Modulation of Skin Inflammatory Response by Active Components of Silymarin
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-00132S
Czech Science Foundation
LO1304
Youth and Sports of the Czech Republic
IGA_LF_2017_011
Palacky University, Czech Republic
PubMed
30598040
PubMed Central
PMC6337225
DOI
10.3390/molecules24010123
PII: molecules24010123
Knihovny.cz E-zdroje
- Klíčová slova
- NF-κB, cytokines, fibroblasts, inflammation, skin wound healing,
- MeSH
- antiflogistika farmakologie MeSH
- chemokiny metabolismus MeSH
- cytokiny metabolismus MeSH
- dermatitida farmakoterapie genetika metabolismus patologie MeSH
- exprese genu MeSH
- fibroblasty účinky léků metabolismus MeSH
- hojení ran účinky léků MeSH
- lidé MeSH
- lipopolysacharidy imunologie MeSH
- messenger RNA genetika metabolismus MeSH
- NF-kappa B metabolismus MeSH
- proliferace buněk účinky léků MeSH
- silymarin farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antiflogistika MeSH
- chemokiny MeSH
- cytokiny MeSH
- lipopolysacharidy MeSH
- messenger RNA MeSH
- NF-kappa B MeSH
- silymarin MeSH
In this study, we compared selected silymarin components, such as quercetin (QE), 2,3-dehydrosilybin (DHS) and silybin (SB), with the anti-inflammatory drug indomethacin (IND) in terms of their wound healing potential. In view of the fact that pathological cutaneous wound healing is associated with persistent inflammation, we studied their anti-inflammatory activity against inflammation induced by bacterial lipopolysaccharide (LPS). We investigated the regulation of crucial pro-inflammatory transcription factors-nuclear factor kappa-B (NF-κB) and activator protein 1 (AP-1)-as well as the expression of downstream inflammatory targets by Western blotting, real-time PCR (RT-PCR), electrophoretic mobility shift assay (EMSA), and/or enzyme-linked immunosorbent assay (ELISA) in vitro using primary normal human dermal fibroblasts (NHDF). We demonstrated the greater ability of DHS to modulate the pro-inflammatory cytokines production via the NF-κB and AP-1 signaling pathways when compared to other tested substances. The prolonged exposure of LPS-challenged human dermal fibroblasts to DHS had both beneficial and detrimental consequences. DHS diminished interleukin-6 (IL-6) and interleukin-8 (IL-8) secretion but induced the significant upregulation of IL-8 mRNA associated with NF-κB and AP-1 activation. The observed conflicting results may compromise the main expected benefit, which is the acceleration of the healing of the wound via a diminished inflammation.
Zobrazit více v PubMed
Baum C.L., Arpey C.J. Normal cutaneous wound healing: Clinical correlation with cellular and molecular events. Dermatol. Surg. 2005;31:674–686. doi: 10.1097/00042728-200506000-00011. PubMed DOI
Juranova J., Frankova J., Ulrichova J. The role of keratinocytes in inflammation. J. Appl. Biomed. 2017;15:169–179. doi: 10.1016/j.jab.2017.05.003. DOI
Landen N.X., Li D., Stahle M. Transition from inflammation to proliferation: A critical step during wound healing. Cell. Mol. Life Sci. 2016;73:3861–3885. doi: 10.1007/s00018-016-2268-0. PubMed DOI PMC
Wullaert A., Bonnet M.C., Pasparakis M. NF-kappaB in the regulation of epithelial homeostasis and inflammation. Cell Res. 2011;21:146–158. doi: 10.1038/cr.2010.175. PubMed DOI PMC
Chen M.R., Dragoo J.L. The effect of nonsteroidal anti-inflammatory drugs on tissue healing. Knee Surg. Sports Traumatol. Arthrosc. 2013;21:540–549. doi: 10.1007/s00167-012-2095-2. PubMed DOI
Okamura M., Takano Y., Hiramatsu N., Hayakawa K., Yao J., Paton A.W., Paton J.C., Kitamura M. Suppression of cytokine responses by indomethacin in podocytes: A mechanism through induction of unfolded protein response. Am. J. Physiol. Renal. Physiol. 2008;295:F1495–F1503. doi: 10.1152/ajprenal.00602.2007. PubMed DOI
