Z. C.; Yuan F. Z.; Deng R. H.; Yan X.; Mao F. B.; Chen Y. R.; Lu H.; Yu J. K. An Immunomodulatory polypeptide hydrogel for osteochondral defect repair. Bioact. Mater. 2023, 19, 678–689. 10.1016/j.bioactmat.2022.05.008. PubMed DOI PMC
Duan P.; Pan Z.; Cao L.; Gao J.; Yao H.; Liu X.; Guo R.; Liang X.; Dong J.; Ding J. Restoration of osteochondral defects by implanting bilayered poly(lactide-co- glycolide) porous scaffold in rabbit joints for 12 and 24 weeks. J. Orthop. Translat. 2019, 19, 68–80. 10.1016/j.jot.2019.04.006. PubMed DOI PMC
Meng X.; Li L.; Huang C.; Shi K.; Zeng Q.; Wen C.; Grad S.; Alini M.; Qin L.; Wang X. Anti-inflammatory and anabolic biphasic scaffold facilitates osteochondral tissue regeneration in osteoarthritic joints. J. Mater. Sci. Technol. 2023, 156, 20–31. 10.1016/j.jmst.2023.01.035. DOI
Sangkert S.; Kamolmatyakul S.; Gelinsky M.; Meesane J. 3D printed scaffolds of alginate/polyvinylalcohol with silk fibroin based on mimicked extracellular matrix for bone tissue engineering in maxillofacial surgery. Mater. Today Commun. 2021, 26, 102140.10.1016/j.mtcomm.2021.102140. DOI
Christy P. N.; Basha S. K.; Kumari V. S. Nano zinc oxide and bioactive glass reinforced chitosan/poly(vinyl alcohol) scaffold for bone tissue engineering application. Mater. Today Commun. 2022, 31, 103429.10.1016/j.mtcomm.2022.103429. DOI
Shukla P.; Mitruka M.; Pati F. The effect of the synthetic route on the biophysiochemical properties of methacrylated gelatin (GelMA) based hydrogel for development of GelMA-based bioinks for 3D bioprinting applications. Materialia 2022, 25, 101542.10.1016/j.mtla.2022.101542. DOI
Jin M.; Sun N.; Weng W.; Sang Z.; Liu T.; Xia W.; Wang S.; Sun X.; Wang T.; Li H.; Yang H. The effect of GelMA/alginate interpenetrating polymeric network hydrogel on the performance of porous zirconia matrix for bone. Int. J. Biol. Macromol. 2023, 242, 124820.10.1016/j.ijbiomac.2023.124820. PubMed DOI
Lu W.; Zeng M.; Liu W.; Ma T.; Fan X.; Li H.; Wang Y.; Wang H.; Hu Y.; Xie J. Human urine-derived stem cell exosomes delivered via injectable GelMA templated hydrogel accelerate bone regeneration. Materials Today Bio 2023, 19, 100569.10.1016/j.mtbio.2023.100569. PubMed DOI PMC
Iervolino F.; Belgio B.; Bonessa A.; Potere F.; Suriano R.; Boschetti F.; Mantero S.; Levi M. Vesatile and non-cytotoxic GelMA-xanthan gum biomaterials ink for extrusion-based 3D bioprinting. Bioprinting 2023, 31, e0026910.1016/j.bprint.2023.e00269. DOI
Al-Shalawi F. D.; Azmah Hanim M.A.; Ariffin M.K.A.; Looi Seng Kim C.; Brabazon D.; Calin R.; Al-Osaimi M. O. Biodegradable synthetic polymer in orthopaedic application: A review. Mater. Today: Proc. 2023, 74, 540–546. 10.1016/j.matpr.2022.12.254. DOI
Chen P.; Xia C.; Mo J.; Mei S.; Lin X.; Fan S. Interpenetrating polymer network scaffold of sodium hyaluronate and sodium alginate combined with berberine for osteochondral defect regeneration. Mater. Sci. Eng., C 2018, 91, 190–200. 10.1016/j.msec.2018.05.034. PubMed DOI
Hernández-González A. C.; Téllez-Jurado L.; Rodríguez-Lorenzo L. M. Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review. Carbohydr. Polym. 2020, 229, 115514.10.1016/j.carbpol.2019.115514. PubMed DOI
Yu L.; Cavelier S.; Hannon B.; Wei M. Recent development in multizonal scaffolds for osteochondral regeneration. Bioact. Mater. 2023, 25, 122–159. 10.1016/j.bioactmat.2023.01.012. PubMed DOI PMC
