3D-Printed Polycaprolactone Implants Modified with Bioglass and Zn-Doped Bioglass
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
36770074
PubMed Central
PMC9919585
DOI
10.3390/ma16031061
PII: ma16031061
Knihovny.cz E-zdroje
- Klíčová slova
- 3D-printing, bioglass, biomaterials, bone scaffolds, implants, polycaprolactone, zinc,
- Publikační typ
- časopisecké články MeSH
In this work, composite filaments in the form of sticks and 3D-printed scaffolds were investigated as a future component of an osteochondral implant. The first part of the work focused on the development of a filament modified with bioglass (BG) and Zn-doped BG obtained by injection molding. The main outcome was the manufacture of bioactive, strong, and flexible filament sticks of the required length, diameter, and properties. Then, sticks were used for scaffold production. We investigated the effect of bioglass addition on the samples mechanical and biological properties. The samples were analyzed by scanning electron microscopy, optical microscopy, infrared spectroscopy, and microtomography. The effect of bioglass addition on changes in the SBF mineralization process and cell morphology was evaluated. The presence of a spatial microstructure within the scaffolds affects their mechanical properties by reducing them. The tensile strength of the scaffolds compared to filaments was lower by 58-61%. In vitro mineralization experiments showed that apatite formed on scaffolds modified with BG after 7 days of immersion in SBF. Scaffold with Zn-doped BG showed a retarded apatite formation. Innovative 3D-printing filaments containing bioglasses have been successfully applied to print bioactive scaffolds with the surface suitable for cell attachment and proliferation.
Zobrazit více v PubMed
Guo J.L., Diaz-Gomez L., Xie V.Y., Bittner S.M., Jiang E.Y., Wang B., Mikos A.G. Three-dimensional printing of click functionalized, peptide patterned scaffolds for osteochondral tissue engineering. Bioprinting. 2021;22:e00136. doi: 10.1016/j.bprint.2021.e00136. PubMed DOI PMC
Nowicki M., Zhu W., Sarkar K., Rao R., Zhang L.G. 3D printing multiphasic osteochondral tissue constructs with nano to micro features via PCL based bioink. Bioprinting. 2020;17:e00066. doi: 10.1016/j.bprint.2019.e00066. DOI
Gómez-Lizárraga K.K., Flores-Morales C., Del Prado-Audelo M.L., Álvarez-Pérez M.A., Piña-Barba M.C., Escobedo C. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study. Mater. Sci. Eng. C. 2017;79:326–335. doi: 10.1016/j.msec.2017.05.003. PubMed DOI
Chiesa-Estomba C.M., Aiastui A., González-Fernández I., Hernáez-Moya R., Rodiño C., Delgado A., Garces J.P., Paredes-Puente J., Aldazabal J., Altuna X., et al. Three-Dimensional Bioprinting Scaffolding for Nasal Cartilage Defects: A Systematic Review. Tissue Eng. Regen. Med. 2021;18:343–353. doi: 10.1007/s13770-021-00331-6. PubMed DOI PMC
Rajzer I., Menaszek E., Bacakova L., Orzelski M., Błażewicz M. Hyaluronic acid-coated carbon nonwoven fabrics as potential material for repair of osteochondral defects. [(accessed on 1 November 2022)];Fibres Text. East. Eur. 2013 99:102–107. Available online: http://www.fibtex.lodz.pl/article937.html.
Takato T., Mori Y., Fujihara Y., Asawa Y., Nishizawa S., Kanazawa S., Ogasawara T., Saijo H., Abe T., Abe M., et al. Preclinical and clinical research on bone and cartilage regenerative medicine in oral and maxillofacial region. Oral Sci. Int. 2014;11:45–51. doi: 10.1016/S1348-8643(14)00008-1. DOI
Liu Y., Zhou G., Cao Y. Recent Progress in Cartilage Tissue Engineering—Our Experience and Future Directions. Engineering. 2017;3:28–35. doi: 10.1016/J.ENG.2017.01.010. DOI
Rajzer I., Piekarczyk W., Castaño O. An ultrasonic through-transmission technique for monitoring the setting of injectable calcium phosphate cement. Mater. Sci. Eng. C. 2016;67:20–25. doi: 10.1016/j.msec.2016.04.083. PubMed DOI
