Self-Assembled Hydrogel Membranes with Structurally Tunable Mechanical and Biological Properties

. 2024 Jun 10 ; 25 (6) : 3449-3463. [epub] 20240513

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38739908

Using supramolecular self-assembled nanocomposite materials made from protein and polysaccharide components is becoming more popular because of their unique properties, such as biodegradability, hierarchical structures, and tunable multifunctionality. However, the fabrication of these materials in a reproducible way remains a challenge. This study presents a new evaporation-induced self-assembly method producing layered hydrogel membranes (LHMs) using tropocollagen grafted by partially deacetylated chitin nanocrystals (CO-g-ChNCs). ChNCs help stabilize tropocollagen's helical conformation and fibrillar structure by forming a hierarchical microstructure through chemical and physical interactions. The LHMs show improved mechanical properties, cytocompatibility, and the ability to control drug release using octenidine dihydrochloride (OCT) as a drug model. Because of the high synergetic performance between CO and ChNCs, the modulus, strength, and toughness increased significantly compared to native CO. The biocompatibility of LHM was tested using the normal human dermal fibroblast (NHDF) and the human osteosarcoma cell line (Saos-2). Cytocompatibility and cell adhesion improved with the introduction of ChNCs. The extracted ChNCs are used as a reinforcing nanofiller to enhance the performance properties of tropocollagen hydrogel membranes and provide new insights into the design of novel LHMs that could be used for various medical applications, such as control of drug release in the skin and bone tissue regeneration.

Zobrazit více v PubMed

Gong S.; Cui W.; Zhang Q.; Cao A.; Jiang L.; Cheng Q. Integrated Ternary Bioinspired Nanocomposites via Synergistic Toughening of Reduced Graphene Oxide and Double-Walled Carbon Nanotubes. ACS Nano 2015, 9 (12), 11568–11573. 10.1021/acsnano.5b05252. PubMed DOI

Prasad K. E.; Das B.; Maitra U.; Ramamurty U.; Rao C. N. R. Extraordinary synergy in the mechanical properties of polymer matrix composites reinforced with 2 nanocarbons. Proc. Natl. Acad. Sci. U. S. A. 2009, 106 (32), 13186–13189. 10.1073/pnas.0905844106. PubMed DOI PMC

Wang H.; Lu R.; Yan J.; Peng J.; Tomsia A. P.; Liang R.; Sun G.; Liu M.; Jiang L.; Cheng Q. Tough and Conductive Nacre-inspired MXene/Epoxy Layered Bulk Nanocomposites. Angew. Chem. Int. Ed. 2023, 62 (9), e202216874.10.1002/anie.202216874. PubMed DOI

Chang J.; Zhang M.; Zhao Q.; Qu L.; Yuan J. Ultratough and ultrastrong graphene oxide hybrid films via a polycationitrile approach. Nanoscale Horiz. 2021, 6 (4), 341–347. 10.1039/D1NH00073J. PubMed DOI

Abdel-Mohsen A. M.; Abdel-Rahman R. M.; Kubena I.; Kobera L.; Spotz Z.; Zboncak M.; Prikryl R.; Brus J.; Jancar J. Chitosan-glucan complex hollow fibers reinforced collagen wound dressing embedded with aloe vera. Part I: Preparation and characterization. Carbohydr. Polym. 2020, 230, 115708.10.1016/j.carbpol.2019.115708. PubMed DOI

Cheng C.; Li S.; Thomas A.; Kotov N. A.; Haag R. Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chem. Rev. 2017, 117 (3), 1826–1914. 10.1021/acs.chemrev.6b00520. PubMed DOI

Abdel-Rahman R. M.; Vishakha V.; Kelnar I.; Jancar J.; Abdel-Mohsen A. M. Synergistic performance of collagen-g-chitosan-glucan fiber biohybrid scaffold with tunable properties. Int. J. Biol. Macromol. 2022, 202, 671–680. 10.1016/j.ijbiomac.2022.01.004. PubMed DOI