Arbez B.; Libouban H. Behavior of macrophage and osteoblasts cell lines in contact with the β-TPC biomaterial (beta-tricalium phosphate). Morphologie 2017, 101, 154–163. 10.1016/j.morpho.2017.03.006. PubMed DOI
Ayadi I.; Ayed F. B. Mechanical optimization of the composite biomaterials based on tricalcium phosphate, titania and magnesium fluoride. J.Mech. Behav. Biomed. 2016, 60, 568–580. 10.1016/j.jmbbm.2016.03.020. PubMed DOI
Li M.; Jiang J.; Liu W.; Huang X.; Wu X.; Wei W.; Zhu H.; Zhang J.; Xiao J.; Dai H. Bioadaptable bioactive glass-β-tricalcium phosphate scaffolds with TPMS-gyroid structure by stereolithography for bone regeneration. J. Mater. Sci. Technol. 2023, 155, 54–65. 10.1016/j.jmst.2023.01.025. DOI
Sasaki S.; Maeyama A.; Kiyama T.; Kamada S.; Kobayashi T.; Ishii S.; Yamamoto T. Combined use of beta-tricalcium phosphate with different porosities can accelerate bone remodelling in open-wedge high tibial osteotomy. Asia Pac. J. Sports Med. Arthrosc., Rehabil. Technol. 2022, 29, 30–34. 10.1016/j.asmart.2022.05.004. PubMed DOI PMC
Xia D.; Wang Y.; Wu R.; Zheng Q.; Zhang G.; Xu S.; Zhou P. The effect of pore size on cell behaviour in mesoporous bioglass scaffolds for bone regeneration. Appl. Mater. Today 2022, 29, 101607.10.1016/j.apmt.2022.101607. DOI
Afshari M.; Eivaz Mohammadloo H.; Sarabi A. A.; Roshan S. Modification of hydroxyapatite-based coating in the presence of polyvinylalcohol (PVA) for implant application: Corrosion, structure and surface study. Corros. Sci. 2021, 192, 109859.10.1016/j.corsci.2021.109859. DOI
Hakimi F.; Abroon M.; Sadighian S.; Ramazani A. Evaluation bone-like apatite biomineralization on biomimetic graphene oxide/hydroxyapatite nanocomposite. Inor. Chem. Commun. 2023, 149, 110450.10.1016/j.inoche.2023.110450. DOI
Zong Q.; Chen H.; Zhao Y.; Wang J.; Wu J. Bioactive carbon dots for tissue engineering applications. Smart Mater. Med. 2024, 5, 1–14. 10.1016/j.smaim.2023.06.006. DOI
Rajzer I.; Kurowska A.; Jabłoński A.; Jatteau S.; Śliwka M.; Ziąbka M.; Menaszek E. Layer gelatin/PLLA acaffolds fabricated by electrospinind and 3D printing – for nasal cartilages and subchondral bone reconstruction. Mater. Des. 2018, 155, 297–306. 10.1016/j.matdes.2018.06.012. DOI
Rajzer I.; Menaszek E.; Castano O. Electrospun polymer scaffold modified with drug for tissue engineering. Mater. Sci. Eng., C 2017, 77, 493–499. 10.1016/j.msec.2017.03.306. PubMed DOI
Najarzadegan M.; Nouri Khorasani S.; Khalili S.; Molavian M. R.; Saleki S.; Kakapour A.; Hafezi M. A new-shear-thinning nanocomposite hydrogel from GelMA-GO for soft tissue engineering. Eur. Polym. J. 2023, 195, 112204.10.1016/j.eurpolymj.2023.112204. DOI
Fani K.; Farahpour M. R.; Tabatabaei Z. H. SeO32-/ graphene oxide hybridized to multicomponent biopolymer based the scaffold to accelerate bone defect regeneration. Ceram. Int. 2022, 48, 37212–37222. 10.1016/j.ceramint.2022.08.298. DOI
Nekounam H.; Samani S.; Samadian H.; Shokrgozar M. A.; Faridi-Majidi R. Zinc-oxide nanofibres (ZnO-CNF) nanocomposite for bone tissue engineering: An inquiry into structural, physical and biological properties. Mater. Chem. Phys. 2023, 295, 127052.10.1016/j.matchemphys.2022.127052. DOI
Zulaikha W.; Zaki Hassan M.; Abdul Aziz S.a. Nanoparticle-embedded hydrogel as a functional polymeric composite for biomedical application. Mater. Today 2023, 1 (2), 162–178. 10.1016/j.matpr.2023.05.668. DOI
