Multidrug Resistance Modulation Activity of Silybin Derivatives and Their Anti-inflammatory Potential
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
18-00150S
Grantová Agentura České Republiky
LO1601 (MSMT-43760/2015)
Czech National Program of Sustainability
INTER-COST LTC19007 and LTC19020
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
32466263
PubMed Central
PMC7278776
DOI
10.3390/antiox9050455
PII: antiox9050455
Knihovny.cz E-zdroje
- Klíčová slova
- P-glycoprotein, acetylcholinesterase inhibition, cytokines, dehydrosilybin, doxorubicin resistance, expression profile, immunomodulation, silybin,
- Publikační typ
- časopisecké články MeSH
Silybin is considered to be the main biologically active component of silymarin. Its oxidized derivative 2,3-dehydrosilybin typically occurs in silymarin in small, but non-negligible amounts (up to 3%). Here, we investigated in detail complex biological activities of silybin and 2,3-dehydrosilybin optical isomers. Antioxidant activities of pure stereomers A and B of silybin and 2,3-dehydrosilybin, as well as their racemic mixtures, were investigated by using oxygen radical absorption capacity (ORAC) and cellular antioxidant activity (CAA) assay. All substances efficiently reduced nitric oxide production and cytokines (TNF-α, IL-6) release in a dose-dependent manner. Multidrug resistance (MDR) modulating potential was evaluated as inhibition of P-glycoprotein (P-gp) ATPase activity and regulation of ATP-binding cassette (ABC) protein expression. All the tested compounds showed strong dose-dependent inhibition of P-gp pump. Moreover, 2,3-dehydrosilybin A (30 µM) displayed the strongest sensitization of doxorubicin-resistant ovarian carcinoma. Despite these significant effects, silybin B was the only compound acting directly upon P-gp in vitro and also downregulating the expression of respective MDR genes. This compound altered the expression of P-glycoprotein (P-gp, ABCB1), multidrug resistance-associated protein 1 (MRP1, ABCC1) and breast cancer resistance protein (BCRP, ABCG2). 2,3-Dehydrosilybin AB exhibited the most effective inhibition of acetylcholinesterase activity. We can clearly postulate that silybin derivatives could serve well as modulators of a cancer drug-resistant phenotype.
Toxicogenomics Unit National Institute of Public Health Šrobárova 49 CZ 100 00 Prague Czech Republic
Zobrazit více v PubMed
Fraschini F., Dermartini G., Esposti D. Pharmacology of silymarin. Clin. Drug Invest. 2002;22:51–65. doi: 10.2165/00044011-200222010-00007. DOI
Chambers C.S., Holečková V., Petrásková L., Biedermann D., Valentová K., Buchta M., Křen V. The silymarin composition... And why does it matter? Food Res. Int. 2017;100:339–353. doi: 10.1016/j.foodres.2017.07.017. PubMed DOI
Petrásková L., Káňová K., Biedermann D., Křen V., Valentová K. Simple and rapid HPLC separation and quantification of flavonoid, flavonolignans, and 2,3-dehydroflavonolignans in silymarin. Foods. 2020;9:E116. doi: 10.3390/foods9020116. PubMed DOI PMC
Křen V., Walterová D. Silybin and silymarin--new effects and applications. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2005;149:29–41. doi: 10.5507/bp.2005.002. PubMed DOI
Gažák R., Trouillas P., Biedermann D., Fuksová K., Marhol P., Kuzma M., Křen V. Base-catalyzed oxidation of silybin and isosilybin into 2,3-dehydro derivatives. Tetrahedron Lett. 2013;54:315–317. doi: 10.1016/j.tetlet.2012.11.049. DOI
Gažák R., Walterová D., Křen V. Silybin and silymarin--new and emerging applications in medicine. Curr. Med. Chem. 2007;14:315–338. doi: 10.2174/092986707779941159. PubMed DOI
Gažák R., Svobodová A., Psotová J., Sedmera P., Přikrylová V., Walterová D., Křen V. Oxidised derivatives of silybin and their antiradical and antioxidant activity. Bioorgan. Med. Chem. 2004;12:5677–5687. doi: 10.1016/j.bmc.2004.07.064. PubMed DOI
Huber A., Thongphasuk P., Erben G., Lehmann W.D., Tuma S., Stremmel W., Chamulitrat W. Significantly greater antioxidant anticancer activities of 2,3-dehydrosilybin than silybin. Biochim. Biophys. Acta. 2008;1780:837–847. doi: 10.1016/j.bbagen.2007.12.012. PubMed DOI
