Flavonolignans silybin, silychristin and 2,3-dehydrosilybin showed differential cytoprotective, antioxidant and anti-apoptotic effects on splenocytes from Balb/c mice
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
VEGA 2/0033/21, grant number APVV-17-0410
the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences,
MVTS no.CA21111
European Union-the COST Action no. CA21111
PubMed
39955331
PubMed Central
PMC11830019
DOI
10.1038/s41598-025-89824-1
PII: 10.1038/s41598-025-89824-1
Knihovny.cz E-zdroje
- Klíčová slova
- 2,3-dehydrosilybin, Apoptosis, Mouse splenocytes, Redox balance, Silybin, Silychristin, Viability,
- MeSH
- antioxidancia * farmakologie MeSH
- apoptóza * účinky léků MeSH
- cytoprotekce účinky léků MeSH
- membránový potenciál mitochondrií účinky léků MeSH
- myši inbrední BALB C * MeSH
- myši MeSH
- oxidační stres účinky léků MeSH
- peroxid vodíku MeSH
- reaktivní formy kyslíku metabolismus MeSH
- silibinin * farmakologie MeSH
- silymarin * farmakologie MeSH
- slezina * cytologie účinky léků metabolismus MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia * MeSH
- peroxid vodíku MeSH
- reaktivní formy kyslíku MeSH
- silibinin * MeSH
- silychristin MeSH Prohlížeč
- silymarin * MeSH
Silymarin is an extract obtained from the seeds of milk thistle (Sylibum marianum L., Asteraceae) and contains several structurally related flavonolignans and a small family of flavonoids. Mouse spleen cells represent highly sensitive primary cells suitable for studying the pharmacological potential and biofunctional properties of natural substances. Cultivation of splenocytes for 24 h under standard culture conditions (humidity, 37 °C, 5% CO2, atmospheric oxygen) resulted in decreased viability of splenocytes compared to intact cells. A cytoprotective effect of silybin (SB), silychristin (SCH) and 2,3-dehydrosilybin (DHSB) was observed at concentrations as low as 5 µmol/ml. At 50 µmol/ml, these substances restored and/or stimulated viability and mitochondrial membrane potential and had anti-apoptotic effect in the order SB > DHSB > SCH. The substances demonstrated a concentration-dependent activity in restoring the redox balance based on the changes in the concentration of reactive oxygen species (ROS), hydrogen peroxide (H2O2) and nitric oxide. This was in the order DHSB > SCH > SB, which correlated with the suppressed expression of nuclear factor erythroid 2-related factor 2 (Nrf2), catalase and glutathione peroxidase. The strong stimulation of the superoxide dismutase 1 gene converting ROS to H2O2 points to its dominant role in the maintaining redox homeostasis in splenocytes, which was disrupted by oxidative stress due to non-physiological culture conditions. Our study showed significant differences in the cytoprotective, antioxidant and anti-apoptotic activities of SB, SCH, and DHSB on splenocytes exposed to mild and AAPH-induced oxidative stress.
Institute of Biology and Ecology Faculty of Science P J Šafárik University Kosice Slovakia
Institute of Microbiology Academy of Sciences of the Czech Republic Prague Czech Republic
Institute of Parasitology Slovak Academy of Sciences Hlinkova 3 04001 Kosice Slovakia
Zobrazit více v PubMed
Petraskova, L., Kanova, K., Biedermann, D., Kren, V. & Valentova, K. Simple and rapid HPLC separation and quantification of flavonoid, flavonolignans, and 2,3-dehydroflavonolignans in silymarin. Foods 10.3390/Foods9020116 (2020). PubMed PMC
Tvrdy, V. et al. Systematic review of pharmacokinetics and potential pharmacokinetic interactions of flavonolignans from silymarin. Med. Res. Rev.41, 2195–2246. 10.1002/med.21791 (2021). PubMed