Abdel-Mohsen A. M.; Frankova J.; Abdel-Rahman R. M.; Salem A. A.; Sahffie N. M.; Kubena I.; Jancar J. Chitosan-glucan complex hollow fibers reinforced collagen wound dressing embedded with aloe vera. II. Multifunctional properties to promote cutaneous wound healing. Int. J. Pharm. (Amsterdam, Neth.). 2020, 582, 119349.10.1016/j.ijpharm.2020.119349. PubMed DOI

Liu D.; Dong X.; Han B.; Huang H.; Qi M. Cellulose nanocrystal/collagen hydrogels reinforced by anisotropic structure: Shear viscoelasticity and related strengthening mechanism. Composites Communications. 2020, 21, 100374.10.1016/j.coco.2020.100374. DOI

Heinemann S.; Heinemann C.; Jäger M.; Neunzehn J.; Wiesmann H. P.; Hanke T. Effect of Silica and Hydroxyapatite Mineralization on the Mechanical Properties and the Biocompatibility of Nanocomposite Collagen Scaffolds. ACS Appl. Mater. Interfaces. 2011, 3 (11), 4323–4331. 10.1021/am200993q. PubMed DOI

Aly A. S.; Abdel-Mohsen A. M.; Hrdina R.; Abou-Okeil A. Preparation and Characterization of Polyethylene Glycol/Dimethyl Siloxane Adduct and Its Utilization as Finishing Agent for Cotton Fabric. J. Nat. Fibers. 2011, 8 (3), 176–188. 10.1080/15440478.2011.602243. DOI

Orza A.; Soritau O.; Olenic L.; Diudea M.; Florea A.; Rus Ciuca D.; Mihu C.; Casciano D.; Biris A. S. Electrically Conductive Gold-Coated Collagen Nanofibers for Placental-Derived Mesenchymal Stem Cells Enhanced Differentiation and Proliferation. ACS Nano 2011, 5 (6), 4490–4503. 10.1021/nn1035312. PubMed DOI

Castaneda L.; Valle J.; Yang N.; Pluskat S.; Slowinska K. Collagen Cross-Linking with Au Nanoparticles. Biomacromolecules. 2008, 9 (12), 3383–3388. 10.1021/bm800793z. PubMed DOI PMC

Chen J.; Ling Z.; Wang X.; Ping X.; Xie Y.; Ma H.; Guo J.; Yong Q. All bio-based chiral nematic cellulose nanocrystals films under supramolecular tuning by chitosan/deacetylated chitin nanofibers for reversible multi-response and sensor application. Chem. Eng. J. (Amsterdam, Neth). 2023, 466, 143148.10.1016/j.cej.2023.143148. DOI

Abdel-Mohsen A. M.; Aly A. S.; Hrdina R.; El-Aref A. T. A novel method for the preparation of silver/chitosan-O-methoxy polyethylene glycol core-shell nanoparticles. J. Polym. Environ. 2012, 20 (2), 459–468. 10.1007/s10924-011-0378-1. DOI

Zidek J.; Vojtova L.; Abdel-Mohsen A. M.; Chmelik J.; Zikmund T.; Brtnikova J.; Jakubicek R.; Zubal L.; Jan J.; Kaiser J. Accurate micro-computed tomography imaging of pore spaces in collagen-based scaffold. J. Mater. Sci. 2016, 27 (6), 110.10.1007/s10856-016-5717-2. PubMed DOI

Zhang S.; Huang D.; Lin H.; Xiao Y.; Zhang X. Cellulose Nanocrystal Reinforced Collagen-Based Nanocomposite Hydrogel with Self-Healing and Stress-Relaxation Properties for Cell Delivery. Biomacromolecules. 2020, 21 (6), 2400–2408. 10.1021/acs.biomac.0c00345. PubMed DOI

Wang X.; Peng J.; Zhang Y.; Li M.; Saiz E.; Tomsia A. P.; Cheng Q. Ultratough Bioinspired Graphene Fiber via Sequential Toughening of Hydrogen and Ionic Bonding. ACS Nano 2018, 12 (12), 12638–12645. 10.1021/acsnano.8b07392. PubMed DOI

Yi Y.; Zhang Y.; Mansel B.; Wang Y.-n.; Prabakar S.; Shi B. Effect of Dialdehyde Carboxymethyl Cellulose Cross-Linking on the Porous Structure of the Collagen Matrix. Biomacromolecules. 2022, 23 (4), 1723–1732. 10.1021/acs.biomac.1c01641. PubMed DOI

