Multidrug Resistance Modulation Activity of Silybin Derivatives and Their Anti-inflammatory Potential

. 2020 May 25 ; 9 (5) : . [epub] 20200525

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32466263

Grantová podpora
18-00150S Grantová Agentura České Republiky
LO1601 (MSMT-43760/2015) Czech National Program of Sustainability
INTER-COST LTC19007 and LTC19020 Ministerstvo Školství, Mládeže a Tělovýchovy

Silybin is considered to be the main biologically active component of silymarin. Its oxidized derivative 2,3-dehydrosilybin typically occurs in silymarin in small, but non-negligible amounts (up to 3%). Here, we investigated in detail complex biological activities of silybin and 2,3-dehydrosilybin optical isomers. Antioxidant activities of pure stereomers A and B of silybin and 2,3-dehydrosilybin, as well as their racemic mixtures, were investigated by using oxygen radical absorption capacity (ORAC) and cellular antioxidant activity (CAA) assay. All substances efficiently reduced nitric oxide production and cytokines (TNF-α, IL-6) release in a dose-dependent manner. Multidrug resistance (MDR) modulating potential was evaluated as inhibition of P-glycoprotein (P-gp) ATPase activity and regulation of ATP-binding cassette (ABC) protein expression. All the tested compounds showed strong dose-dependent inhibition of P-gp pump. Moreover, 2,3-dehydrosilybin A (30 µM) displayed the strongest sensitization of doxorubicin-resistant ovarian carcinoma. Despite these significant effects, silybin B was the only compound acting directly upon P-gp in vitro and also downregulating the expression of respective MDR genes. This compound altered the expression of P-glycoprotein (P-gp, ABCB1), multidrug resistance-associated protein 1 (MRP1, ABCC1) and breast cancer resistance protein (BCRP, ABCG2). 2,3-Dehydrosilybin AB exhibited the most effective inhibition of acetylcholinesterase activity. We can clearly postulate that silybin derivatives could serve well as modulators of a cancer drug-resistant phenotype.

Zobrazit více v PubMed

Fraschini F., Dermartini G., Esposti D. Pharmacology of silymarin. Clin. Drug Invest. 2002;22:51–65. doi: 10.2165/00044011-200222010-00007. DOI

Chambers C.S., Holečková V., Petrásková L., Biedermann D., Valentová K., Buchta M., Křen V. The silymarin composition... And why does it matter? Food Res. Int. 2017;100:339–353. doi: 10.1016/j.foodres.2017.07.017. PubMed DOI

Petrásková L., Káňová K., Biedermann D., Křen V., Valentová K. Simple and rapid HPLC separation and quantification of flavonoid, flavonolignans, and 2,3-dehydroflavonolignans in silymarin. Foods. 2020;9:E116. doi: 10.3390/foods9020116. PubMed DOI PMC

Křen V., Walterová D. Silybin and silymarin--new effects and applications. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2005;149:29–41. doi: 10.5507/bp.2005.002. PubMed DOI

Gažák R., Trouillas P., Biedermann D., Fuksová K., Marhol P., Kuzma M., Křen V. Base-catalyzed oxidation of silybin and isosilybin into 2,3-dehydro derivatives. Tetrahedron Lett. 2013;54:315–317. doi: 10.1016/j.tetlet.2012.11.049. DOI

Gažák R., Walterová D., Křen V. Silybin and silymarin--new and emerging applications in medicine. Curr. Med. Chem. 2007;14:315–338. doi: 10.2174/092986707779941159. PubMed DOI

Gažák R., Svobodová A., Psotová J., Sedmera P., Přikrylová V., Walterová D., Křen V. Oxidised derivatives of silybin and their antiradical and antioxidant activity. Bioorgan. Med. Chem. 2004;12:5677–5687. doi: 10.1016/j.bmc.2004.07.064. PubMed DOI

Huber A., Thongphasuk P., Erben G., Lehmann W.D., Tuma S., Stremmel W., Chamulitrat W. Significantly greater antioxidant anticancer activities of 2,3-dehydrosilybin than silybin. Biochim. Biophys. Acta. 2008;1780:837–847. doi: 10.1016/j.bbagen.2007.12.012. PubMed DOI

Gažák R., Sedmera P., Vrbacký M., Vostálová J., Drahota Z., Marhol P., Walterová D., Křen V. Molecular mechanisms of silybin and 2,3-dehydrosilybin antiradical activity-role of individual hydroxyl groups. Free Radic. Biol. Med. 2009;46:745–758. doi: 10.1016/j.freeradbiomed.2008.11.016. PubMed DOI

Gillessen A., Schmidt H.H. Silymarin as supportive treatment in liver diseases: A narrative review. Adv. Ther. 2020;37:1279–1301. doi: 10.1007/s12325-020-01251-y. PubMed DOI PMC