Pietryga K.; Reczyńska-Kolman K.; Reseland J. E.; Haugen H.; Larreta-Garde V.; Pamula E. Biphasic monolithic osteochondral scaffolds obtain by diffusion-limited enzymatic mineralization gellan gum hydrogel. Biocybern. Biomed. Eng. 2023, 43, 189–205. 10.1016/j.bbe.2022.12.009. DOI
Deliormanlı A. M.; Atmaca H. Biological Response of Osteoblastic and Chondrogenic Cells to Graphene-Containing PCL/Bioactive Glass Bilayered Scaffolds for Osteochondral Tissue Engineering Applications. Appl. Biochem. Biotechnol. 2018, 186, 972–989. 10.1007/s12010-018-2758-7. PubMed DOI
Seidenstuecker M.; Lange S.; Esslinger S.; Latorre S. H.; Krastev R.; Gadow R.; Mayr H. O.; Bernstein A. Inversely 3D-Printed β-TCP Scaffolds for Bone Replacement. Materials (Basel.) 2019, 12, 3417.10.3390/ma12203417. PubMed DOI PMC
Rajzer I.; Dziadek M.; Kurowska A.; Cholewa-Kowalska K.; Ziąbka M.; Menaszek E.; Douglas T. E. L. Electrospun polycaprolactone membranes with Zn-doped bioglass for nasal tissues treatment. J. Mater. Sci. Mater. Med. 2019, 30, 80.10.1007/s10856-019-6280-4. PubMed DOI PMC
Abdel-Rahman R. M.; Frankova J.; Sklenarova R.; Kapralkova L.; Kelnar I.; Abdel-Mohsen A. M. Hyaluronan/Zinc Oxide Nanocomposite-Based Membrane: Preparation, Characterization, and In Vitro and In Vivo Evaluation. ACS Appl. Polym. Mater. 2022, 4, 7723–7738. 10.1021/acsapm.2c01296. DOI
Haleem-Smith H.; Argintar E.; Bush C.; Hampton D.; Postma W. F.; Chen F. H.; Rimington T.; Lamb J.; Tuan R. S. Biological responses of human mesenchymal stem cells to titanium wear debris particles. J. Orthop. Res.: official publication of the Orthopaedic Research Society 2012, 30, 853–863. 10.1002/jor.22002. PubMed DOI PMC
Vimalraj S. Alkaline phosphatase: Structure, expression and its function in bone mineralization. Gene 2020, 754, 144855.10.1016/j.gene.2020.144855. PubMed DOI
Li N.; Zhou L.; Xie W.; Zeng D.; Cai D.; Wang H.; Zhou C.; Wang J.; Li L. Alkaline phosphatase enzyme-induced biomineralization of chitosan scaffolds with enhanced osteogenesis for bone tissue engineering. Chem. Eng. J. 2019, 371, 618–630. 10.1016/j.cej.2019.04.017. DOI
Capulli M.; Paone R.; Rucci N. Osteoblast and osteocyte: games without frontiers. Arch. Biochem. Biophys. 2014, 561, 3–12. 10.1016/j.abb.2014.05.003. PubMed DOI
Medvecky L.; Giretova M.; Stulajterova R.; Danko J.; Vdoviakova K.; Kresakova L.; Zert Z.; Petrovova E.; Holovska K.; Varga M.; Luptakova L.; Sopcak T. Characterization of Properties, In Vitro and In Vivo Evaluation of Calcium Phosphate/Amino Acid Cements for Treatment of Osteochondral Defects. Materials (Basel, Switzerland) 2021, 14, 436.10.3390/ma14020436. PubMed DOI PMC
Sabokbar A.; Millett P. J.; Myer B.; Rushton N. A. Rapid, quantitative assay for measuring alkaline phosphatase activity in osteoblastic cells in vitro. Bone and mineral 1994, 27, 57–67. 10.1016/S0169-6009(08)80187-0. PubMed DOI
Zheng S.; Zhou C.; Yang H.; Li J.; Feng Z.; Liao L.; Li Y. Melatonin Accelerates Osteoporotic Bone Defect Repair by Promoting Osteogenesis-Angiogenesis Coupling. Front. Endokrinol. 2022, 13, 826660.10.3389/fendo.2022.826660. PubMed DOI PMC
Tian G.; Zhang G.; Tan Y. H. Calcitonin gene-related peptide stimulates BMP-2 expression and the differentiation of human osteoblast-like cells in vitro. Acta Pharmacol. Sin. 2013, 34, 1467–1474. 10.1038/aps.2013.41. PubMed DOI PMC
