Modulation of Skin Inflammatory Response by Active Components of Silymarin

. 2018 Dec 30 ; 24 (1) : . [epub] 20181230

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30598040

Grantová podpora
18-00132S Czech Science Foundation
LO1304 Youth and Sports of the Czech Republic
IGA_LF_2017_011 Palacky University, Czech Republic

In this study, we compared selected silymarin components, such as quercetin (QE), 2,3-dehydrosilybin (DHS) and silybin (SB), with the anti-inflammatory drug indomethacin (IND) in terms of their wound healing potential. In view of the fact that pathological cutaneous wound healing is associated with persistent inflammation, we studied their anti-inflammatory activity against inflammation induced by bacterial lipopolysaccharide (LPS). We investigated the regulation of crucial pro-inflammatory transcription factors-nuclear factor kappa-B (NF-κB) and activator protein 1 (AP-1)-as well as the expression of downstream inflammatory targets by Western blotting, real-time PCR (RT-PCR), electrophoretic mobility shift assay (EMSA), and/or enzyme-linked immunosorbent assay (ELISA) in vitro using primary normal human dermal fibroblasts (NHDF). We demonstrated the greater ability of DHS to modulate the pro-inflammatory cytokines production via the NF-κB and AP-1 signaling pathways when compared to other tested substances. The prolonged exposure of LPS-challenged human dermal fibroblasts to DHS had both beneficial and detrimental consequences. DHS diminished interleukin-6 (IL-6) and interleukin-8 (IL-8) secretion but induced the significant upregulation of IL-8 mRNA associated with NF-κB and AP-1 activation. The observed conflicting results may compromise the main expected benefit, which is the acceleration of the healing of the wound via a diminished inflammation.

Zobrazit více v PubMed

Baum C.L., Arpey C.J. Normal cutaneous wound healing: Clinical correlation with cellular and molecular events. Dermatol. Surg. 2005;31:674–686. doi: 10.1097/00042728-200506000-00011. PubMed DOI

Juranova J., Frankova J., Ulrichova J. The role of keratinocytes in inflammation. J. Appl. Biomed. 2017;15:169–179. doi: 10.1016/j.jab.2017.05.003. DOI

Landen N.X., Li D., Stahle M. Transition from inflammation to proliferation: A critical step during wound healing. Cell. Mol. Life Sci. 2016;73:3861–3885. doi: 10.1007/s00018-016-2268-0. PubMed DOI PMC

Wullaert A., Bonnet M.C., Pasparakis M. NF-kappaB in the regulation of epithelial homeostasis and inflammation. Cell Res. 2011;21:146–158. doi: 10.1038/cr.2010.175. PubMed DOI PMC

Chen M.R., Dragoo J.L. The effect of nonsteroidal anti-inflammatory drugs on tissue healing. Knee Surg. Sports Traumatol. Arthrosc. 2013;21:540–549. doi: 10.1007/s00167-012-2095-2. PubMed DOI

Okamura M., Takano Y., Hiramatsu N., Hayakawa K., Yao J., Paton A.W., Paton J.C., Kitamura M. Suppression of cytokine responses by indomethacin in podocytes: A mechanism through induction of unfolded protein response. Am. J. Physiol. Renal. Physiol. 2008;295:F1495–F1503. doi: 10.1152/ajprenal.00602.2007. PubMed DOI

Tegeder I., Pfeilschifter J., Geisslinger G. Cyclooxygenase-independent actions of cyclooxygenase inhibitors. FASEB J. 2001;15:2057–2072. doi: 10.1096/fj.01-0390rev. PubMed DOI

Dobrev H. Evaluation of the inhibitory activity of topical indomethacin, betamethasone valerate and emollients on UVL-induced inflammation by means of non-invasive measurements of the skin elasticity. Photodermatol. Photoimmunol. Photomed. 2001;17:184–188. doi: 10.1034/j.1600-0781.2001.170408.x. PubMed DOI