Abdelrahman R. M.; Abdel-Mohsen A. M.; Zboncak M.; Frankova J.; Lepcio P.; Kobera L.; Steinhart M.; Pavlinak D.; Spotaz Z.; Sklenářévá R.; et al. Hyaluronan biofilms reinforced with partially deacetylated chitin nanowhiskers: Extraction, fabrication, in-vitro and antibacterial properties of advanced nanocomposites. Carbohydr. Polym. 2020, 235, 115951.10.1016/j.carbpol.2020.115951. PubMed DOI

Abdel-Rahman R. M.; Frankova J.; Sklenarova R.; Kapralkova L.; Kelnar I.; Abdel-Mohsen A. M. Hyaluronan/Zinc Oxide Nanocomposite-Based Membrane: Preparation, Characterization, and In Vitro and In Vivo Evaluation. ACS Appl. Polym. Mater. 2022, 4 (10), 7723–7738. 10.1021/acsapm.2c01296. DOI

Abdel-Mohsen A. M.; Hrdina R.; Burgert L.; Abdel-Rahman R. M.; Hašová M.; Šmejkalová D.; Kolář M.; Pekar M.; Aly A. S. Antibacterial activity and cell viability of hyaluronan fiber with silver nanoparticles. Carbohydr. Polym. 2013, 92 (2), 1177–1187. 10.1016/j.carbpol.2012.08.098. PubMed DOI

Aly A. S.; Abdel-Mohsen A. M.; Hebeish A. Innovative multifinishing using chitosan-O-PEG graft copolymer/citric acid aqueous system for preparation of medical textiles. J. Text. Inst. 2010, 101 (1), 76–90. 10.1080/00405000802263559. DOI

Abdel-Mohsen A. M.; Jancar J.; Massoud D.; Fohlerova Z.; Elhadidy H.; Spotz Z.; Hebeish A. Novel chitin/chitosan-glucan wound dressing: Isolation, characterization, antibacterial activity and wound healing properties. Int. J. Pharm. (Amsterdam, Neth.). 2016, 510 (1), 86–99. 10.1016/j.ijpharm.2016.06.003. PubMed DOI

Xia W.; Qin X.; Zhang Y.; Sinko R.; Keten S. Achieving Enhanced Interfacial Adhesion and Dispersion in Cellulose Nanocomposites via Amorphous Interfaces. Macromolecules. 2018, 51 (24), 10304–10311. 10.1021/acs.macromol.8b02243. DOI

Muthuswamy S.; Viswanathan A.; Yegappan R.; Selvaprithiviraj V.; Vasudevan A. K.; Biswas R.; Jayakumar R. Antistaphylococcal and Neutrophil Chemotactic Injectable κ-Carrageenan Hydrogel for Infectious Wound Healing. ACS Appl. Bio Mater. 2019, 2 (1), 378–387. 10.1021/acsabm.8b00625. PubMed DOI

Huang Y.; Yao M.; Zheng X.; Liang X.; Su X.; Zhang Y.; Lu A.; Zhang L. Effects of Chitin Whiskers on Physical Properties and Osteoblast Culture of Alginate Based Nanocomposite Hydrogels. Biomacromolecules. 2015, 16 (11), 3499–3507. 10.1021/acs.biomac.5b00928. PubMed DOI

Barbalinardo M.; Biagetti M.; Valle F.; Cavallini M.; Falini G.; Montroni D. Green Biocompatible Method for the Synthesis of Collagen/Chitin Composites to Study Their Composition and Assembly Influence on Fibroblasts Growth. Biomacromolecules. 2021, 22 (8), 3357–3365. 10.1021/acs.biomac.1c00463. PubMed DOI

Zhang B.; Wang M.; Tian H.; Cai H.; Wu S.; Jiao S.; Zhao J.; Li Y.; Zhou H.; Guo W.; et al. Functional hemostatic hydrogels: design based on procoagulant principles. J. Mater. Chem. B 2024, 12 (7), 1706–1729. 10.1039/D3TB01900D. PubMed DOI

