3D Printing and Electrospinning of Drug- and Graphene-Enhanced Polycaprolactone Scaffolds for Osteochondral Nasal Repair
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2020/39/I/ST5/00569 (OPUS-LAP)
National Science Center Poland
21-45449L
Grant Agency of the Czech Republic
ID 1449
Excellence Initiative - Research University for the AGH University of Krak
PubMed
40333487
PubMed Central
PMC12028827
DOI
10.3390/ma18081826
PII: ma18081826
Knihovny.cz E-zdroje
- Klíčová slova
- 3D printing, bi-layer scaffold, drug, electrospinning, graphene, polycaprolactone,
- Publikační typ
- časopisecké články MeSH
A novel bi-layered scaffold, obtained via 3D printing and electrospinning, was designed to improve osteochondral region reconstruction. The upper electrospun membrane will act as a barrier against unwanted tissue infiltration, while the lower 3D-printed layer will provide a porous structure for tissue ingrowth. Graphene was integrated into the scaffold for its antibacterial properties, and the drug Osteogenon® (OST) was added to promote bone tissue regeneration. The composite scaffolds were subjected to comprehensive physical, thermal, and mechanical evaluations. Additionally, their biological functionality was assessed by means of NHAC-kn cells. The 0.5% graphene addition to PCL significantly increased strain at break, enhancing the material ductility. GNP also acted as an effective nucleating agent, raising crystallization temperatures and supporting mineralization. The high surface area of graphene facilitated rapid apatite formation by attracting calcium and phosphate ions. This was confirmed by FTIR, µCT and SEM analyses, which highlighted the positive impact of graphene on mineral deposition. The synergistic interaction between graphene nanoplatelets and Osteogenon® created a bioactive environment that enhanced cell adhesion and proliferation, and promoted superior apatite formation. These findings highlight the scaffold's potential as a promising biomaterial for osteochondral repair and regenerative medicine.
Zobrazit více v PubMed
Oladele A.O., Olabanji J.K., Olekwu A.A., Awe O.O. Experience with management of nasal defects. Niger. J. Plast. Surg. 2018;14:36–44. doi: 10.4103/njps.njps_8_18. DOI
Liu Y., Zhou G., Cao Y. Recent Progress in Cartilage Tissue Engineering—Our Experience and Future Directions. Engineering. 2017;3:28–35. doi: 10.1016/J.ENG.2017.01.010. DOI
Lin G., Lawson W. Complications using grafts and implants in rhinoplasty. Oper. Tech. Otolaryngol. Head Neck Surg. 2007;18:315–323. doi: 10.1016/j.otot.2007.09.004. DOI
Rajzer I., Stręk P., Wiatr M., Skladzien J., Kurowska A., Kopeć J., Swiezy K., Wiatr A. Biomaterials in the Reconstruction of Nasal Septum Perforation. Ann. Otol. Rhinol. Laryngol. 2021;130:731–737. doi: 10.1177/0003489420970589. PubMed DOI
Selim M., Mousa H.M., Abdel-Jaber G.T., Barhoum A., Abdal-hay A. Innovative designs of 3D scaffolds for bone tissue regeneration: Understanding principles and addressing challenges. Eur. Polym. J. 2024;215:113251. doi: 10.1016/j.eurpolymj.2024.113251. DOI
Caplin J.D., García A.J. Implantable antimicrobial biomaterials for local drug delivery in bone infection models. Acta Biomater. 2019;15:2–11. doi: 10.1016/j.actbio.2019.01.015. PubMed DOI PMC
Rajzer I., Menaszek E., Bacakova L., Orzelski M., Błażewicz M. Hyaluronic acid-coated carbon nonwoven fabrics as potential material for repair of osteochondral defects. [(accessed on 19 March 2025)];Fibres Text. East. Eur. 2013 99:102–107. Available online: http://www.fibtex.lodz.pl/article937.html.
Boguń M., Mikołajczyk T., Kurzak A., Błażewicz M., Rajzer I. Influence of the as-spun draw ratio on the structure and properties of PAN fibres including montmorillonite. [(accessed on 19 March 2025)];Fibres Text. East. Eur. 2006 14:13–16. Available online: http://www.fibtex.lodz.pl/article1171.html.