Laflamme C.; Curt S.; Rouabhia M. Epidermal growth factor and bone morphogenetic proteins upregulate osteoblast proliferation and osteoblastic markers and inhibit bone nodule formation. Arch. Oral Biol. 2010, 55, 689–701. 10.1016/j.archoralbio.2010.06.010. PubMed DOI
Liu T.; Gao Y.; Sakamoto K.; Minamizato T.; Furukawa K.; Tsukazaki T.; Shibata Y.; Bessho K.; Komori T.; Yamaguchi A. BMP-2 promotes differentiation of osteoblasts and chondroblasts in Runx2-deficient cell lines. J. Cell. Physiol. 2007, 211, 728–735. 10.1002/jcp.20988. PubMed DOI
Tateiwa D.; Nakagawa S.; Tsukazaki H.; Okada R.; Kodama J.; Kushioka J.; Bal Z.; Ukon Y.; Hirai H.; Kaito T. A novel BMP-2-loaded hydroxyapatite/beta-tricalcium phosphate microsphere/hydrogel composite for bone regeneration. Sci. Rep. 2021, 11, 16924.10.1038/s41598-021-96484-4. PubMed DOI PMC
Zoch M. L.; Clemens T. L.; Riddle R. C. New insights into the biology of osteocalcin. Bone 2016, 82, 42–49. 10.1016/j.bone.2015.05.046. PubMed DOI PMC
Greenblatt M. B.; Tsai J. N.; Wein M. N. Bone Turnover Markers in the Diagnosis and Monitoring of Metabolic Bone Disease. Clin. Chem. 2017, 63, 464–474. 10.1373/clinchem.2016.259085. PubMed DOI PMC
Guo Y.; Zhang Q.; Mi N.; Li C.; Lv X.; Wang H. Effects of Puerarin Combined with PLGA/TCP/Puerarin on Osteocalcin and Sialoprotein of Mandibular Defects. Contrast Media Mol. I. 2022, 2022, 5177419.10.1155/2022/5177419. PubMed DOI PMC
Wu X.; Zhang T.; Hoff B.; Suvarnapathaki S.; Lantigua D.; McCarthy C.; Wu B.; Camci-Unal G. Mineralized Hydrogels Induce Bone Regeneration in Critical Size Cranial Defects. Adv. Healthc. Mater. 2021, 10, e200110110.1002/adhm.202001101. PubMed DOI
Park J. W.; Tsutsumi Y.; Park E. K. Osteogenic Differentiation of Human Mesenchymal Stem Cells Modulated by Surface Manganese Chemistry in SLA Titanium Implants. BioMed. Res. Int. 2022, 2022, 5339090.10.1155/2022/5339090. PubMed DOI PMC
Pereira R. D. S.; Menezes J. D.; Bonardi J. P.; Griza G. L.; Okamoto R.; Hochuli-Vieira E. Histomorphometric and immunohistochemical assessment of RUNX2 and VEGF of Biogran and autogenous bone graft in human maxillary sinus bone augmentation: A prospective and randomized study. Clin. Implant Dent. Relat. Res. 2017, 19, 867–875. 10.1111/cid.12507. PubMed DOI
Li S.; Liu J.; Liu S.; Jiao W.; Wang X. Chitosan oligosaccharides packaged into rat adipose mesenchymal stem cells-derived extracellular vesicles facilitating cartilage injury repair and alleviating osteoarthritis. J. Nanobiotechnol. 2021, 19, 343.10.1186/s12951-021-01086-x. PubMed DOI PMC
Pereira R. S.; Gorla L. F.; Boos F. B. J. D.; Okamoto R.; Garcia Júnior I. R.; Hochuli-Vieira E. Use of autogenous bone and beta-tricalcium phosphate in maxillary sinus lifting: histomorphometric study and immunohistochemical assessment of RUNX2 and VEGF. Int. J. Oral Maxillofac. Surg. 2017, 46, 503–510. 10.1016/j.ijom.2017.01.002. PubMed DOI
Sklenářová R.; Akla N.; Latorre M. J.; Ulrichová J.; Franková J. Collagen as a Biomaterial for Skin and Corneal Wound Healing. J. Funct. Biomater. 2022, 13, 249.10.3390/jfb13040249. PubMed DOI PMC
Ouyang Z.; Dong L.; Yao F.; Wang K.; Chen Y.; Li S.; Zhou R.; Zhao Y.; Hu W. Cartilage-Related Collagens in Osteoarthritis and Rheumatoid Arthritis: From Pathogenesis to Therapeutics. Int. J. Mol. Sci. 2023, 24, 9841.10.3390/ijms24129841. PubMed DOI PMC