Bijak M., Dziedzic A., Synowiec E., Sliwinski T., Saluk-Bijak J. Flavonolignans inhibit IL1-β-induced cross-talk between blood platelets and leukocytes. Nutrients. 2017;9:1022. doi: 10.3390/nu9091022. PubMed DOI PMC

Trappoliere M., Caligiuri A., Schmid M., Bertolani C., Failli P., Vizzutti F., Novo E., di Manzano C., Marra F., Loguercio C., et al. Silybin, a component of sylimarin, exerts anti-inflammatory and anti-fibrogenic effects on human hepatic stellate cells. J. Hepatol. 2009;50:1102–1111. doi: 10.1016/j.jhep.2009.02.023. PubMed DOI

Bijak M., Synowiec E., Sitarek P., Sliwiński T., Saluk-Bijak J. Evaluation of the cytotoxicity and genotoxicity of flavonolignans in different cellular models. Nutrients. 2017;9:E1356. doi: 10.3390/nu9121356. PubMed DOI PMC

Juráňová J., Aury-Landas J., Boumediene K., Baugé C., Biedermann D., Ulrichová J., Franková J. Modulation of skin inflammatory response by active components of silymarin. Molecules. 2018;24:E123. doi: 10.3390/molecules24010123. PubMed DOI PMC

Rajnochová Svobodová A., Zálešák B., Biedermann D., Ulrichová J., Vostálová J. Phototoxic potential of silymarin and its bioactive components. J. Photochem. Photobiol. B. 2016;156:61–68. doi: 10.1016/j.jphotobiol.2016.01.011. PubMed DOI

Kim S.W., Han Y.W., Lee S.T., Jeong H.J., Kim S.H., Kim I.H., Lee S.O., Kim D.G., Kim S.H., Kim S.Z., et al. A superoxide anion generator, pyrogallol, inhibits the growth of HeLa cells via cell cycle arrest and apoptosis. Mol. Carcinog. 2008;47:114–125. doi: 10.1002/mc.20369. PubMed DOI

Ting H., Deep G., Agarwal R. Molecular mechanisms of silibinin-mediated cancer chemoprevention with major emphasis on prostate cancer. AAPS J. 2013;15:707–716. doi: 10.1208/s12248-013-9486-2. PubMed DOI PMC

Kaur M., Agarwal R. Silymarin and epithelial cancer chemoprevention: How close we are to bedside? Toxicol. Appl. Pharmacol. 2007;224:350–359. doi: 10.1016/j.taap.2006.11.011. PubMed DOI PMC

Pashaei-Asl F., Pashaei-Asl R., Khodadadi K., Akbarzadeh A., Ebrahimie E., Pashaiasl M. Enhancement of anticancer activity by silibinin and paclitaxel combination on the ovarian cancer. Artif. Cells Nanomed Biotechnol. 2018;46:1483–1487. doi: 10.1080/21691401.2017.1374281. PubMed DOI

Feltrin C., Oliveira Simões C.M. Reviewing the mechanisms of natural product-drug interactions involving efflux transporters and metabolic enzymes. Chem-Biol. Interact. 2019;314:108825. doi: 10.1016/j.cbi.2019.108825. PubMed DOI

Sadava D., Kane S.E. Silibinin reverses drug resistance in human small-cell lung carcinoma cells. Cancer Lett. 2013;339:102–106. doi: 10.1016/j.canlet.2013.07.017. PubMed DOI PMC

Yang Z., Pan Q., Zhang D., Chen J., Qiu Y., Chen X., Zheng F., Lin F. Silibinin restores the sensitivity of cisplatin and taxol in A2780-resistant cell and reduces drug-induced hepatotoxicity. Cancer Manag. Res. 2019;11:7111–7122. doi: 10.2147/CMAR.S201341. PubMed DOI PMC

Viktorová J., Dobiasová S., Řehořová K., Biedermann D., Káňova K., Šeborová K., Václavíková R., Valentová K., Ruml T., Křen V., et al. Antioxidant, anti-inflammatory, and multidrug resistance modulation activity of silychristin derivatives. Antioxidants. 2019;8:E303. doi: 10.3390/antiox8080303. PubMed DOI PMC

Huang D., Ou B., Hampsch-Woodill M., Flanagan J.A., Prior R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002;50:4437–4444. doi: 10.1021/jf0201529. PubMed DOI

Ma D., Cali J.J. Identify P-glycoprotein substrates and inhibitors with the rapid, HTS P-gp-Glo™ assay system. Promega Notes. 2007;96:11–14.