Rajzer I., Piekarczyk W., Castano O. An ultrasonic through-transmission technique for monitoring the setting of injectable calcium phosphate cement. Mater. Sci. Eng. C. 2016;67:20–25. doi: 10.1016/j.msec.2016.04.083. PubMed DOI
Rajzer I., Rom M., Błażewicz M. Production of carbon fibers modified with ceramic powders for medical applications. Fibers Polym. 2010;11:615–624. doi: 10.1007/s12221-010-0615-8. DOI
Kamdem Tamo A., Wandji Djouonkep L.D., Songwe Selabi N.B. 3D Printing of Polysaccharide-Based Hydrogel Scaffolds for Tissue Engineering Applications: A Review. Int. J. Biol. Macromol. 2024;270:132123. doi: 10.1016/j.ijbiomac.2024.132123. PubMed DOI
Tripathi S., Mandal S.S., Bauri S., Maiti P. 3D bioprinting and its innovative approach for biomedical applications. MedComm. 2023;4:e194. doi: 10.1002/mco2.194. PubMed DOI PMC
Xu H., Zhang Y., Zhang Y., Zhao Z., Xue T., Wang J., Li M., Zhao S., Zhang H., Ding Y. 3D bioprinting advanced biomaterials for craniofacial and dental tissue engineering—A review. Mater. Des. 2024;241:112886. doi: 10.1016/j.matdes.2024.112886. DOI
Danesh Pajooh A.M., Tavakoli M., Al-Musawi M.h., Karimi A., Salehi E., Nasiri-Harchegani S., Sharifianjazi F., Tavamaishvili K., Mehrjoo M., Najafinezhad A., et al. Biomimetic VEGF-loaded bilayer scaffold fabricated by 3D printing and electrospinning techniques for skin regeneration. Mater. Des. 2024;238:112714. doi: 10.1016/j.matdes.2024.112714. DOI
del-Mazo-Barbara L., Ginebra M.P. Self-hardening polycaprolactone/calcium phosphate inks for 3D printing of bone scaffolds: Rheology, mechanical properties and shelf-life. Mater. Des. 2024;243:113035. doi: 10.1016/j.matdes.2024.113035. DOI
Formas K., Kurowska A., Janusz J., Szczygieł P., Rajzer I. Injection Molding Process Simulation of Polycaprolactone Sticks for Further 3D Printing of Medical Implants. Materials. 2022;15:7295. doi: 10.3390/ma15207295. PubMed DOI PMC
Rodríguez-Tobíasa H., Moralesa G., Grande D. Comprehensive review on electrospinning techniques as versatile approaches toward antimicrobial biopolymeric composite fibers. Mater. Sci. Eng. C. 2019;101:306–322. doi: 10.1016/j.msec.2019.03.099. PubMed DOI
Chen Z., Du C., Liu S., Liu J., Yang Y., Dong L., Zhao W., Huang W., Lei Y. Progress in biomaterials inspired by the extracellular matrix. Giant. 2024;19:100323. doi: 10.1016/j.giant.2024.100323. DOI
Arash A., Dehgan F., Zamanlui Benisi Z., Jafari-Nodoushan M., Pezeshki-Modaress M. Polysaccharide base electrospun nanofibrous scaffolds for cartilage tissue engineering: Challenges and opportunities. Int. J. Biol. Macromol. 2024;277:134054. doi: 10.1016/j.ijbiomac.2024.134054. PubMed DOI
Ye K., Kuang H., You Z., Morsi Y., Mo X. Electrospun Nanofibers for Tissue Engineering with Drug Loading and Release. Pharmaceutics. 2019;11:182. doi: 10.3390/pharmaceutics11040182. PubMed DOI PMC
Qu Z., Wang Y., Dong Y., Li X., Hao L., Sun L., Zhou L., Jiang R., Liu W. Intelligent Electrospinning Nanofibrous Membranes for Monitoring and Promotion of Wound Healing. Mater. Today Bio. 2024;26:101093. doi: 10.1016/j.mtbio.2024.101093. PubMed DOI PMC