Li X.; Chen H.; Xie S.; Wang N.; Wu S.; Duan Y.; Zhang M.; Shui L. Fabrication of Photo-Crosslinkable Poly(Trimethylene Carbonate)/Polycaprolactone Nanofibrous Scaffolds for Tendon Regeneration. Int. J. Nanomedicine 2020, 15, 6373–6383. 10.2147/IJN.S246966. PubMed DOI PMC
Weitkamp J. T.; Benz K.; Rolauffs B.; Bayer A.; Weuster M.; Lucius R.; Gülses A.; Naujokat H.; Wiltfang J.; Lippross S.; Hoffmann M.; Kurz B.; Behrendt P. In Vitro Comparison of 2 Clinically Applied Biomaterials for Autologous Chondrocyte Implantation: Injectable Hydrogel Versus Collagen Scaffold. Cartilage 2023, 14, 220–234. 10.1177/19476035231154507. PubMed DOI PMC
Yan J.; Liu C.; Tu C.; Zhang R.; Tang X.; Li H.; Wang H.; Ma Y.; Zhang Y.; Wu H.; Sheng G. Hydrogel-hydroxyapatite-monomeric collagen type-I scaffold with low-frequency electromagnetic field treatment enhances osteochondral repair in rabbits. Stem Cell Res. Ther. 2021, 12, 572.10.1186/s13287-021-02638-6. PubMed DOI PMC
Mehta S.; He T.; Bajpayee A. G. Recent advances in targeted drug delivery for treatment of osteoarthritis. Curr. Opin. Rheumatol. 2021, 33, 94–109. 10.1097/BOR.0000000000000761. PubMed DOI PMC
Grigolo B.; Lisignoli G.; Piacentini A.; Fiorini M.; Gobbi P.; Mazzotti G.; Duca M.; Pavesio A.; Facchini A. Evidence for redifferentiation of human chondrocytes grown on a hyaluronan-based biomaterial (HYAff 11): molecular, immunohistochemical and ultrastructural analysis. Biomaterials 2002, 23, 1187–1195. 10.1016/S0142-9612(01)00236-8. PubMed DOI
Salvador-Clavell R.; Martín de Llano J. J.; Milián L.; Oliver M.; Mata M.; Carda C.; Sancho-Tello M. Chondrogenic Potential of Human Dental Pulp Stem Cells Cultured as Microtissues. Stem Cells Int. 2021, 2021, 7843798.10.1155/2021/7843798. PubMed DOI PMC
Abrahamsson C. K.; Yang F.; Park H.; Brunger J. M.; Valonen P. K.; Langer R.; Welter J. F.; Caplan A. I.; Guilak F.; Freed L. E. Chondrogenesis and mineralization during in vitro culture of human mesenchymal stem cells on three-dimensional woven scaffolds. Tissue Eng. Part A 2010, 16, 3709–3718. 10.1089/ten.tea.2010.0190. PubMed DOI PMC
Wang Z.; Hui A.; Zhao H.; Ye X.; Zhang C.; Wang A.; Zhang C. A Novel 3D-bioprinted Porous Nano Attapulgite Scaffolds with Good Performance for Bone Regeneration. Int. J. Nanomedicine 2020, 15, 6945–6960. 10.2147/IJN.S254094. PubMed DOI PMC
Alipour M.; Firouzi N.; Aghazadeh Z.; Samiei M.; Montazersaheb S.; Khoshfetrat A. B.; Aghazadeh M. The osteogenic differentiation of human dental pulp stem cells in alginate-gelatin/Nano-hydroxyapatite microcapsules. BMC Biotechnol. 2021, 21, 6.10.1186/s12896-020-00666-3. PubMed DOI PMC
Beck A.; Wood D.; Vertullo C. J.; Ebert J.; Janes G.; Sullivan M.; Zheng M. H. Morphological Assessment of MACI Grafts in Patients with Revision Surgery and Total Joint Arthroplasty. Cartilage 2021, 13, 526–539. 10.1177/1947603519890754. PubMed DOI PMC
Pitacco P.; Sadowska J. M.; O’Brien F. J.; Kelly D. J. 3D bioprinting of cartilaginous templates for large bone defect healing. Acta Biomater. 2023, 156, 61–74. 10.1016/j.actbio.2022.07.037. PubMed DOI
Ren J.; Kohli N.; Sharma V.; Shakouri T.; Keskin-Erdogan Z.; Saifzadeh S.; Brierly G. I.; Knowles J. C.; Woodruff M. A.; García-Gareta E. Poly-ε-Caprolactone/Fibrin-Alginate Scaffold: A New Pro-Angiogenic Composite Biomaterial for the Treatment of Bone Defects. Polymers 2021, 13, 3399.10.3390/polym13193399. PubMed DOI PMC