Olza S.; Salaberria A. M.; Alonso-Varona A.; Samanta A.; Fernandes S. C. M. The role of nanochitin in biologically active matrices for tissue engineering-where do we stand?. J. Mater. Chem. B 2023, 11 (25), 5630–5649. 10.1039/D3TB00583F. PubMed DOI

Li X.; Feng Q.; Liu X.; Dong W.; Cui F. Collagen-based implants reinforced by chitin fibers in a goat shank bone defect model. Biomaterials 2006, 27 (9), 1917–1923. 10.1016/j.biomaterials.2005.11.013. PubMed DOI

Abdel-Rahman R. M.; Abdel-Mohsen A. M.; Hrdina R.; Burgert L.; Fohlerova Z.; Pavliňák D.; Sayed O. N.; Jancar J. Wound dressing based on chitosan/hyaluronan/nonwoven fabrics: Preparation, characterization and medical applications. J. Biol. Macromol. 2016, 89, 725–736. 10.1016/j.ijbiomac.2016.04.087. PubMed DOI

Abdel-Mohsen A. M.; Pavliňák D.; Čileková M.; Lepcio P.; Abdel-Rahman R. M.; Jančář J. Electrospinning of hyaluronan/polyvinyl alcohol in presence of in-situ silver nanoparticles: Preparation and characterization. J. Biol. Macromol. 2019, 139, 730–739. 10.1016/j.ijbiomac.2019.07.205. PubMed DOI

Duan J.; Gong S.; Gao Y.; Xie X.; Jiang L.; Cheng Q. Bioinspired Ternary Artificial Nacre Nanocomposites Based on Reduced Graphene Oxide and Nanofibrillar Cellulose. ACS Appl. Mater. Interfaces. 2016, 8 (16), 10545–10550. 10.1021/acsami.6b02156. PubMed DOI

Qiu S.; Ren X.; Zhou X.; Zhang T.; Song L.; Hu Y. Nacre-Inspired Black Phosphorus/Nanofibrillar Cellulose Composite Film with Enhanced Mechanical Properties and Superior Fire Resistance. ACS Appl. Mater. Interface. 2020, 12 (32), 36639–36651. 10.1021/acsami.0c09685. PubMed DOI

Ritger P. L.; Peppas N. A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Controlled Release 1987, 5 (1), 23–36. 10.1016/0168-3659(87)90034-4. PubMed DOI

Sousa Neto V. O.; Silva C. C.; Almeida A. F. L.; Figueiró S. D.; Góes J. C.; de Paiva J. A. C.; Magalhães C. E. C.; Sombra A. S. B. Study of the electrical conductivity and piezoelectricity in iron-doped collagen films. Solid State Sci. 2002, 4 (1), 43–51. 10.1016/S1293-2558(01)01220-1. DOI

Silva C. C.; Pinheiro A. G.; Figueiró S. D.; Góes J. C.; Sasaki J. M.; Miranda M. A. R.; Sombra A. S. B. Piezoelectric properties of collagen-nanocrystalline hydroxyapatite composites. J. Mater. Sci. 2002, 37 (10), 2061–2070. 10.1023/A:1015219800490. DOI

Juráňová J.; Aury-Landas J.; Boumediene K.; Baugé C.; Biedermann D.; Ulrichová J.; Franková J. Modulation of Skin Inflammatory Response by Active Components of Silymarin. Molecules 2019, 24 (1), 123.10.3390/molecules24010123. PubMed DOI PMC

Pivodova V.; Frankova J.; Dolezel P.; Ulrichova J. The response of osteoblast-like SaOS-2 cells to modified titanium surfaces. Int. J. Oral Maxillofac Implants 2013, 28 (5), 1386–1394. 10.11607/jomi.3039. PubMed DOI

Rajzer I.; Kurowska A.; Frankova J.; Sklenářová R.; Nikodem A.; Dziadek M.; Jabłoński A.; Janusz J.; Szczygieł P.; Ziąbka M. 3D-Printed Polycaprolactone Implants Modified with Bioglass and Zn-Doped Bioglass. Materials 2023, 16 (3), 1061.10.3390/ma16031061. PubMed DOI PMC