Lin J.C., Rapuano C.J., Laibson P.R., Eagle R.C., Cohen E.J. Corneal melting associated with use of topical nonsteroidal anti-inflammatory drugs after ocular surgery. Arch. Ophthalmol. 2000;118:1129–1132. PubMed

Liu W., Li Y., Zheng X., Zhang K., Du Z. Potent inhibitory effect of silibinin from milk thistle on skin inflammation stimuli by 12-O-tetradecanoylphorbol-13-acetate. Food Funct. 2015;6:3712–3719. doi: 10.1039/C5FO00899A. PubMed DOI

van Wenum E., Jurczakowski R., Litwinienko G. Media effects on the mechanism of antioxidant action of silybin and 2,3-dehydrosilybin: Role of the enol group. J. Org. Chem. 2013;78:9102–9112. doi: 10.1021/jo401296k. PubMed DOI

Pastore S., Lulli D., Fidanza P., Potapovich A.I., Kostyuk V.A., De Luca C., Mikhal’chik E., Korkina L.G. Plant polyphenols regulate chemokine expression and tissue repair in human keratinocytes through interaction with cytoplasmic and nuclear components of epidermal growth factor receptor system. Antioxid. Redox Signal. 2012;16:314–328. doi: 10.1089/ars.2011.4053. PubMed DOI PMC

Kren V., Walterova D. Silybin and silymarin--new effects and applications. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech. Repub. 2005;149:29–41. doi: 10.5507/bp.2005.002. PubMed DOI

Invernizzi R., Bernuzzi S., Ciani D., Ascari E. Silymarine during maintenance therapy of acute promyelocytic leukemia. Haematologica. 1993;78:340–341. PubMed

Molavi O., Narimani F., Asiaee F., Sharifi S., Tarhriz V., Shayanfar A., Hejazi M., Lai R. Silibinin sensitizes chemo-resistant breast cancer cells to chemotherapy. Pharm. Biol. 2017;55:729–739. doi: 10.1080/13880209.2016.1270972. PubMed DOI PMC

El-Far Y.M., Zakaria M.M., Gabr M.M., El Gayar A.M., El-Sherbiny I.M., Eissa L.A. A newly developed silymarin nanoformulation as a potential antidiabetic agent in experimental diabetes. Nanomedicine (Lond.) 2016;11:2581–2602. doi: 10.2217/nnm-2016-0204. PubMed DOI

Meng R., Mahadevan J., Oseid E., Vallerie S., Robertson R.P. Silymarin activates c-AMP phosphodiesterase and stimulates insulin secretion in a glucose-dependent manner in HIT-T15 cells. Antioxidants. 2016;5:47. doi: 10.3390/antiox5040047. PubMed DOI PMC

Stolf A.M., Cardoso C.C., Acco A. Effects of silymarin on diabetes mellitus complications: A review. Phytother. Res. 2017;31:366–374. doi: 10.1002/ptr.5768. PubMed DOI

Rao P.R., Viswanath R.K. Cardioprotective activity of silymarin in ischemia-reperfusion-induced myocardial infarction in albino rats. Exp. Clin. Cardiol. 2007;12:179–187. PubMed PMC

Gabrielova E., Kren V., Jaburek M., Modriansky M. Silymarin component 2,3-dehydrosilybin attenuates cardiomyocyte damage following hypoxia/reoxygenation by limiting oxidative stress. Physiol. Res. 2015;64:79–91. PubMed

Oh Y.S. Bioactive compounds and their neuroprotective effects in diabetic complications. Nutrients. 2016;8:472. doi: 10.3390/nu8080472. PubMed DOI PMC

Fehér P., Vecsernyés M., Fenyvesi F., Váradi J., Kiss T., Újhelyi Z., Nagy K., Bacskay I. Topical application of Silybum marianum extract. Arad. Med. J. 2011;14:5–8.