Gu X.; Zha Y.; Li Y.; Chen J.; Liu S.; Du Y.; Zhang S.; Wang J. Integrated polycaprolactone microsphere-based scaffolds with biomimetic hierarchy and tunable vascularization for osteochondral repair. Acta Biomater. 2022, 141, 190–197. 10.1016/j.actbio.2022.01.021. PubMed DOI
Taghiyar L.; Asadi H.; Baghaban Eslaminejad M. A bioscaffold of decellularized whole osteochondral sheet improves proliferation and differentiation of loaded mesenchymal stem cells in a rabbit model. Cell Tissue Bank. 2023, 24, 711–724. 10.1007/s10561-023-10084-2. PubMed DOI
Ho S. T.; Hutmacher D. W. A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials 2006, 27, 1362–1376. 10.1016/j.biomaterials.2005.08.035. PubMed DOI
Freeman F. E.; Pitacco P.; van Dommelen L. H. A.; Nulty J.; Browe D. C.; Shin J. Y.; Alsberg E.; Kelly D. J. 3D bioprinting spatiotemporally defined patterns of growth factors to tightly control tissue regeneration. Sci. Adv. 2020, 6, eabb509310.1126/sciadv.abb5093. PubMed DOI PMC
Jeon J. E.; Vaquette C.; Theodoropoulos C.; Klein T.J.; Hutmacher D. W. Multiphasic construct studied in an ectopic osteochondral defect model. J. R. Soc. Interface 2014, 11, 20140184.10.1098/rsif.2014.0184. PubMed DOI PMC
Flaherty T.; Tamaddon M.; Liu C. Micro-Computed Tomography Analysis of Subchondral Bone Regeneration Using Osteochondral Scaffolds in an Ovine Condyle Model. Appl. Sci. 2021, 11, 891.10.3390/app11030891. DOI
Guo C.; Su Z.; Zhao L.; Chen R.; Wang Y.; Wu Y.; Khan H. M.; Chirume W. H.; Zhou Z.; Feng P.; Liu Y.; Fan C.; Gao C.; Zhou C.; Kong Q.; Fan Y. Customize triphasic cartilage composite scaffold simulating hypoxic microenvironment for osteochondral tissue. Compos. B Eng. 2024, 271, 111161.10.1016/j.compositesb.2023.111161. DOI
Föger-Samwald U.; Dovjak P.; Azizi-Semrad U.; Kerschan-Schindl K.; Pietschmann P. Osteoporosis: Pathophysiology and therapeutic options. EXCLI J. 2020, 19, 1017–1037. 10.17179/excli2020-2591. PubMed DOI PMC
Wang M.; Wu Y.; Li G.; Lin Q.; Zhang W.; Liu H.; Su J. Articular cartilage repair biomaterials: strategies and applications. Materials Today Bio 2024, 24, 100948.10.1016/j.mtbio.2024.100948. PubMed DOI PMC
Iantomasi T.; Romagnoli C.; Palmini G.; Donati S.; Falsetti I.; Miglietta F.; Aurilia C.; Marini F.; Giusti F.; Brandi M.L. Oxidative Stress and Inflammation in Osteoporosis: Molecular Mechanisms Involved and the Relationship with microRNAs. Int. J. Mol. Sci. 2023, 24, 3772.10.3390/ijms24043772. PubMed DOI PMC
Hu X.; Jin M.; Sun K.; Zhang Z.; Wu Z.; Shi J.; Liu P.; Yao H.; Wang D. Type II collagen scaffolds repair critical-sized osteochondral defects under induced conditions of osteoarthritis in rat knee joins via inhibiting TGF-β-Smad1/5/8 signalling pathway. Bioact. Mater. 2024, 35, 416–428. 10.1016/j.bioactmat.2024.02.008. PubMed DOI PMC
Shahrezaie M.; Zamanian A.; Sahranavard M.; Shahrezaee M. H. A critical review on the 3D bioprinting in large bone regeneration. Bioprinting 2024, 37, e0032710.1016/j.bprint.2023.e00327. DOI
Ramzan F.; Salim A.; Khan I. Osteochondral Tissue Engineering Dilemma: Scaffolding trends in regenerative Medicine. Stem Cell Rev. Rep. 2023, 19, 1615–1634. 10.1007/s12015-023-10545-x. PubMed DOI