Gažák R., Sedmera P., Vrbacký M., Vostálová J., Drahota Z., Marhol P., Walterová D., Křen V. Molecular mechanisms of silybin and 2,3-dehydrosilybin antiradical activity-role of individual hydroxyl groups. Free Radic. Biol. Med. 2009;46:745–758. doi: 10.1016/j.freeradbiomed.2008.11.016. PubMed DOI
Gillessen A., Schmidt H.H. Silymarin as supportive treatment in liver diseases: A narrative review. Adv. Ther. 2020;37:1279–1301. doi: 10.1007/s12325-020-01251-y. PubMed DOI PMC
Bijak M., Dziedzic A., Synowiec E., Sliwinski T., Saluk-Bijak J. Flavonolignans inhibit IL1-β-induced cross-talk between blood platelets and leukocytes. Nutrients. 2017;9:1022. doi: 10.3390/nu9091022. PubMed DOI PMC
Trappoliere M., Caligiuri A., Schmid M., Bertolani C., Failli P., Vizzutti F., Novo E., di Manzano C., Marra F., Loguercio C., et al. Silybin, a component of sylimarin, exerts anti-inflammatory and anti-fibrogenic effects on human hepatic stellate cells. J. Hepatol. 2009;50:1102–1111. doi: 10.1016/j.jhep.2009.02.023. PubMed DOI
Bijak M., Synowiec E., Sitarek P., Sliwiński T., Saluk-Bijak J. Evaluation of the cytotoxicity and genotoxicity of flavonolignans in different cellular models. Nutrients. 2017;9:E1356. doi: 10.3390/nu9121356. PubMed DOI PMC
Juráňová J., Aury-Landas J., Boumediene K., Baugé C., Biedermann D., Ulrichová J., Franková J. Modulation of skin inflammatory response by active components of silymarin. Molecules. 2018;24:E123. doi: 10.3390/molecules24010123. PubMed DOI PMC
Rajnochová Svobodová A., Zálešák B., Biedermann D., Ulrichová J., Vostálová J. Phototoxic potential of silymarin and its bioactive components. J. Photochem. Photobiol. B. 2016;156:61–68. doi: 10.1016/j.jphotobiol.2016.01.011. PubMed DOI
Kim S.W., Han Y.W., Lee S.T., Jeong H.J., Kim S.H., Kim I.H., Lee S.O., Kim D.G., Kim S.H., Kim S.Z., et al. A superoxide anion generator, pyrogallol, inhibits the growth of HeLa cells via cell cycle arrest and apoptosis. Mol. Carcinog. 2008;47:114–125. doi: 10.1002/mc.20369. PubMed DOI
Ting H., Deep G., Agarwal R. Molecular mechanisms of silibinin-mediated cancer chemoprevention with major emphasis on prostate cancer. AAPS J. 2013;15:707–716. doi: 10.1208/s12248-013-9486-2. PubMed DOI PMC
Kaur M., Agarwal R. Silymarin and epithelial cancer chemoprevention: How close we are to bedside? Toxicol. Appl. Pharmacol. 2007;224:350–359. doi: 10.1016/j.taap.2006.11.011. PubMed DOI PMC
Pashaei-Asl F., Pashaei-Asl R., Khodadadi K., Akbarzadeh A., Ebrahimie E., Pashaiasl M. Enhancement of anticancer activity by silibinin and paclitaxel combination on the ovarian cancer. Artif. Cells Nanomed Biotechnol. 2018;46:1483–1487. doi: 10.1080/21691401.2017.1374281. PubMed DOI
Feltrin C., Oliveira Simões C.M. Reviewing the mechanisms of natural product-drug interactions involving efflux transporters and metabolic enzymes. Chem-Biol. Interact. 2019;314:108825. doi: 10.1016/j.cbi.2019.108825. PubMed DOI
Sadava D., Kane S.E. Silibinin reverses drug resistance in human small-cell lung carcinoma cells. Cancer Lett. 2013;339:102–106. doi: 10.1016/j.canlet.2013.07.017. PubMed DOI PMC
Yang Z., Pan Q., Zhang D., Chen J., Qiu Y., Chen X., Zheng F., Lin F. Silibinin restores the sensitivity of cisplatin and taxol in A2780-resistant cell and reduces drug-induced hepatotoxicity. Cancer Manag. Res. 2019;11:7111–7122. doi: 10.2147/CMAR.S201341. PubMed DOI PMC
Viktorová J., Dobiasová S., Řehořová K., Biedermann D., Káňova K., Šeborová K., Václavíková R., Valentová K., Ruml T., Křen V., et al. Antioxidant, anti-inflammatory, and multidrug resistance modulation activity of silychristin derivatives. Antioxidants. 2019;8:E303. doi: 10.3390/antiox8080303. PubMed DOI PMC
Huang D., Ou B., Hampsch-Woodill M., Flanagan J.A., Prior R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002;50:4437–4444. doi: 10.1021/jf0201529. PubMed DOI
Ma D., Cali J.J. Identify P-glycoprotein substrates and inhibitors with the rapid, HTS P-gp-Glo™ assay system. Promega Notes. 2007;96:11–14.