Han M.H., Yoon W.K., Lee H., Han S.B., Lee K., Park S.K., Yang K.H., Kim H.M., Kang J.S. Topical application of silymarin reduces chemical-induced irritant contact dermatitis in BALB/c mice. Int. Immunopharmacol. 2007;7:1651–1658. doi: 10.1016/j.intimp.2007.08.019. PubMed DOI

Sharifi R., Rastegar H., Kamalinejad M., Dehpour A.R., Tavangar S.M., Paknejad M., Mehrabani Natanzi M., Ghannadian N., Akbari M., Pasalar P. Effect of topical application of silymarin (Silybum marianum) on excision wound healing in albino rats. Acta Med. Iran. 2012;50:583–588. PubMed

Gomathi K., Gopinath D., Rafiuddin A.M., Jayakumar R. Quercetin incorporated collagen matrices for dermal wound healing processes in rat. Biomaterials. 2003;24:2767–2772. doi: 10.1016/S0142-9612(03)00059-0. PubMed DOI

Caddeo C., Diez-Sales O., Pons R., Fernandez-Busquets X., Fadda A.M., Manconi M. Topical anti-inflammatory potential of quercetin in lipid-based nanosystems: In vivo and in vitro evaluation. Pharm. Res. 2014;31:959–968. doi: 10.1007/s11095-013-1215-0. PubMed DOI

Shubina V.S., Shatalin Y.V. Skin regeneration after chemical burn under the effect of taxifolin-based preparations. Bull. Exp. Biol. Med. 2012;154:152–157. doi: 10.1007/s10517-012-1897-z. PubMed DOI

Perez-Victoria J.M., Perez-Victoria F.J., Conseil G., Maitrejean M., Comte G., Barron D., Di Pietro A., Castanys S., Gamarro F. High-affinity binding of silybin derivatives to the nucleotide-binding domain of a Leishmania tropica p-glycoprotein-like transporter and chemosensitization of a multidrug-resistant parasite to daunomycin. Antimicrob. Agents Chemother. 2001;45:439–446. doi: 10.1128/AAC.45.2.439-446.2001. PubMed DOI PMC

Gažák R., Trouillas P., Biedermann D., Fuksová K., Marhol P., Kuzma M., Křen V. Base-catalyzed oxidation of silybin and isosilybin into 2,3-dehydro derivatives. Tetrahedron. Lett. 2013;54:315–317. doi: 10.1016/j.tetlet.2012.11.049. DOI

Theodosiou E., Purchartová K., Stamatis H., Kolisis F., Křen V. Bioavailability of silymarin flavonolignans: Drug formulations and biotransformation. Phytochem. Rev. 2014;13:1–18. doi: 10.1007/s11101-013-9285-5. DOI

Biedermann D., Vavrikova E., Cvak L., Kren V. Chemistry of silybin. Nat. Prod. Rep. 2014;31:1138–1157. doi: 10.1039/C3NP70122K. PubMed DOI

Svobodova A., Walterova D., Psotova J. Influence of silymarin and its flavonolignans on H2O2-induced oxidative stress in human keratinocytes and mouse fibroblasts. Burns. 2006;32:973–979. doi: 10.1016/j.burns.2006.04.004. PubMed DOI

Sharifi R., Pasalar P., Kamalinejad M., Dehpour A.R., Tavangar S.M., Paknejad M., Mehrabani Natanzi M., Nourbakhsh M., Ahmadi Ashtiani H.R., Akbari M., et al. The effect of silymarin (Silybum marianum) on human skin fibroblasts in an in vitro wound healing model. Pharm. Biol. 2013;51:298–303. doi: 10.3109/13880209.2012.721789. PubMed DOI

Svobodova A.R., Zalesak B., Biedermann D., Ulrichova J., Vostalova J. Phototoxic potential of silymarin and its bioactive components. J. Photochem. Photobiol. B-Biol. 2016;156:61–68. doi: 10.1016/j.jphotobiol.2016.01.011. PubMed DOI