Cao Y.; Zhang H.; Qiu M.; Zheng Y.; Shi X.; Yang J. Biomimetic injectable and bilayred hydrogel scaffold based on collagen and chondroitin sulphate for the repair of osteochondral defect. Int. J. Biol. Macromol. 2024, 257, 128593.10.1016/j.ijbiomac.2023.128593. PubMed DOI
Dong C.; Petrovic M.; Davies I. J. Application of 3d printing in medicine: A review. Ann. 3D Print. Med. 2024, 14, 100149.10.1016/j.stlm.2024.100149. DOI
Ege D.; Hasirci V. Is 3D printing promising for osteochondral tissue regeneration?. ACS Appl. Bio. Mater. 2023, 6, 1431–1444. 10.1021/acsabm.3c00093. PubMed DOI PMC
Lee J.; Dutta S. D.; Acharya R.; Park H.; Kim H.; Randhawa A.; Patil T. V.K.; Ganguly K.; Luthfikasari R.; Lim K.-T. Stimuli-Responsive 3D Printable Conductive Hydrogel: A Step toward Regulating Macrophage Polarization and Wound Healing. Adv. Healthcare Mater. 2023, 13, 2302394.10.1002/adhm.202302394. PubMed DOI
Li X.; Sun S.; Wang X.; Dong W. Polyester polymer scaffold-based therapeutics for osteochondral repair. J. Drug Delivery Sci. Technol. 2023, 90, 105116.10.1016/j.jddst.2023.105116. DOI
Hu X.; Jin M.; Sun K.; Zhang Z.; Wu Z.; Shi J.; Liu P.; Yao H.; Wang D. A. Type II collagen scaffold repair critical-size osteochondral defect under induced conditions of osteoarthritis in rat knee joints via inhibiting TGF-β-Smad1/5/8 signaling pathway. Bioact. Mater. 2024, 35, 416–428. 10.1016/j.bioactmat.2024.02.008. PubMed DOI PMC
Yang F.; Li Y.; Wang L.; Che H.; Zhang X.; Jahr H.; Wang L.; Jiang D.; Huang H.; Wang J. Full-thickness osteochondral defect repair using a biodegradable bilayered scaffold of porous zinc and chondroitin sulfate hydrogel. Bioact. Mater. 2024, 32, 400–414. 10.1016/j.bioactmat.2023.10.014. PubMed DOI PMC
Xu J.; Vecstaudza J.; Wesdorp M. A.; Labberte M.; Kops N.; Salerno M.; Kok J.; Simon M.; Harmand M.-F.; Vancikova K.; van Rietbergen B.; Misciagna M. M.; Dolcini L.; Filardo G.; Farrell E.; van Osch G. J.V.M.; Locs J.; Brama P. A.J. Incorporating strontium enriched amorphous calcium phosphate granules in collagen/collagen-magnesium-hydroxyapatite osteochondral scaffolds improves subchondral bone repair. Materials Today Bio. 2024, 25, 100959.10.1016/j.mtbio.2024.100959. PubMed DOI PMC
Dai W.; Cheng J.; Yan W.; Cao C.; Zhao F.; Li Q.; Hu X.; Wang J.; Ao Y. Enhanced osteochondral repair with hyaline cartilage formation using an extracellular matrix-inspired natural scaffold. Sci. Bull. 2023, 68, 1904–191. 10.1016/j.scib.2023.07.050. PubMed DOI
Levingstone T. J.; Sheehy E. J.; Moran C. J.; Cunniffe G. M.; Diaz Payno P. J.; Brady R. T.; Almeida H. V.; Carroll S. F.; O’Byrne J. M.; Kelly D. J.; Brama P. A.; O’ Brien F. J. Evaluation of a co-culture of rapidly isolated chondrocytes and stem cells seeded on tri-layered collagen-based scaffolds in a caprine osteochondral defect model. Biomater. Biosyst. 2022, 8, 100066.10.1016/j.bbiosy.2022.100066. PubMed DOI PMC
Liu G.; Guo Q.; Liu C.; Bai J.; Wang H.; Li J.; Liu D.; Yu Q.; Shi J.; Liu C.; Zhu C.; Li B.; Zhang H. Cytomodulin-10 modified GelMA hydrogel with kartogenin for in-situ osteochondral regeneration. Acta Biomater. a 2023, 169, 317–333. 10.1016/j.actbio.2023.08.013. PubMed DOI
Schwab A.; Wesdorp M. A.; Xu J.; Abinzano F.; Loebel C.; Falandt M.; Levato R.; Eglin D.; Narcisi R.; Stoddart M. J.; Malda J.; Burdick J. A.; D’Este M.; van Osch G. J. V. M. Modulating design parameters to drive cell invasion into hydrogels for osteochondral tissue formation. J. Orthop. Transl. 2023, 41 (4), 42–53. 10.1016/j.jot.2023.07.001. PubMed DOI PMC