Schu M.; Terriac E.; Koch M.; Paschke S.; Lautenschlager F.; Flormann D. A. D. Scanning electron microscopy preparation of the cellular actin cortex: A quantitative comparison between critical point drying and hexamethyldisilazane drying. PLoS One 2021, 16 (7), e0254165.10.1371/journal.pone.0254165. PubMed DOI PMC

Vitagliano L.; Némethy G.; Zagari A.; Scheraga H. A. Stabilization of the triple-helical structure of natural collagen by side-chain interactions. Biochemistry 1993, 32 (29), 7354–7359. 10.1021/bi00080a004. PubMed DOI

Bhattacharjee A.; Bansal M. Collagen structure: the Madras triple helix and the current scenario. IUBMB Life. 2005, 57 (3), 161–172. 10.1080/15216540500090710. PubMed DOI

Anaya Mancipe J. M.; Lopes Dias M.; Moreira Thiré R. M. D. S. Type I collagen – poly(vinyl alcohol) electrospun nanofibers: FTIR study of the collagen helical structure preservation. Polymer-Plastics Technology and Materials. 2022, 61 (8), 846–860. 10.1080/25740881.2022.2029887. DOI

Payne K. J.; Veis A. Fourier transform ir spectroscopy of collagen and gelatin solutions: Deconvolution of the amide I band for conformational studies. Biopolymers 1988, 27 (11), 1749–1760. 10.1002/bip.360271105. PubMed DOI

Chang M. C.; Tanaka J. XPS study for the microstructure development of hydroxyapatite–collagen nanocomposites cross-linked using glutaraldehyde. Biomaterials 2002, 23 (18), 3879–3885. 10.1016/S0142-9612(02)00133-3. PubMed DOI

Karim M. R.; Harun-Ur-Rashid M.; Imran A. B. Effect of sizes of vinyl modified narrow-dispersed silica cross-linker on the mechanical properties of acrylamide based hydrogel. Sci. Rep. 2023, 13 (1), 5089.10.1038/s41598-023-32185-4. PubMed DOI PMC

Radu G. L.; Baiulescu G. L. Surface analysis of collagen membranes by X-ray photoelectron spectroscopy. J. Mol. Struct. 1993, 293, 265–268. 10.1016/0022-2860(93)80064-3. DOI

Lawrie G.; Keen I.; Drew B.; Chandler-Temple A.; Rintoul L.; Fredericks P.; Gro̷ndahl L. Interactions between Alginate and Chitosan Biopolymers Characterized Using FTIR and XPS. Biomacromolecules 2007, 8 (8), 2533–2541. 10.1021/bm070014y. PubMed DOI

Das P.; Mai V. C.; Duan H. Flexible Bioinspired Ternary Nanocomposites Based on Carboxymethyl Cellulose/Nanoclay/Graphene Oxide. ACS Appl. Polym. Mater. 2019, 1 (6), 1505–1513. 10.1021/acsapm.9b00245. DOI

Wang J.; Cheng Q.; Lin L.; Jiang L. Synergistic Toughening of Bioinspired Poly(vinyl alcohol)–Clay–Nanofibrillar Cellulose Artificial Nacre. ACS Nano 2014, 8 (3), 2739–2745. 10.1021/nn406428n. PubMed DOI

Wan S.; Li Y.; Peng J.; Hu H.; Cheng Q.; Jiang L. Synergistic Toughening of Graphene Oxide–Molybdenum Disulfide–Thermoplastic Polyurethane Ternary Artificial Nacre. ACS Nano 2015, 9 (1), 708–714. 10.1021/nn506148w. PubMed DOI

Li T.; He S.; Stein A.; Francis L. F.; Bates F. S. Synergistic Toughening of Epoxy Modified by Graphene and Block Copolymer Micelles. Macromolecules 2016, 49 (24), 9507–9520. 10.1021/acs.macromol.6b01964. DOI

Wan S.; Peng J.; Li Y.; Hu H.; Jiang L.; Cheng Q. Use of Synergistic Interactions to Fabricate Strong, Tough, and Conductive Artificial Nacre Based on Graphene Oxide and Chitosan. ACS Nano 2015, 9 (10), 9830–9836. 10.1021/acsnano.5b02902. PubMed DOI