Tayebi-Khorrami V., Rahmanian-Devin P., Reza Fadaei M., Movaffagh J., Reza Askari V. Advanced applications of smart electrospun nanofibers in cancer therapy: With insight into material capabilities and electrospinning parameters. Int. J. Pharm. X. 2024;8:100265. doi: 10.1016/j.ijpx.2024.100265. PubMed DOI PMC
Zhou Z., Feng W., Kamyab Moghadas B., Baneshi N., Noshadi B., Baghaei S., Abasi Dehkordi D. Review of recent advances in bone scaffold fabrication methods for tissue engineering for treating bone diseases and sport injuries. Tissue Cell. 2024;88:102390. doi: 10.1016/j.tice.2024.102390. PubMed DOI
Liu Y., Du L., Song J., Zhang M., Du S., Long W., Song W., Chang X., Li Z. A 3D printed magnesium ammonium phosphate/polycaprolactone composite membrane for Guided bone regeneration. Mater. Des. 2024;239:112733. doi: 10.1016/j.matdes.2024.112733. DOI
Rajzer I., Kurowska A., Frankova J., Sklenářová R., Nikodem A., Dziadek M., Jabłoński A., Janusz J., Szczygieł P., Ziąbka M. 3D-Printed Polycaprolactone Implants Modified with Bioglass and Zn-Doped Bioglass. Materials. 2023;16:1061. doi: 10.3390/ma16031061. PubMed DOI PMC
Hajduga M.B., Bobiński R., Dutka M., Ulman-Włodarz I., Bujok J., Pająk C., Ćwiertnia M., Kurowska A., Dziadek M., Rajzer I. Analysis of the antibacterial properties of polycaprolactone modified with graphene, bioglass and zinc doped bioglass. Acta Bioeng. Biomech. 2021;23:131–138. doi: 10.37190/ABB-01766-2020-03. PubMed DOI
Novotná R., Franková J. Materials suitable for osteochondral regeneration. ACS Omega. 2024;9:30097–30108. doi: 10.1021/acsomega.4c04789. PubMed DOI PMC
Lasocka I., Szulc-Dąbrowska L., Skibniewski M., Skibniewska E., Strupinski W., Pasternak I., Kmieć H., Kowalczyk P. Biocompatibility of pristine graphene monolayer: Scaffold for fibroblasts. Toxicol. Vitro. 2018;48:276–285. doi: 10.1016/j.tiv.2018.01.028. PubMed DOI
Souza I.E.P., Cambraia L.V., Gomide V.S., Nunes E.H.M. Short review on the use of graphene as a biomaterial—Prospects, and challenges in Brazil. J. Mater. Res. Technol. 2022;19:2410–2430. doi: 10.1016/j.jmrt.2022.05.170. DOI
Rojas-Andrade M.D., Chata G., Rouholiman D., Liu J., Saltikov C., Chen S. Antibacterial mechanisms of graphene-based composite nanomaterials. Nanoscale. 2017;9:994–1006. doi: 10.1039/C6NR08733G. PubMed DOI
Aissou T., Jann J., Faucheux N., Fortier L.C., Braidy N., Veilleux J. Suspension plasma sprayed copper-graphene coatings for improved antibacterial properties. Appl. Surf. Sci. 2023;639:158204. doi: 10.1016/j.apsusc.2023.158204. DOI
Ji H., Sun H., Qu X. Antibacterial applications of graphene-based nanomaterials: Recent achievements and challenges. Adv. Drug Deliv. Rev. 2016;105:176–189. doi: 10.1016/j.addr.2016.04.009. PubMed DOI
Rajzer I., Menaszek E., Castano O. Electrospun polymer scaffolds modified with drugs for tissue engineering. Mater. Sci. Eng. C. 2017;77:493–499. doi: 10.1016/j.msec.2017.03.306. PubMed DOI
Kurowska A., Nikodem A., Jabłoński A., Janusz J., Szczygieł P., Ziąbka M., Menaszek E., Dziadek M., Zagrajczuk B., Kobielarz M., et al. Layered PCL scaffolds modified with bioactive additives fabricated by electrospinning and 3D-printing for the nasal bone and cartilage defects. Mater. Des. 2023;233:112255. doi: 10.1016/j.matdes.2023.112255. DOI