Gazák, R., Walterová, D. & Kren, V. Silybin and silymarin -: New and emerging applications in medicine. Curr. Med. Chem.14, 315–338. 10.2174/092986707779941159 (2007). PubMed
Kuo, F. H. & Jan, T. R. Silibinin attenuates antigen-specific IgE production through the modulation of Th1/Th2 balance in ovalbumin-sensitized BALB/c mice. Phytomedicine16, 271–276. 10.1016/j.phymed.2008.07.006 (2009). PubMed
Esmaeil, N., Anaraki, S. B., Gharagozloo, M. & Moayedi, B. Silymarin impacts on immune system as an immunomodulator: One key for many locks. Int. Immunopharmacol.50, 194–201. 10.1016/j.intimp.2017.06.030 (2017). PubMed
Chambers, C. S. et al. The silymarin composition … and why does it matter???. Food Res. Int.100, 339–353. 10.1016/j.foodres.2017.07.017 (2017). PubMed
Camini, F. C. & Costa, D. C. Silymarin: Not just another antioxidant. J. Basic Clin. Physiol. Pharmacol.10.1515/jbcpp-2019-0206 (2020). PubMed
Gu, M. et al. Silymarin ameliorates metabolic dysfunction associated with diet-induced obesity via activation of farnesyl X receptor. Front. Pharmacol.7, 345. 10.3389/Fphar.2016.00345 (2016). PubMed PMC
Surai, P. F. Silymarin as a natural antioxidant: An overview of the current evidence and perspectives. Antioxid. Basel.4, 204–247. 10.3390/antiox4010204 (2015). PubMed PMC
Oufi, H. G. & Al-Shawi, N. N. The effects of different doses of silibinin in combination with methotrexate on testicular tissue of mice. Eur. J. Pharmacol.730, 36–40. 10.1016/j.ejphar.2014.02.010 (2014). PubMed
Adhikari, M. & Arora, R. Nano-silymarin provides protection against γ-radiation-induced oxidative stress in cultured human embryonic kidney cells. Mutat. Res. Genet. Toxicol. Environ. Mutagenesis.792, 1–11. 10.1016/j.mrgentox.2015.08.006 (2015). PubMed
Svobodová, A. R. et al. UVA-photoprotective potential of silymarin and silybin. Arch. Dermatol. Res.310, 413–424. 10.1007/s00403-018-1828-6 (2018). PubMed
Qin, N. B. et al. Hypoglycemic effect of silychristin A from fruit via protecting pancreatic islet cells from oxidative damage and inhibiting α-glucosidase activity and in rats with type 1 diabetes. J. Funct. Foods38, 168–179. 10.1016/j.jff.2017.09.013 (2017).
Bijak, M., Dziedzic, A., Synowiec, E., Sliwinski, T. & Saluk-Bijak, J. Flavonolignans Inhibit IL1-β-induced cross-talk between blood platelets and leukocytes. Nutrients9, 1022. 10.3390/Nu9091022 (2017). PubMed PMC
Gazak, R. et al. Molecular mechanisms of silybin and 2,3-dehydrosilybin antiradical activity–role of individual hydroxyl groups. Free Radic. Biol. Med.46, 745–758. 10.1016/j.freeradbiomed.2008.11.016 (2009). PubMed
Dobiasová, S. et al. Multidrug resistance modulation activity of silybin derivatives and their anti-inflammatory potential. Antioxid.-Basel9, 455. 10.3390/Antiox9050455 (2020). PubMed PMC
Gillessen, A. & Schmidt, H. H. J. Silymarin as supportive treatment in liver diseases: A narrative review. Adv. Therapy37, 1279–1301. 10.1007/s12325-020-01251-y (2020). PubMed PMC
Cemerski, S., Van Meerwijk, J. P. & Romagnoli, P. Oxidative-stress-induced T lymphocyte hyporesponsiveness is caused by structural modification rather than proteasomal degradation of crucial TCR signaling molecules. Eur. J. Immunol.33, 2178–2185. 10.1002/eji.200323898 (2003). PubMed
Alva, R., Gardner, G. L., Liang, P. & Stuart, J. A. Supraphysiological oxygen levels in mammalian cell culture: Current state and future perspectives. Cells11, 3123. 10.3390/Cells11193123 (2022). PubMed PMC
Krenek, K., Marhol, P., Peikerová, Z., Kren, V. & Biedermann, D. Preparatory separation of the silymarin flavonolignans by Sephadex LH-20 gel. Food Res. Int.65, 115–120. 10.1016/j.foodres.2014.02.001 (2014).