Li M.; Jiang J.; Liu W.; Huang X.; Wu X.; Wei W.; Zhu H.; Zhang J.; Xiao J.; Dai H. Bioadaptable bioactive glass- β-tricalcium phosphate scaffolds with TPMS-gyroid structure by stereolithography for bone regeneration. J. Mater. Sci. Technol. 2023, 155, 54–65. 10.1016/j.jmst.2023.01.025. DOI
Chen R.; Pye J. S.; Li J.; Little C. B.; Li J. J. Multiphasic scaffold for the repair of osteochondral defect: Outcomes of preclinical studies. Bioact. Mater. 2023, 27, 505–545. 10.1016/j.bioactmat.2023.04.016. PubMed DOI PMC
Jin Y.; Shu M.; Liu Z.; Li H.; Liu C.; Zhu C.; Zhu Z.; Fang B.; Xia L. Bio-functional immunomodulatory europium-doped hydroxyapatite nanorods for osteochondral repair via CDH5-RAS-RAF-MEK-ERK-CSF1 axis. Chem. Eng. J. 2024, 484, 149311.10.1016/j.cej.2024.149311. DOI
Chen R.; Pye J. S.; Li J.; Little C. B.; Li J. J. Multiphasic scaffolds for the repair of osteochondral defects: Outcomes of preclinical studies. Bioact. Mater. 2023, 27, 505–545. 10.1016/j.bioactmat.2023.04.016. PubMed DOI PMC
Du J.; Zhu Z.; Liu J.; Bao X.; Wang Q.; Shi C.; Zhao C.; Xu G.; Li D. 3D-printed gradient scaffold for osteochondral defects: Current status and perspective. Int. J. Bioprint. 2024, 9 (4), 724.10.18063/ijb.724. PubMed DOI PMC
Cao Y.; Zhang H.; Qiu M.; Zheng Y.; Shi X.; Yang J. Biomimetic injectable and bilayered hydrogel scaffold based on collagen and chondroitin sulfate for the repair of osteochondral defects. Int. J. Biol. Macromol. 2024, 257, 128593.10.1016/j.ijbiomac.2023.128593. PubMed DOI
Salehi Abar E.; Vandghanooni S.; Torab A.; Jaymand M.; Eskandani M. A comprehensive review a nanocomposite biomaterials based on gelatin for bone tisuue engineering. Int. J. Biol. Macromol. 2024, 254, 127556.10.1016/j.ijbiomac.2023.127556. PubMed DOI
Guo X.; Ma Y.; Min Y.; Sun J.; Shi X.; Gao G.; Sun L.; Wang J. Progress and prospect of technical and regulatory challenges on tissue- engineering cartilage as a therapeutic combination product. Bioact. Mater. 2023, 20, 501–518. 10.1016/j.bioactmat.2022.06.015. PubMed DOI PMC
Bicho D.; Pina S.; Reis R. L.; Oliveira J. M. Commercial product for osteochondral tissue repair and regeneration. Adv. Exp. Med. Biol. 2018, 1058, 415–428. 10.1007/978-3-319-76711-6_19. PubMed DOI
Chen M.; Jiang Z.; Zou X.; You X.; Cai Z.; Huang J. Advancements in tissue engineering for articular cartilage regeneration. Heliyon 2024, 10, e2540010.1016/j.heliyon.2024.e25400. PubMed DOI PMC
Liu Y.; Peng L.; Li L.; Huang C.; Shi K.; Meng X.; Wang P.; Wu M.; Li L.; Cao H.; Wu K.; Zeng Q.; Pan H.; Lu W. W.; Qin L.; Ruan C. H.; Wang X. 3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model. Biomaterials 2021, 279, 121216.10.1016/j.biomaterials.2021.121216. PubMed DOI
Nelson M.; Li S.; Page S. J.; Shi X.; Lee P. D.; Stevens M. M.; Hanna J. V.; Jones J. R. 3D printed silica-gelatin hybrid scaffolds of specific channel sizes promote collagen Type II, Sox9 and Aggrecan production from chondrocytes. Mater. Sci. Eng. c 2021, 123, 111964.10.1016/j.msec.2021.111964. PubMed DOI
Bedell M. L.; Wang Z.; Hogan K. J.; Torres A. L.; Pearce H. A.; Chim L. K.; Grande-Allen K. J.; Mikos A. G. The effect of multi-material architecture on the ex vivo osteochondral integration of bioprinted constructs. Acta Biomater. 2023, 155, 99–112. 10.1016/j.actbio.2022.11.014. PubMed DOI PMC