Chen Y.; Fu J.; Dang B.; Sun Q.; Li H.; Zhai T. Artificial Wooden Nacre: A High Specific Strength Engineering Material. ACS Nano 2020, 14 (2), 2036–2043. 10.1021/acsnano.9b08647. PubMed DOI

Cao W.-T.; Chen F.-F.; Zhu Y.-J.; Zhang Y.-G.; Jiang Y.-Y.; Ma M.-G.; Chen F. Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties. ACS Nano 2018, 12 (5), 4583–4593. 10.1021/acsnano.8b00997. PubMed DOI

Shahzadi K.; Mohsin I.; Wu L.; Ge X.; Jiang Y.; Li H.; Mu X. Bio-Based Artificial Nacre with Excellent Mechanical and Barrier Properties Realized by a Facile In Situ Reduction and Cross-Linking Reaction. ACS Nano 2017, 11 (1), 325–334. 10.1021/acsnano.6b05780. PubMed DOI

Xu J.; Liu L.; Yu J.; Zou Y.; Pei W.; Zhang L.; Ye W.; Bai L.; Wang Z.; Fan Y.; et al. Simple synthesis of self-assembled nacre-like materials with 3D periodic layers from nanochitin via hydrogelation and mineralization. Green Chem. 2022, 24 (3), 1308–1317. 10.1039/D1GC03988A. DOI

Chen K.; Shi B.; Yue Y.; Qi J.; Guo L. Binary Synergy Strengthening and Toughening of Bio-Inspired Nacre-like Graphene Oxide/Sodium Alginate Composite Paper. ACS Nano 2015, 9 (8), 8165–8175. 10.1021/acsnano.5b02333. PubMed DOI

Ma Z.; Kang S.; Ma J.; Shao L.; Zhang Y.; Liu C.; Wei A.; Xiang X.; Wei L.; Gu J. Ultraflexible and Mechanically Strong Double-Layered Aramid Nanofiber–Ti3C2Tx MXene/Silver Nanowire Nanocomposite Papers for High-Performance Electromagnetic Interference Shielding. ACS Nano 2020, 14 (7), 8368–8382. 10.1021/acsnano.0c02401. PubMed DOI

da Cruz A. G. B.; Góes J. C.; Figueiró S. D.; Feitosa J. P. A.; Ricardo N. M. P. S.; Sombra A. S. B. On the piezoelectricity of collagen/natural rubber blend films. Eur. Polym. J. 2003, 39 (6), 1267–1272. 10.1016/S0014-3057(02)00378-6. DOI

Fakhry A.; Schneider G. B.; Zaharias R.; Şenel S. Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts. Biomaterials 2004, 25 (11), 2075–2079. 10.1016/j.biomaterials.2003.08.068. PubMed DOI

Li X.; Xie J.; Yuan X.; Xia Y. Coating Electrospun Poly(ε-caprolactone) Fibers with Gelatin and Calcium Phosphate and Their Use as Biomimetic Scaffolds for Bone Tissue Engineering. Langmuir 2008, 24 (24), 14145–14150. 10.1021/la802984a. PubMed DOI

Hossain K. M. Z.; Hasan M. S.; Boyd D.; Rudd C. D.; Ahmed I.; Thielemans W. Effect of Cellulose Nanowhiskers on Surface Morphology, Mechanical Properties, and Cell Adhesion of Melt-Drawn Polylactic Acid Fibers. Biomacromolecules 2014, 15 (4), 1498–1506. 10.1021/bm5001444. PubMed DOI

Li X.; Xie J.; Lipner J.; Yuan X.; Thomopoulos S.; Xia Y. Nanofiber Scaffolds with Gradations in Mineral Content for Mimicking the Tendon-to-Bone Insertion Site. Nano Lett. 2009, 9 (7), 2763–2768. 10.1021/nl901582f. PubMed DOI PMC

Jayakumar R.; Divya Rani V. V.; Shalumon K. T.; Kumar P. T. S.; Nair S. V.; Furuike T.; Tamura H. Bioactive and osteoblast cell attachment studies of novel α- and β-chitin membranes for tissue-engineering applications. Int. J. Biol. Macromol. 2009, 45 (3), 260–264. 10.1016/j.ijbiomac.2009.06.002. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...