Domalik-Pyzik P., Morawska-Chochół A., Chłopek J., Rajzer I., Wrona A., Menaszek E., Ambroziak M. Polylactide/polycaprolactone asymmetric membranes for guided bone regeneration. e-Polymers. 2016;16:351–358. doi: 10.1515/epoly-2016-0138. DOI
Zhao H., Li L., Ding S., Liu C., Ai J. Effect of porous structure and pore size on mechanical strength of 3D-printed comby scaffolds. Mater. Lett. 2018;223:21–24. doi: 10.1016/j.matlet.2018.03.205. DOI
Rajzer I., Stręk P., Wiatr M., Skladzien J., Kurowska A., Kopeć J., Swiezy K., Wiatr A. Biomaterials in the Reconstruction of Nasal Septum Perforation. Ann. Otol. Rhinol. Laryngol. 2021;130:731–737. doi: 10.1177/0003489420970589. PubMed DOI
Liu K., Sun J., Zhu Q., Jin X., Zhang Z., Zhao Z., Chen G., Wang C., Jiang H., Zhang P. Microstructures and properties of polycaprolactone/tricalcium phosphate scaffolds containing polyethylene glycol fabricated by 3D printing. Ceram. Int. 2022;48:24032–24043. doi: 10.1016/j.ceramint.2022.05.081. DOI
Wang C., Meng C., Zhang Z., Zhu Q. 3D printing of polycaprolactone/bioactive glass composite scaffolds for in situ bone repair. Ceram. Int. 2022;48:7491–7499. doi: 10.1016/j.ceramint.2021.11.293. DOI
Wang X., Molino B.Z., Pitkänen S., Ojansivu M., Xu C., Hannula M., Hyttinen J., Miettinen S., Hupa L., Wallace G. 3D Scaffolds of Polycaprolactone/Copper-Doped Bioactive Glass: Architecture Engineering with Additive Manufacturing and Cellular Assessments in a Coculture of Bone Marrow Stem Cells and Endothelial Cells. ACS Biomater. Sci. Eng. 2019;5:4496–4510. doi: 10.1021/acsbiomaterials.9b00105. PubMed DOI
Hassanajili S., Karami-Pour A., Oryan A., Talaei-Khozani T. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Mater. Sci. Eng. C. 2019;104:109960. doi: 10.1016/j.msec.2019.109960. PubMed DOI
Smirnov A., Seleznev A., Peretyagin P., Bentseva E., Pristinskiy Y., Kuznetsova E., Grigoriev S. Rheological Characterization and Printability of Polylactide (PLA)-Alumina (Al2O3) Filaments for Fused Deposition Modeling (FDM) Materials. 2022;15:8399. doi: 10.3390/ma15238399. PubMed DOI PMC
Ravi P., Shiakolas P.S., Welch T.R. Poly-l-lactic acid: Pellets to fiber to fused filament fabricated scaffolds, and scaffold weight loss study. Addit. Manuf. 2017;16:167–176. doi: 10.1016/j.addma.2017.06.002. DOI
Dávila J.L., Freitas M.S., Neto P.I., Silveira Z.C., Silva J.V.L., D’Ávila M.A. Fabrication of PCL/β-TCP scaffolds by 3D mini-screw extrusion printing. J. Appl. Polym. Sci. 2016;133:43031. doi: 10.1002/app.43031. DOI
Fathi A., Kermani F., Behnamghader A., Banijamali S., Mozafari M., Baino F., Kargozar S. Three-dimensionally printed polycaprolactone/multicomponent bioactive glass scaffolds for potential application in bone tissue engineering. Biomed. Glas. 2020;6:57–69. doi: 10.1515/bglass-2020-0006. DOI
Idaszek J., Bruinink A., Święszkowski W. Delayed degradation of poly(lactide-co-glycolide) accelerates hydrolysis of poly(ε-caprolactone) in ternary composite scaffolds. Polym. Degrad. Stab. 2016;124:119–127. doi: 10.1016/j.polymdegradstab.2015.12.020. DOI
Baino F., Hamzehlou S., Kargozar S. Bioactive Glasses: Where Are We and Where Are We Going? J. Funct. Biomater. 2018;9:25. doi: 10.3390/jfb9010025. PubMed DOI PMC
Baino F., Novajra G., Miguez-Pacheco V., Boccaccini A.R., Brovarone C.V. Bioactive glasses: Special applications outside the skeletal system. J. Non-Cryst. Solids. 2016;432:15–30. doi: 10.1016/j.jnoncrysol.2015.02.015. DOI
Kargozar S., Baino F., Hamzehlou S., Hill R.G., Mozafari M. Bioactive glasses entering the mainstream. Drug Discov. Today. 2018;23:1700–1704. doi: 10.1016/j.drudis.2018.05.027. PubMed DOI
Mehrabi T., Mesgar A.S., Mohammadi Z. Bioactive Glasses: A Promising Therapeutic Ion Release Strategy for Enhancing Wound Healing. ACS Biomater. Sci. Eng. 2020;6:5399–5430. doi: 10.1021/acsbiomaterials.0c00528. PubMed DOI