Tegeder I., Pfeilschifter J., Geisslinger G. Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J. 2001;15:2057–2072. doi: 10.1096/fj.01-0390rev. PubMed DOI
Dobrev H. Evaluation of the inhibitory activity of topical indomethacin, betamethasone valerate and emollients on UVL-induced inflammation by means of non-invasive measurements of the skin elasticity. Photodermatol. Photoimmunol. Photomed. 2001;17:184–188. doi: 10.1034/j.1600-0781.2001.170408.x. PubMed DOI
Lin J.C., Rapuano C.J., Laibson P.R., Eagle R.C., Cohen E.J. Corneal melting associated with use of topical nonsteroidal anti-inflammatory drugs after ocular surgery. Arch. Ophthalmol. 2000;118:1129–1132. PubMed
Liu W., Li Y., Zheng X., Zhang K., Du Z. Potent inhibitory effect of silibinin from milk thistle on skin inflammation stimuli by 12-O-tetradecanoylphorbol-13-acetate. Food Funct. 2015;6:3712–3719. doi: 10.1039/C5FO00899A. PubMed DOI
van Wenum E., Jurczakowski R., Litwinienko G. Media effects on the mechanism of antioxidant action of silybin and 2,3-dehydrosilybin: Role of the enol group. J. Org. Chem. 2013;78:9102–9112. doi: 10.1021/jo401296k. PubMed DOI
Pastore S., Lulli D., Fidanza P., Potapovich A.I., Kostyuk V.A., De Luca C., Mikhal’chik E., Korkina L.G. Plant polyphenols regulate chemokine expression and tissue repair in human keratinocytes through interaction with cytoplasmic and nuclear components of epidermal growth factor receptor system. Antioxid. Redox Signal. 2012;16:314–328. doi: 10.1089/ars.2011.4053. PubMed DOI PMC
Kren V., Walterova D. Silybin and silymarin--new effects and applications. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech. Repub. 2005;149:29–41. doi: 10.5507/bp.2005.002. PubMed DOI
Invernizzi R., Bernuzzi S., Ciani D., Ascari E. Silymarine during maintenance therapy of acute promyelocytic leukemia. Haematologica. 1993;78:340–341. PubMed
Molavi O., Narimani F., Asiaee F., Sharifi S., Tarhriz V., Shayanfar A., Hejazi M., Lai R. Silibinin sensitizes chemo-resistant breast cancer cells to chemotherapy. Pharm. Biol. 2017;55:729–739. doi: 10.1080/13880209.2016.1270972. PubMed DOI PMC
El-Far Y.M., Zakaria M.M., Gabr M.M., El Gayar A.M., El-Sherbiny I.M., Eissa L.A. A newly developed silymarin nanoformulation as a potential antidiabetic agent in experimental diabetes. Nanomedicine (Lond.) 2016;11:2581–2602. doi: 10.2217/nnm-2016-0204. PubMed DOI
Meng R., Mahadevan J., Oseid E., Vallerie S., Robertson R.P. Silymarin activates c-AMP phosphodiesterase and stimulates insulin secretion in a glucose-dependent manner in HIT-T15 cells. Antioxidants. 2016;5:47. doi: 10.3390/antiox5040047. PubMed DOI PMC
Stolf A.M., Cardoso C.C., Acco A. Effects of silymarin on diabetes mellitus complications: A review. Phytother. Res. 2017;31:366–374. doi: 10.1002/ptr.5768. PubMed DOI
Rao P.R., Viswanath R.K. Cardioprotective activity of silymarin in ischemia-reperfusion-induced myocardial infarction in albino rats. Exp. Clin. Cardiol. 2007;12:179–187. PubMed PMC
Gabrielova E., Kren V., Jaburek M., Modriansky M. Silymarin component 2,3-dehydrosilybin attenuates cardiomyocyte damage following hypoxia/reoxygenation by limiting oxidative stress. Physiol. Res. 2015;64:79–91. PubMed
Oh Y.S. Bioactive compounds and their neuroprotective effects in diabetic complications. Nutrients. 2016;8:472. doi: 10.3390/nu8080472. PubMed DOI PMC
Fehér P., Vecsernyés M., Fenyvesi F., Váradi J., Kiss T., Újhelyi Z., Nagy K., Bacskay I. Topical application of Silybum marianum extract. Arad. Med. J. 2011;14:5–8.