Rajzer I., Kurowska A., Jabłoński A., Jatteau S., Śliwka M., Ziąbka M., Menaszek E. Layered gelatin/PLLA scaffolds fabricated by electrospinning and 3D printing- for nasal cartilages and subchondral bone reconstruction. Mater. Des. 2018;155:297–306. doi: 10.1016/j.matdes.2018.06.012. DOI
Khan A.R., Gholap A.D., Grewal N.S., Jun Z., Khalid M., Zhang H.J. Advances in smart hybrid scaffolds: A strategic approach for regenerative clinical applications. Eng. Regen. 2025;6:85–110. doi: 10.1016/j.engreg.2025.02.002. DOI
Farjaminejad S., Farjaminejad R., Hasani M., Garcia-Godoy F., Abdouss M., Marya A., Harsoputranto A., Jamilian A. Advances and Challenges in Polymer-Based Scaffolds for Bone Tissue Engineering: A Path Towards Personalized Regenerative Medicine. Polymers. 2024;16:3303. doi: 10.3390/polym16233303. PubMed DOI PMC
Sultana N., Cole A., Strachan F. Biocomposite Scaffolds for Tissue Engineering: Materials, Fabrication Techniques and Future Directions. Materials. 2024;17:5577. doi: 10.3390/ma17225577. PubMed DOI PMC
Rajzer I., Kurowska A., Jabłoński A., Kwiatkowski R., Piekarczyk W., Hajduga M.B., Kopeć J., Sidzina M., Menaszek E. Scaffolds modified with graphene as future implants for nasal cartilage. J. Mater. Sci. 2020;55:4030–4042. doi: 10.1007/s10853-019-04298-7. DOI
Hajduga M.B., Bobinski R., Dutka M., Bujok J., Cwiertnia M., Pajak C., Kurowska A., Rajzer I. The Influence of Graphene Content on the Antibacterial Properties of Polycaprolactone. Int. J. Mol. Sci. 2022;23:10899. doi: 10.3390/ijms231810899. PubMed DOI PMC
Kokubo T., Takadama H. How useful is SBF in predicting In Vivo bone bioactivity? Biomaterials. 2006;27:2907–2915. doi: 10.1016/j.biomaterials.2006.01.017. PubMed DOI
Crescenzi V., Manzini G., Calzolari G., Borri C. Thermodynamics of fusion of poly-β-priopiolactone and pol-ε-caprolactone, comparative analysis of the melting of aliphatic polylactone and polyester chains. Eur. Polym. J. 1972;8:449–463. doi: 10.1016/0014-3057(72)90109-7. DOI
Sandhya M., Ramasamy D., Kadirgama K., Harun W.S.W., Saidur R. Experimental study on properties of hybrid stable & surfactant-free nanofluids GNPs/CNCs (Graphene nanoplatelets/cellulose nanocrystal) in water/ethylene glycol mixture for heat transfer application. J. Mol. Liq. 2022;348:118019. doi: 10.1016/j.molliq.2021.118019. DOI
Aati S., Chauhan A., Shrestha B., Rajan S.M., Aati H., Fawzy A. Development of 3D printed dental resin nanocomposite with graphene nanoplatelets enhanced mechanical properties and induced drug-free antimicrobial activity. Dent. Mater. 2022;38:1921–1933. doi: 10.1016/j.dental.2022.10.001. PubMed DOI
Wei K., Pei L.T., Cheow K.Y., Osman H., Sullivan M., Chun H.V., Bee Y.L., Syahmie M., Rasidi M. Comparison study: The effect of unmodified and modified graphene nano-platelets (GNP) on the mechanical, thermal, and electrical performance of different types of GNP-filled materials. Polym. Adv. Technol. 2021;32:3588–3608. doi: 10.1002/pat.5368. DOI