Maitrejean M., Comte G., Barron D., El Kirat K., Conseil G.L., Di Pietro A. The flavanolignan silybin and its hemisynthetic derivatives, a novel series of potential modulators of P-glycoprotein. Bioorg. Med. Chem. Lett. 2000;10:157–160. doi: 10.1016/S0960-894X(99)00636-8. PubMed DOI

Rincon M. Interleukin-6: From an inflammatory marker to a target for inflammatory diseases. Trends Immunol. 2012;33:571–577. doi: 10.1016/j.it.2012.07.003. PubMed DOI

Shahzad A., Knapp M., Lang I., Kohler G. Interleukin 8 (IL-8)—A universal biomarker? Int. Arch. Med. 2010;3:11. doi: 10.1186/1755-7682-3-11. PubMed DOI PMC

Kim B.R., Seo H.S., Ku J.M., Kim G.J., Jeon C.Y., Park J.H., Jang B.H., Park S.J., Shin Y.C., Ko S.G. Silibinin inhibits the production of pro-inflammatory cytokines through inhibition of NF-kappaB signaling pathway in HMC-1 human mast cells. Inflamm. Res. 2013;62:941–950. doi: 10.1007/s00011-013-0640-1. PubMed DOI PMC

Samanta R., Pattnaik A.K., Pradhan K.K., Mehta B.K., Pattanayak S.P., Banerjee S. Wound Healing Activity of Silibinin in Mice. Pharmacogn. Res. 2016;8:298–302. doi: 10.4103/0974-8490.188880. PubMed DOI PMC

Ratz-Lyko A., Arct J., Majewski S., Pytkowska K. Influence of polyphenols on the physiological processes in the skin. Phytother. Res. 2015;29:509–517. doi: 10.1002/ptr.5289. PubMed DOI

Renner F., Schmitz M.L. Autoregulatory feedback loops terminating the NF-kappaB response. Trends Biochem. Sci. 2009;34:128–135. doi: 10.1016/j.tibs.2008.12.003. PubMed DOI

Gabrielova E., Jaburek M., Gazak R., Vostalova J., Jezek J., Kren V., Modriansky M. Dehydrosilybin attenuates the production of ROS in rat cardiomyocyte mitochondria with an uncoupler-like mechanism. J. Bioenerg. Biomembr. 2010;42:499–509. doi: 10.1007/s10863-010-9319-2. PubMed DOI

Huber A., Thongphasuk P., Erben G., Lehmann W.D., Tuma S., Stremmel W., Chamulitrat W. Significantly greater antioxidant anticancer activities of 2,3-dehydrosilybin than silybin. Biochim. Biophys. Acta. 2008;1780:837–847. doi: 10.1016/j.bbagen.2007.12.012. PubMed DOI

Pyszkova M., Biler M., Biedermann D., Valentova K., Kuzma M., Vrba J., Ulrichova J., Sokolova R., Mojovic M., Popovic-Bijelic A., et al. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radic. Biol. Med. 2016;90:114–125. doi: 10.1016/j.freeradbiomed.2015.11.014. PubMed DOI

Abe M., Yokoyama Y., Syuto T., Ishibuchi H., Ishikawa O. Interleukin-6 counteracts effects of cyclosporin A on extracellular matrix metabolism by human dermal fibroblasts. Cell Tissue Res. 2008;333:281–288. doi: 10.1007/s00441-008-0629-1. PubMed DOI

Gallucci R.M., Sloan D.K., Heck J.M., Murray A.R., O’Dell S.J. Interleukin 6 indirectly induces keratinocyte migration. J. Investig. Dermatol. 2004;122:764–772. doi: 10.1111/j.0022-202X.2004.22323.x. PubMed DOI

Liechty K.W., Crombleholme T.M., Cass D.L., Martin B., Adzick N.S. Diminished interleukin-8 (IL-8) production in the fetal wound healing response. J. Surg. Res. 1998;77:80–84. doi: 10.1006/jsre.1998.5345. PubMed DOI

Ha H., Debnath B., Neamati N. Role of the CXCL8-CXCR1/2 axis in cancer and inflammatory diseases. Theranostics. 2017;7:1543–1588. doi: 10.7150/thno.15625. PubMed DOI PMC