Ellman G.L., Courtney K.D., Andres V., Jr., Feather-stone R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961;7:88–95. doi: 10.1016/0006-2952(61)90145-9. PubMed DOI
Bustin S.A., Benes V., Garson J.A., Hellemans J., Huggett J., Kubista M., Mueller R., Nolan T., Pfaffl M.W., Shipley G.L., et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009;55:611–622. doi: 10.1373/clinchem.2008.112797. PubMed DOI
Surai P.F. Silymarin as a natural antioxidant: An overview of the current evidence and perspectives. Antioxidants. 2015;4:204–247. doi: 10.3390/antiox4010204. PubMed DOI PMC
Karas D., Gažák R., Valentová K., Chambers C.S., Pivodová V., Biedermann D., Křenková A., Oborná I., Kuzma M., Cvačka J., et al. Effects of 2,3-dehydrosilybin and its galloyl ester and methyl ether derivatives on human umbilical vein endothelial cells. J. Nat. Prod. 2016;79:812–820. doi: 10.1021/acs.jnatprod.5b00905. PubMed DOI
Becker K., Schroecksnadel S., Gostner J., Zaknun C., Schennach H., Uberall F., Fuchs D. Comparison of in vitro tests for antioxidant and immunomodulatory capacities of compounds. Phytomedicine. 2014;21:164–171. doi: 10.1016/j.phymed.2013.08.008. PubMed DOI
Forman H.J., Davies K.J., Ursini F. How do nutritional antioxidants really work: Nucleophilic tone and para-hormesis vs. free radical scavenging in vivo. Free Radic. Biol. Med. 2014;66:24–35. doi: 10.1016/j.freeradbiomed.2013.05.045. PubMed DOI PMC
Hawk M.A., McCallister C., Schafer Z.T. Antioxidant activity during tumor progression: A necessity for the survival of cancer cells? Cancers (Basel) 2016;8:92. doi: 10.3390/cancers8100092. PubMed DOI PMC
Wiel C., Gal K.L., Ibrahim M.X., Jahangir C.A., Kashif M., Yao H., Ziegler D.V., Xu X., Ghosh T., Mondal T., et al. BACH1 stabilization by antioxidants stimulates lung cancer metastasis. Cell. 2019;178:330–345. doi: 10.1016/j.cell.2019.06.005. PubMed DOI
Tong Y.-H., Zhang B., Fan Y., Lin N.-M. Keap1-Nrf2 pathway: A promising target towards lung cancer prevention and therapeutic. Chronic. Dis. Transl. Med. 2015;1:175–186. doi: 10.1016/j.cdtm.2015.09.002. PubMed DOI PMC
Saliou C., Rihn B., Cillard J., Okamoto T., Packer L. Selective inhibition of Nf-κb activation by the flavonoid hepatoprotector silymarin in HepG2. Evidence for different activating pathways. FEBS Lett. 1998;440:8–12. doi: 10.1016/S0014-5793(98)01409-4. PubMed DOI
Tian L., Li W., Wang T. Therapeutic effects of silibinin on LPS-induced acute lung injury by inhibiting NLRP3 and Nf-κb signaling pathways. Microb. Pathog. 2017;108:104–108. doi: 10.1016/j.micpath.2017.05.011. PubMed DOI
Spagnuolo C., Moccia S., Russo G.L. Anti-inflammatory effects of flavonoids in neurodegenerative disorders. Eur. J. Med. Chem. 2018;153:105–115. doi: 10.1016/j.ejmech.2017.09.001. PubMed DOI
Habtemariam S. Natural inhibitors of tumour necrosis factor-α production, secretion and function. Planta Med. 2000;66:303–313. doi: 10.1055/s-2000-8660. PubMed DOI
Ribeiro D., Freitas M., Lima J.L., Fernandes E. Proinflammatory pathways: The modulation by flavonoids. Med. Res. Rev. 2015;35:877–936. doi: 10.1002/med.21347. PubMed DOI
Zhang H., Park Y., Wu J., Chen X., Lee S., Yang J., Dellsperger K.C., Zhang C. Role of TNF-α in vascular dysfunction. Clin. Sci. (London) 2009;116:219–230. doi: 10.1042/CS20080196. PubMed DOI PMC
Liao Z.G., Tang T., Guan X.J., Dong W., Zhang J., Zhao G.W., Yang M., Liang X.L. Improvement of transmembrane transport mechanism study of imperatorin on P-glycoprotein-mediated drug transport. Molecules. 2016;21:E1606. doi: 10.3390/molecules21121606. PubMed DOI PMC