Han M.H., Yoon W.K., Lee H., Han S.B., Lee K., Park S.K., Yang K.H., Kim H.M., Kang J.S. Topical application of silymarin reduces chemical-induced irritant contact dermatitis in BALB/c mice. Int. Immunopharmacol. 2007;7:1651–1658. doi: 10.1016/j.intimp.2007.08.019. PubMed DOI
Sharifi R., Rastegar H., Kamalinejad M., Dehpour A.R., Tavangar S.M., Paknejad M., Mehrabani Natanzi M., Ghannadian N., Akbari M., Pasalar P. Effect of topical application of silymarin (Silybum marianum) on excision wound healing in albino rats. Acta Med. Iran. 2012;50:583–588. PubMed
Gomathi K., Gopinath D., Rafiuddin A.M., Jayakumar R. Quercetin incorporated collagen matrices for dermal wound healing processes in rat. Biomaterials. 2003;24:2767–2772. doi: 10.1016/S0142-9612(03)00059-0. PubMed DOI
Caddeo C., Diez-Sales O., Pons R., Fernandez-Busquets X., Fadda A.M., Manconi M. Topical anti-inflammatory potential of quercetin in lipid-based nanosystems: In vivo and in vitro evaluation. Pharm. Res. 2014;31:959–968. doi: 10.1007/s11095-013-1215-0. PubMed DOI
Shubina V.S., Shatalin Y.V. Skin regeneration after chemical burn under the effect of taxifolin-based preparations. Bull. Exp. Biol. Med. 2012;154:152–157. doi: 10.1007/s10517-012-1897-z. PubMed DOI
Perez-Victoria J.M., Perez-Victoria F.J., Conseil G., Maitrejean M., Comte G., Barron D., Di Pietro A., Castanys S., Gamarro F. High-affinity binding of silybin derivatives to the nucleotide-binding domain of a Leishmania tropica p-glycoprotein-like transporter and chemosensitization of a multidrug-resistant parasite to daunomycin. Antimicrob. Agents Chemother. 2001;45:439–446. doi: 10.1128/AAC.45.2.439-446.2001. PubMed DOI PMC
Gažák R., Trouillas P., Biedermann D., Fuksová K., Marhol P., Kuzma M., Křen V. Base-catalyzed oxidation of silybin and isosilybin into 2,3-dehydro derivatives. Tetrahedron. Lett. 2013;54:315–317. doi: 10.1016/j.tetlet.2012.11.049. DOI
Theodosiou E., Purchartová K., Stamatis H., Kolisis F., Křen V. Bioavailability of silymarin flavonolignans: Drug formulations and biotransformation. Phytochem. Rev. 2014;13:1–18. doi: 10.1007/s11101-013-9285-5. DOI
Biedermann D., Vavrikova E., Cvak L., Kren V. Chemistry of silybin. Nat. Prod. Rep. 2014;31:1138–1157. doi: 10.1039/C3NP70122K. PubMed DOI
Svobodova A., Walterova D., Psotova J. Influence of silymarin and its flavonolignans on H2O2-induced oxidative stress in human keratinocytes and mouse fibroblasts. Burns. 2006;32:973–979. doi: 10.1016/j.burns.2006.04.004. PubMed DOI
Sharifi R., Pasalar P., Kamalinejad M., Dehpour A.R., Tavangar S.M., Paknejad M., Mehrabani Natanzi M., Nourbakhsh M., Ahmadi Ashtiani H.R., Akbari M., et al. The effect of silymarin (Silybum marianum) on human skin fibroblasts in an in vitro wound healing model. Pharm. Biol. 2013;51:298–303. doi: 10.3109/13880209.2012.721789. PubMed DOI
Svobodova A.R., Zalesak B., Biedermann D., Ulrichova J., Vostalova J. Phototoxic potential of silymarin and its bioactive components. J. Photochem. Photobiol. B-Biol. 2016;156:61–68. doi: 10.1016/j.jphotobiol.2016.01.011. PubMed DOI