Perfetto B., Donnarumma G., Criscuolo D., Paoletti I., Grimaldi E., Tufano M.A., Baroni A. Bacterial components induce cytokine and intercellular adhesion molecules-1 and activate transcription factors in dermal fibroblasts. Res. Microbiol. 2003;154:337–344. doi: 10.1016/S0923-2508(03)00084-6. PubMed DOI

Hoesel B., Schmid J.A. The complexity of NF-kappaB signaling in inflammation and cancer. Mol. Cancer. 2013;12:86. doi: 10.1186/1476-4598-12-86. PubMed DOI PMC

Pasparakis M. Regulation of tissue homeostasis by NF-kappaB signalling: Implications for inflammatory diseases. Nat. Rev. Immunol. 2009;9:778–788. doi: 10.1038/nri2655. PubMed DOI

Tilley C., Deep G., Agarwal C., Wempe M.F., Biedermann D., Valentova K., Kren V., Agarwal R. Silibinin and its 2,3-dehydro-derivative inhibit basal cell carcinoma growth via suppression of mitogenic signaling and transcription factors activation. Mol. Carcinog. 2016;55:3–14. doi: 10.1002/mc.22253. PubMed DOI PMC

Karin M., Lin A. NF-kappaB at the crossroads of life and death. Nat. Immunol. 2002;3:221–227. doi: 10.1038/ni0302-221. PubMed DOI

Sollberger G., Strittmatter G.E., Garstkiewicz M., Sand J., Beer H.D. Caspase-1: The inflammasome and beyond. Innate Immun. 2014;20:115–125. doi: 10.1177/1753425913484374. PubMed DOI

Kutuk O., Poli G., Basaga H. Resveratrol protects against 4-hydroxynonenal-induced apoptosis by blocking JNK and c-JUN/AP-1 signaling. Toxicol. Sci. 2006;90:120–132. doi: 10.1093/toxsci/kfj055. PubMed DOI

Gažák R., Svobodová A., Psotová J., Sedmera P., Přikrylová V., Walterová D., Křen V. Oxidised derivatives of silybin and their antiradical and antioxidant activity. Bioorg. Med. Chem. 2004;12:5677–5687. doi: 10.1016/j.bmc.2004.07.064. PubMed DOI

Křenek K., Marhol P., Peikerová Ž., Křen V., Biedermann D. Preparatory separation of the silymarin flavonolignans by Sephadex LH-20 gel. Food Res. Int. 2014;65:115–120. doi: 10.1016/j.foodres.2014.02.001. DOI

Pivodová V., Franková J., Galandáková A., Ulrichová J. In vitro AuNPs’ cytotoxicity and their effect on wound healing. Nanobiomedicine. 2015;2:7. doi: 10.5772/61132. PubMed DOI PMC

Zdarilova A., Svobodova A., Simanek V., Ulrichova J. Prunella vulgaris extract and rosmarinic acid suppress lipopolysaccharide-induced alteration in human gingival fibroblasts. Toxicol. In Vitro. 2009;23:386–392. doi: 10.1016/j.tiv.2008.12.021. PubMed DOI

Bauge C., Legendre F., Leclercq S., Elissalde J.M., Pujol J.P., Galera P., Boumediene K. Interleukin-1beta impairment of transforming growth factor beta1 signaling by down-regulation of transforming growth factor beta receptor type II and up-regulation of Smad7 in human articular chondrocytes. Arthritis Rheum. 2007;56:3020–3032. doi: 10.1002/art.22840. PubMed DOI

Bauge C., Beauchef G., Leclercq S., Kim S.J., Pujol J.P., Galera P., Boumediene K. NFkappaB mediates IL-1beta-induced down-regulation of TbetaRII through the modulation of Sp3 expression. J. Cell. Mol. Med. 2008;12:1754–1766. doi: 10.1111/j.1582-4934.2007.00173.x. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...