Schuhladen K., Stich L., Schmidt J., Steinkasserer A., Boccaccini A.R., Zinser E. Cu, Zn doped borate bioactive glasses: Antibacterial efficacy and dose-dependent in vitro modulation of murine dendritic cells. Biomater. Sci. 2020;8:2143–2155. doi: 10.1039/C9BM01691K. PubMed DOI
Wajda A., Goldmann W.H., Detsch R., Boccaccini A.R., Sitarz M. Influence of zinc ions on structure, bioactivity, biocompatibility and antibacterial potential of melt-derived and gel-derived glasses from CaO-SiO2 system. J. Non-Cryst. Solids. 2019;511:86–99. doi: 10.1016/j.jnoncrysol.2018.12.040. DOI
Bai X., Liu W., Xu L., Ye Q., Zhou H., Berg C., Yuan H., Li J., Xia W. Sequential macrophage transition facilitates endogenous bone regeneration induced by Zn-doped porous microcrystalline bioactive glass. J. Mater. Chem. B. 2021;9:2885–2898. doi: 10.1039/D0TB02884C. PubMed DOI
Formas K., Kurowska A., Janusz J., Szczygieł P., Rajzer I. Injection Molding Process Simulation of Polycaprolactone Sticks for Further 3D Printing of Medical Implants. Materials. 2022;15:7295. doi: 10.3390/ma15207295. PubMed DOI PMC
Rajzer I., Kurowska A., Jabłoński A., Kwiatkowski R., Piekarczyk W., Hajduga M.B., Kopeć J., Sidzina M., Menaszek E. Scaffolds modified with graphene as future implants for nasal cartilage. J. Mater. Sci. 2020;55:4030–4042. doi: 10.1007/s10853-019-04298-7. DOI
Hajduga M.B., Bobinski R., Dutka M., Bujok J., Cwiertnia M., Pajak C., Kurowska A., Rajzer I. The Influence of Graphene Content on the Antibacterial Properties of Polycaprolactone. Int. J. Mol. Sci. 2022;23:10899. doi: 10.3390/ijms231810899. PubMed DOI PMC
Hajduga M.B., Bobiński R., Dutka M., Ulman-Włodarz I., Bujok J., Pająk C., Ćwiertnia M., Kurowska A., Dziadek M., Rajzer I. Analysis of the antibacterial properties of polycaprolactone modified with graphene, bioglass and zinc-doped bioglass. Acta Bioeng. Biomech. 2021;23:131–138. doi: 10.37190/ABB-01766-2020-03. PubMed DOI
Rajzer I., Dziadek M., Kurowska A., Cholewa-Kowalska K., Ziąbka M., Menaszek E., Douglas T.E.L. Electrospun polycaprolactone membranes with Zn-doped bioglass for nasal tissues treatment. J. Mater. Sci. Mater. Med. 2019;30:80. doi: 10.1007/s10856-019-6280-4. PubMed DOI PMC
Łączka M., Cholewa-Kowalska K., Kulgawczyk K., Klisch M., Mozgawa W. Structural examinations of gel-derived materials of the CaO–P2O5–SiO2 system. J. Mol. Struct. 1999;511–512:223–231. doi: 10.1016/S0022-2860(99)00163-5. DOI
Dziadek M., Zagrajczuk B., Menaszek E., Wegrzynowicz A., Pawlik J., Cholewa-Kowalska K. Gel-derived SiO2–CaO–P2O5 bioactive glasses and glass-ceramics modified by SrO addition. Ceram. Int. 2016;42:5842–5857. doi: 10.1016/j.ceramint.2015.12.128. DOI
Kokubo T., Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–2915. doi: 10.1016/j.biomaterials.2006.01.017. PubMed DOI
Pivodova V., Frankova J., Dolezel P., Ulrichova J. The response of osteoblast-like SaOS-2 cells to modified titanium surfaces. Int. J. Oral Maxillofac. Implant. 2013;28:1386–1394. doi: 10.11607/jomi.3039. PubMed DOI
Wang S., Li R., Xia D., Zhao X., Zhu Y., Gu R., Yoon J., Liu Y. The impact of Zn-doped synthetic polymer materials on bone regeneration: A systematic review. Stem Cell Res. Ther. 2021;12:123. doi: 10.1186/s13287-021-02195-y. PubMed DOI PMC
Germain L., Fuentes C.A., van Vuure A.W., des Rieux A., Dupont-Gillain C. 3D-printed biodegradable gyroid scaffolds for tissue engineering applications. Mater. Des. 2018;151:113–122. doi: 10.1016/j.matdes.2018.04.037. DOI
Wang C., Xu D., Lin L., Li S., Hou W., He Y., Sheng L., Yi C., Zhang X., Li H., et al. Large-pore-size Ti6Al4V scaffolds with different pore structures for vascularized bone regeneration. Mater. Sci. Eng. C. 2021;131:112499. doi: 10.1016/j.msec.2021.112499. PubMed DOI
Materials Suitable for Osteochondral Regeneration
Self-Assembled Hydrogel Membranes with Structurally Tunable Mechanical and Biological Properties