Ghosh A., Orasugh J.T., Ray S.S., Chattopadhyay D. Integration of 3D Printing–Coelectrospinning: Concept Shifting in Biomedical Applications. ACS Omega. 2023;8:28002–28025. doi: 10.1021/acsomega.3c03920. PubMed DOI PMC
Chinnakorn A., Soi-Ngoen Y., Weeranantanapan O., Pakawanit P., Maensiri S., Srisom K., Janphuang P., Radacsi N., Nuansing W. Fabrication of 3D Polycaprolactone Macrostructures by 3D Electrospinning. ACS Biomater. Sci. Eng. 2024;10:5336–5351. doi: 10.1021/acsbiomaterials.4c00302. PubMed DOI PMC
Anitasari S., Wu C.-Z., Shen Y.-K. PCL/Graphene Scaffolds for the Osteogenesis Process. Bioengineering. 2023;10:305. doi: 10.3390/bioengineering10030305. PubMed DOI PMC
Ha D.S., Im Y.K., Baek J.B., Jeon I.Y. Heptene-functionalized graphitic nanoplatelets for high-performance composites of linear low-density polyethylene. Compos. Sci. Technol. 2020;199:108380. doi: 10.1016/j.compscitech.2020.108380. DOI
Avcu E., Bastan F.E., Guney M., Avcu Y.Y., Ur Rehman M.A., Boccaccini A.R. Biodegradable Polymer Matrix Composites Containing Graphene-Related Materials for Antibacterial Applications: A Critical Review. Acta Biomater. 2022;151:1–44. doi: 10.1016/j.actbio.2022.07.048. PubMed DOI
Lee S.J., Yoon S.J., Jeon I.-Y. Graphene/Polymer Nanocomposites: Preparation, Mechanical Properties, and Application. Polymers. 2022;14:4733. doi: 10.3390/polym14214733. PubMed DOI PMC
Chiesa E., Dorati R., Pisani S., Bruni G., Rizzi L.G., Conti B., Modena T., Genta I. Graphene Nanoplatelets for the Development of Reinforced PLA–PCL Electrospun Fibers as the Next-Generation of Biomedical Mats. Polymers. 2020;12:1390. doi: 10.3390/polym12061390. PubMed DOI PMC
Wu D., Cheng Y., Feng S., Yao Z., Zhang M. Crystallization behavior of polylactide/graphene composites. Ind. Eng. Chem. Res. 2013;52:6731–6739. doi: 10.1021/ie4004199. DOI
Cheng J., Liu J., Wu B., Liu Z., Li M., Wang X., Tang P., Wang Z. Graphene and its Derivatives for Bone Tissue Engineering: In Vitro and In Vivo Evaluation of Graphene-Based Scaffolds, Membranes and Coatings. Front. Bioeng. Biotechnol. 2021;9:734688. doi: 10.3389/fbioe.2021.734688. PubMed DOI PMC
Cao Z., Bian Y., Hu T., Yang Y., Cui Z., Wang T., Yang S., Weng X., Liang R., Tan C. Recent advances in two-dimensional nanomaterials for bone tissue engineering. J. Mater. 2023;9:930–958. doi: 10.1016/j.jmat.2023.02.016. DOI
Guo J., Cao G., Wei S., Han Y., Xu P. Progress in the application of graphene and its derivatives to osteogenesis. Heliyon. 2023;9:e21872. doi: 10.1016/j.heliyon.2023.e21872. PubMed DOI PMC
Wang W., Caetano G., Ambler W.S., Blaker J.J., Frade M.A., Mandal P., Diver C., Bártolo P. Enhancing the Hydrophilicity and Cell Attachment of 3D Printed PCL/Graphene Scaffolds for Bone Tissue Engineering. Materials. 2016;9:992. doi: 10.3390/ma9120992. PubMed DOI PMC
Park S.Y., Park J., Sim S.H., Sung M.G., Kim K.S., Hong B.H., Hong S. Enhanced differentiation of human neural stem cells into neurons on graphene. Adv. Mater. 2011;23:H263–H267. doi: 10.1002/adma.201101503. PubMed DOI
Gao Y.X., Wang X., Fan C. Advances in graphene-based 2D materials for tendon, nerve, bone/cartilage regeneration and biomedicine. iScience. 2024;27:110214. doi: 10.1016/j.isci.2024.110214. PubMed DOI PMC