Ellman G.L., Courtney K.D., Andres V., Jr., Feather-stone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI

Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI

Surai P.F. Silymarin as a natural antioxidant: An overview of the current evidence and perspectives. Antioxidants. 2015;4:204–247. doi: 10.3390/antiox4010204. PubMed DOI PMC

Karas D., Gažák R., Valentová K., Chambers C.S., Pivodová V., Biedermann D., Křenková A., Oborná I., Kuzma M., Cvačka J., et al. Effects of 2,3-dehydrosilybin and its galloyl ester and methyl ether derivatives on human umbilical vein endothelial cells. J. Nat. Prod. 2016;79:812–820. doi: 10.1021/acs.jnatprod.5b00905. PubMed DOI

Becker K., Schroecksnadel S., Gostner J., Zaknun C., Schennach H., Uberall F., Fuchs D. Comparison of in vitro tests for antioxidant and immunomodulatory capacities of compounds. Phytomedicine. 2014;21:164–171. doi: 10.1016/j.phymed.2013.08.008. PubMed DOI

Forman H.J., Davies K.J., Ursini F. How do nutritional antioxidants really work: Nucleophilic tone and para-hormesis vs. free radical scavenging in vivo. Free Radic. Biol. Med. 2014;66:24–35. doi: 10.1016/j.freeradbiomed.2013.05.045. PubMed DOI PMC

Hawk M.A., McCallister C., Schafer Z.T. Antioxidant activity during tumor progression: A necessity for the survival of cancer cells? Cancers (Basel) 2016;8:92. doi: 10.3390/cancers8100092. PubMed DOI PMC

Wiel C., Gal K.L., Ibrahim M.X., Jahangir C.A., Kashif M., Yao H., Ziegler D.V., Xu X., Ghosh T., Mondal T., et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell. 2019;178:330–345. doi: 10.1016/j.cell.2019.06.005. PubMed DOI

Tong Y.-H., Zhang B., Fan Y., Lin N.-M. Keap1-Nrf2 pathway: A promising target towards lung cancer prevention and therapeutic. Chronic. Dis. Transl. Med. 2015;1:175–186. doi: 10.1016/j.cdtm.2015.09.002. PubMed DOI PMC

Saliou C., Rihn B., Cillard J., Okamoto T., Packer L. Selective inhibition of Nf-κb activation by the flavonoid hepatoprotector silymarin in HepG2. Evidence for different activating pathways. FEBS Lett. 1998;440:8–12. doi: 10.1016/S0014-5793(98)01409-4. PubMed DOI

Tian L., Li W., Wang T. Therapeutic effects of silibinin on LPS-induced acute lung injury by inhibiting NLRP3 and Nf-κb signaling pathways. Microb. Pathog. 2017;108:104–108. doi: 10.1016/j.micpath.2017.05.011. PubMed DOI

Spagnuolo C., Moccia S., Russo G.L. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur. J. Med. Chem. 2018;153:105–115. doi: 10.1016/j.ejmech.2017.09.001. PubMed DOI

Habtemariam S. Natural inhibitors of tumour necrosis factor-α production, secretion and function. Planta Med. 2000;66:303–313. doi: 10.1055/s-2000-8660. PubMed DOI

Ribeiro D., Freitas M., Lima J.L., Fernandes E. Proinflammatory pathways: The modulation by flavonoids. Med. Res. Rev. 2015;35:877–936. doi: 10.1002/med.21347. PubMed DOI

Zhang H., Park Y., Wu J., Chen X., Lee S., Yang J., Dellsperger K.C., Zhang C. Role of TNF-α in vascular dysfunction. Clin. Sci. (London) 2009;116:219–230. doi: 10.1042/CS20080196. PubMed DOI PMC

Liao Z.G., Tang T., Guan X.J., Dong W., Zhang J., Zhao G.W., Yang M., Liang X.L. Improvement of transmembrane transport mechanism study of imperatorin on P-glycoprotein-mediated drug transport. Molecules. 2016;21:E1606. doi: 10.3390/molecules21121606. PubMed DOI PMC

Dewanjee S., Dua T.K., Bhattacharjee N., Das A., Gangopadhyay M., Khanra R., Joardar S., Riaz M., Feo V., Zia-Ul-Haq M. Natural products as alternative choice for P-glycoprotein (P-gp) inhibition. Molecules. 2017;22:E871. doi: 10.3390/molecules22060871. PubMed DOI PMC

Miron A., Aprotosoaie A.C., Trifan A., Xiao J. Flavonoids as modulators of metabolic enzymes and drug transporters. Ann. N. Y. Acad. Sci. 2017;1398:152–167. doi: 10.1111/nyas.13384. PubMed DOI

Gupta V.K., Bhalla Y., Jaitak V. Impact of ABC transporters, glutathione conjugates in MDR and their modulation by flavonoids: An overview. Med. Chem. Res. 2014;23:1–15. doi: 10.1007/s00044-013-0612-6. DOI