Maitrejean M., Comte G., Barron D., El Kirat K., Conseil G.L., Di Pietro A. The flavanolignan silybin and its hemisynthetic derivatives, a novel series of potential modulators of P-glycoprotein. Bioorg. Med. Chem. Lett. 2000;10:157–160. doi: 10.1016/S0960-894X(99)00636-8. PubMed DOI
Rincon M. Interleukin-6: From an inflammatory marker to a target for inflammatory diseases. Trends Immunol. 2012;33:571–577. doi: 10.1016/j.it.2012.07.003. PubMed DOI
Shahzad A., Knapp M., Lang I., Kohler G. Interleukin 8 (IL-8)—A universal biomarker? Int. Arch. Med. 2010;3:11. doi: 10.1186/1755-7682-3-11. PubMed DOI PMC
Kim B.R., Seo H.S., Ku J.M., Kim G.J., Jeon C.Y., Park J.H., Jang B.H., Park S.J., Shin Y.C., Ko S.G. Silibinin inhibits the production of pro-inflammatory cytokines through inhibition of NF-kappaB signaling pathway in HMC-1 human mast cells. Inflamm. Res. 2013;62:941–950. doi: 10.1007/s00011-013-0640-1. PubMed DOI PMC
Samanta R., Pattnaik A.K., Pradhan K.K., Mehta B.K., Pattanayak S.P., Banerjee S. Wound Healing Activity of Silibinin in Mice. Pharmacogn. Res. 2016;8:298–302. doi: 10.4103/0974-8490.188880. PubMed DOI PMC
Ratz-Lyko A., Arct J., Majewski S., Pytkowska K. Influence of polyphenols on the physiological processes in the skin. Phytother. Res. 2015;29:509–517. doi: 10.1002/ptr.5289. PubMed DOI
Renner F., Schmitz M.L. Autoregulatory feedback loops terminating the NF-kappaB response. Trends Biochem. Sci. 2009;34:128–135. doi: 10.1016/j.tibs.2008.12.003. PubMed DOI
Gabrielova E., Jaburek M., Gazak R., Vostalova J., Jezek J., Kren V., Modriansky M. Dehydrosilybin attenuates the production of ROS in rat cardiomyocyte mitochondria with an uncoupler-like mechanism. J. Bioenerg. Biomembr. 2010;42:499–509. doi: 10.1007/s10863-010-9319-2. PubMed DOI
Huber A., Thongphasuk P., Erben G., Lehmann W.D., Tuma S., Stremmel W., Chamulitrat W. Significantly greater antioxidant anticancer activities of 2,3-dehydrosilybin than silybin. Biochim. Biophys. Acta. 2008;1780:837–847. doi: 10.1016/j.bbagen.2007.12.012. PubMed DOI
Pyszkova M., Biler M., Biedermann D., Valentova K., Kuzma M., Vrba J., Ulrichova J., Sokolova R., Mojovic M., Popovic-Bijelic A., et al. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radic. Biol. Med. 2016;90:114–125. doi: 10.1016/j.freeradbiomed.2015.11.014. PubMed DOI
Abe M., Yokoyama Y., Syuto T., Ishibuchi H., Ishikawa O. Interleukin-6 counteracts effects of cyclosporin A on extracellular matrix metabolism by human dermal fibroblasts. Cell Tissue Res. 2008;333:281–288. doi: 10.1007/s00441-008-0629-1. PubMed DOI
Gallucci R.M., Sloan D.K., Heck J.M., Murray A.R., O’Dell S.J. Interleukin 6 indirectly induces keratinocyte migration. J. Investig. Dermatol. 2004;122:764–772. doi: 10.1111/j.0022-202X.2004.22323.x. PubMed DOI
Liechty K.W., Crombleholme T.M., Cass D.L., Martin B., Adzick N.S. Diminished interleukin-8 (IL-8) production in the fetal wound healing response. J. Surg. Res. 1998;77:80–84. doi: 10.1006/jsre.1998.5345. PubMed DOI
Ha H., Debnath B., Neamati N. Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases. Theranostics. 2017;7:1543–1588. doi: 10.7150/thno.15625. PubMed DOI PMC