Dewanjee S., Dua T.K., Bhattacharjee N., Das A., Gangopadhyay M., Khanra R., Joardar S., Riaz M., Feo V., Zia-Ul-Haq M. Natural products as alternative choice for P-glycoprotein (P-gp) inhibition. Molecules. 2017;22:E871. doi: 10.3390/molecules22060871. PubMed DOI PMC
Miron A., Aprotosoaie A.C., Trifan A., Xiao J. Flavonoids as modulators of metabolic enzymes and drug transporters. Ann. N. Y. Acad. Sci. 2017;1398:152–167. doi: 10.1111/nyas.13384. PubMed DOI
Gupta V.K., Bhalla Y., Jaitak V. Impact of ABC transporters, glutathione conjugates in MDR and their modulation by flavonoids: An overview. Med. Chem. Res. 2014;23:1–15. doi: 10.1007/s00044-013-0612-6. DOI
Kitagawa S. Inhibitory effects of polyphenols on P-glycoprotein-mediated transport. Biol. Pharm. Bull. 2006;29:1–6. doi: 10.1248/bpb.29.1. PubMed DOI
Chambers C., Viktorová J., Řehořová K., Biedermann D., Turková L., Macek T., Křen V., Valentová K. Defying multidrug resistance! Modulation of related transporters by flavonoids and flavonolignans. J. Agric. Food Chem. 2019;68:1763–1779. doi: 10.1021/acs.jafc.9b00694. PubMed DOI
Ferreira A., Rodrigues M., Fortuna A., Falcao A., Alves G. Flavonoid compounds as reversing agents of the P-glycoprotein-mediated multidrug resistance: An in vitro evaluation with focus on antiepileptic drugs. Food Res. Int. 2018;103:110–120. doi: 10.1016/j.foodres.2017.10.010. PubMed DOI
Zhang S., Morris M.E. Effect of the flavonoids biochanin A and silymarin on the P-glycoprotein-mediated transport of digoxin and vinblastine in human intestinal Caco-2 cells. Pharm. Res. 2003;20:1184–1191. doi: 10.1023/A:1025044913766. PubMed DOI
Desrini S., Mustofa M., Sholikhah E. The effect of quercetin and doxorubicin combination in inhibiting resistance in MCF-7 cell. Bangladesh J. Med. Sci. 2017;16:91–97. doi: 10.3329/bjms.v16i1.31139. DOI
Agarwal C., Wadhwa R., Deep G., Biedermann D., Gažák R., Křen V., Agarwal R. Anti-cancer efficacy of silybin derivatives–a structure-activity relationship. PLoS ONE. 2013;8:e60074. doi: 10.1371/journal.pone.0060074. PubMed DOI PMC
Chen Z.J., Vulevic B., Ile K.E., Soulika A., Davis W., Jr., Reiner P.B., Connop B.P., Nathwani P., Trojanowski J.Q., Tew K.D. Association of ABCA2 expression with determinants of Alzheimer’s disease. FASEB J. 2004;18:1129–1131. doi: 10.1096/fj.03-1490fje. PubMed DOI
van Assema D.M.E., Lubberink M., Rizzu P., van Swieten J.C., Schuit R.C., Eriksson J., Scheltens P., Koepp M., Lammertsma A.A., van Berckel B.N.M. Blood-brain barrier P-glycoprotein function in healthy subjects and Alzheimer’s disease patients: Effect of polymorphisms in the ABCB1 gene. EJNMMI Res. 2012;2:1–6. doi: 10.1186/2191-219X-2-1. PubMed DOI PMC
Filho J.M.B., Medeiros K.C.P., Diniz M.F.F.M., Batista L.M., Athayde-Filho P.F., Silva M.S., da-Cunha E.V.L., Almeida J.R.G.S., Quintans-Júnior L.J. Natural products inhibitors of the enzyme acetylcholinesterase. Rev. Bras. Farmacogn. 2006;16:258–285. doi: 10.1590/S0102-695X2006000200021. DOI
Šimánek V., Křen V., Ulrichová J., Vičar J., Cvak L. Silymarin: What is in the name…? An appeal for a change of editorial policy. Hepatology. 2000;32:442–444. doi: 10.1053/jhep.2000.9770. PubMed DOI
Selectively Halogenated Flavonolignans-Preparation and Antibacterial Activity
Chirality Matters: Biological Activity of Optically Pure Silybin and Its Congeners
Comparison of Chemical Composition and Biological Activities of Eight Selaginella Species
Cytoprotective Activity of Natural and Synthetic Antioxidants