Kitagawa S. Inhibitory effects of polyphenols on P-glycoprotein-mediated transport. Biol. Pharm. Bull. 2006;29:1–6. doi: 10.1248/bpb.29.1. PubMed DOI

Chambers C., Viktorová J., Řehořová K., Biedermann D., Turková L., Macek T., Křen V., Valentová K. Defying multidrug resistance! Modulation of related transporters by flavonoids and flavonolignans. J. Agric. Food Chem. 2019;68:1763–1779. doi: 10.1021/acs.jafc.9b00694. PubMed DOI

Ferreira A., Rodrigues M., Fortuna A., Falcao A., Alves G. Flavonoid compounds as reversing agents of the P-glycoprotein-mediated multidrug resistance: An in vitro evaluation with focus on antiepileptic drugs. Food Res. Int. 2018;103:110–120. doi: 10.1016/j.foodres.2017.10.010. PubMed DOI

Zhang S., Morris M.E. Effect of the flavonoids biochanin A and silymarin on the P-glycoprotein-mediated transport of digoxin and vinblastine in human intestinal Caco-2 cells. Pharm. Res. 2003;20:1184–1191. doi: 10.1023/A:1025044913766. PubMed DOI

Desrini S., Mustofa M., Sholikhah E. The effect of quercetin and doxorubicin combination in inhibiting resistance in MCF-7 cell. Bangladesh J. Med. Sci. 2017;16:91–97. doi: 10.3329/bjms.v16i1.31139. DOI

Agarwal C., Wadhwa R., Deep G., Biedermann D., Gažák R., Křen V., Agarwal R. Anti-cancer efficacy of silybin derivatives–a structure-activity relationship. PLoS ONE. 2013;8:e60074. doi: 10.1371/journal.pone.0060074. PubMed DOI PMC

Chen Z.J., Vulevic B., Ile K.E., Soulika A., Davis W., Jr., Reiner P.B., Connop B.P., Nathwani P., Trojanowski J.Q., Tew K.D. Association of ABCA2 expression with determinants of Alzheimer’s disease. FASEB J. 2004;18:1129–1131. doi: 10.1096/fj.03-1490fje. PubMed DOI

van Assema D.M.E., Lubberink M., Rizzu P., van Swieten J.C., Schuit R.C., Eriksson J., Scheltens P., Koepp M., Lammertsma A.A., van Berckel B.N.M. Blood-brain barrier P-glycoprotein function in healthy subjects and Alzheimer’s disease patients: Effect of polymorphisms in the ABCB1 gene. EJNMMI Res. 2012;2:1–6. doi: 10.1186/2191-219X-2-1. PubMed DOI PMC

Filho J.M.B., Medeiros K.C.P., Diniz M.F.F.M., Batista L.M., Athayde-Filho P.F., Silva M.S., da-Cunha E.V.L., Almeida J.R.G.S., Quintans-Júnior L.J. Natural products inhibitors of the enzyme acetylcholinesterase. Rev. Bras. Farmacogn. 2006;16:258–285. doi: 10.1590/S0102-695X2006000200021. DOI

Šimánek V., Křen V., Ulrichová J., Vičar J., Cvak L. Silymarin: What is in the name…? An appeal for a change of editorial policy. Hepatology. 2000;32:442–444. doi: 10.1053/jhep.2000.9770. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Flavonolignans silybin, silychristin and 2,3-dehydrosilybin showed differential cytoprotective, antioxidant and anti-apoptotic effects on splenocytes from Balb/c mice

. 2025 Feb 15 ; 15 (1) : 5631. [epub] 20250215

Selectively Halogenated Flavonolignans-Preparation and Antibacterial Activity

. 2022 Dec 01 ; 23 (23) : . [epub] 20221201

Ketone-selenoesters as potential anticancer and multidrug resistance modulation agents in 2D and 3D ovarian and breast cancer in vitro models

. 2022 Apr 21 ; 12 (1) : 6548. [epub] 20220421

Characterization of Fruit Development, Antioxidant Capacity, and Potential Vasoprotective Action of Peumo (Cryptocarya alba), a Native Fruit of Chile

. 2021 Dec 15 ; 10 (12) : . [epub] 20211215

Chirality Matters: Biological Activity of Optically Pure Silybin and Its Congeners

. 2021 Jul 23 ; 22 (15) : . [epub] 20210723

Comparison of Chemical Composition and Biological Activities of Eight Selaginella Species

. 2020 Dec 26 ; 14 (1) : . [epub] 20201226

Cytoprotective Activity of Natural and Synthetic Antioxidants

. 2020 Aug 06 ; 9 (8) : . [epub] 20200806

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...