Perfetto B., Donnarumma G., Criscuolo D., Paoletti I., Grimaldi E., Tufano M.A., Baroni A. Bacterial components induce cytokine and intercellular adhesion molecules-1 and activate transcription factors in dermal fibroblasts. Res. Microbiol. 2003;154:337–344. doi: 10.1016/S0923-2508(03)00084-6. PubMed DOI
Hoesel B., Schmid J.A. The complexity of NF-kappaB signaling in inflammation and cancer. Mol. Cancer. 2013;12:86. doi: 10.1186/1476-4598-12-86. PubMed DOI PMC
Pasparakis M. Regulation of tissue homeostasis by NF-kappaB signalling: Implications for inflammatory diseases. Nat. Rev. Immunol. 2009;9:778–788. doi: 10.1038/nri2655. PubMed DOI
Tilley C., Deep G., Agarwal C., Wempe M.F., Biedermann D., Valentova K., Kren V., Agarwal R. Silibinin and its 2,3-dehydro-derivative inhibit basal cell carcinoma growth via suppression of mitogenic signaling and transcription factors activation. Mol. Carcinog. 2016;55:3–14. doi: 10.1002/mc.22253. PubMed DOI PMC
Karin M., Lin A. NF-kappaB at the crossroads of life and death. Nat. Immunol. 2002;3:221–227. doi: 10.1038/ni0302-221. PubMed DOI
Sollberger G., Strittmatter G.E., Garstkiewicz M., Sand J., Beer H.D. Caspase-1: The inflammasome and beyond. Innate Immun. 2014;20:115–125. doi: 10.1177/1753425913484374. PubMed DOI
Kutuk O., Poli G., Basaga H. Resveratrol protects against 4-hydroxynonenal-induced apoptosis by blocking JNK and c-JUN/AP-1 signaling. Toxicol. Sci. 2006;90:120–132. doi: 10.1093/toxsci/kfj055. PubMed DOI
Gažák R., Svobodová A., Psotová J., Sedmera P., Přikrylová V., Walterová D., Křen V. Oxidised derivatives of silybin and their antiradical and antioxidant activity. Bioorg. Med. Chem. 2004;12:5677–5687. doi: 10.1016/j.bmc.2004.07.064. PubMed DOI
Křenek K., Marhol P., Peikerová Ž., Křen V., Biedermann D. Preparatory separation of the silymarin flavonolignans by Sephadex LH-20 gel. Food Res. Int. 2014;65:115–120. doi: 10.1016/j.foodres.2014.02.001. DOI
Pivodová V., Franková J., Galandáková A., Ulrichová J. In vitro AuNPs’ cytotoxicity and their effect on wound healing. Nanobiomedicine. 2015;2:7. doi: 10.5772/61132. PubMed DOI PMC
Zdarilova A., Svobodova A., Simanek V., Ulrichova J. Prunella vulgaris extract and rosmarinic acid suppress lipopolysaccharide-induced alteration in human gingival fibroblasts. Toxicol. In Vitro. 2009;23:386–392. doi: 10.1016/j.tiv.2008.12.021. PubMed DOI
Bauge C., Legendre F., Leclercq S., Elissalde J.M., Pujol J.P., Galera P., Boumediene K. Interleukin-1beta impairment of transforming growth factor beta1 signaling by down-regulation of transforming growth factor beta receptor type II and up-regulation of Smad7 in human articular chondrocytes. Arthritis Rheum. 2007;56:3020–3032. doi: 10.1002/art.22840. PubMed DOI
Bauge C., Beauchef G., Leclercq S., Kim S.J., Pujol J.P., Galera P., Boumediene K. NFkappaB mediates IL-1beta-induced down-regulation of TbetaRII through the modulation of Sp3 expression. J. Cell. Mol. Med. 2008;12:1754–1766. doi: 10.1111/j.1582-4934.2007.00173.x. PubMed DOI PMC
Self-Assembled Hydrogel Membranes with Structurally Tunable Mechanical and Biological Properties