Maitrejean, M. et al. The flavanolignan silybin and its hemisynthetic derivatives, a novel series of potential modulators of P-glycoprotein. Bioorg. Med. Chem. Lett.10, 157–160. 10.1016/s0960-894x(99)00636-8 (2000). PubMed
Repetto, G., Del Peso, A. & Zurita, J. L. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc.3, 1125–1131. 10.1038/nprot.2008.75 (2008). PubMed
Tirichen, H. et al. Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. Front. Physiol.12, 627837. 10.3389/Fphys.2021.627837 (2021). PubMed PMC
Santos, L. C., Honda, N. K., Carlos, I. Z. & Vilegas, W. Intermediate reactive oxygen and nitrogen from macrophages induced by Brazilian lichens. Fitoterapia75, 473–479. 10.1016/j.fitote.2004.04.002 (2004). PubMed
Jurčacková, Z. et al. Astaxanthin extract from and its fractions of astaxanthin mono- and diesters obtained by CCC show differential antioxidant and cytoprotective effects on naive-mouse spleen cells. Antioxid. Basel12, 1144. 10.3390/Antiox12061144 (2023). PubMed PMC
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25, 402–408. 10.1006/meth.2001.1262 (2001). PubMed
Carreau, A., El Hafny-Rahbi, B., Matejuk, A., Grillon, C. & Kieda, C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J. Cell Mol. Med.15, 1239–1253. 10.1111/j.1582-4934.2011.01258.x (2011). PubMed PMC
Fonseca, J., Moradi, F., Valente, A. J. E. & Stuart, J. A. Oxygen and glucose levels in cell culture media determine resveratrol’s effects on growth, hydrogen peroxide production, and mitochondrial dynamics. Antioxid. Basel7, 157. 10.3390/Antiox7110157 (2018). PubMed PMC
Moradi, F., Moffatt, C. & Stuart, J. A. The effect of oxygen and micronutrient composition of cell growth media on cancer cell bioenergetics and mitochondrial networks. Biomolecules10.3390/biom11081177 (2021). PubMed PMC
Alva, R. et al. Oxygen toxicity: Cellular mechanisms in normobaric hyperoxia. Cell Biol. Toxicol.39, 111–143. 10.1007/s10565-022-09773-7 (2023). PubMed PMC
Valenzuela, A. & Garrido, A. Biochemical bases of the pharmacological action of the flavonoid silymarin and of its structural isomer silibinin. Biol. Res.27, 105–112 (1994). PubMed
Svobodová, A., Walterová, D. & Psotová, J. Influence of silymarin and its flavonolignans on H2O2-induced oxidative stress in human keratinocytes and mouse fibroblasts. Burns32, 973–979. 10.1016/j.burns.2006.04.004 (2006). PubMed
Trouillas, P. et al. Mechanism of the antioxidant action of silybin and 2,3-dehydrosilybin flavonolignans: A joint experimental and theoretical study. J. Phys. Chem. A.112, 1054–1063. 10.1021/jp075814h (2008). PubMed
Anthony, K. P. & Saleh, M. A. Free radical scavenging and antioxidant activities of silymarin components. Antioxid. Basel2, 398–407. 10.3390/antiox2040398 (2013). PubMed PMC
Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol.194, 7–15. 10.1083/jcb.201102095 (2011). PubMed PMC
Kaulmann, A. & Bohn, T. Carotenoids, inflammation, and oxidative stress-implications of cellular signaling pathways and relation to chronic disease prevention. Nutr. Res.34, 907–929. 10.1016/j.nutres.2014.07.010 (2014). PubMed
Zhang, J. X. et al. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev.2016, 4350965. 10.1155/2016/4350965 (2016). PubMed PMC
Juarez, J. C. et al. Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc. Natl. Acad. Sci. U. S. A.105, 7147–7152. 10.1073/pnas.0709451105 (2008). PubMed PMC
Maddalena, L. A. et al. Hydrogen peroxide production is affected by oxygen levels in mammalian cell culture. Biochem. Biophys. Res. Commun.493, 246–251. 10.1016/j.bbrc.2017.09.037 (2017). PubMed
Liochev, S. I. Reactive oxygen species and the free radical theory of aging. Free Radical Bio Med.60, 1–4. 10.1016/j.freeradbiomed.2013.02.011 (2013). PubMed
Tan, H. Y. et al. The reactive oxygen species in macrophage polarization: Reflecting its dual role in progression and treatment of human diseases. Oxid. Med. Cell Longev.2016, 2795090. 10.1155/2016/2795090 (2016). PubMed PMC
Guo, C. Y., Sun, L., Chen, X. P. & Zhang, D. S. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regener. Res.8, 2003–2014. 10.3969/j.issn.1673-5374.2013.21.009 (2013). PubMed PMC
Bijak, M., Synowiec, E., Sitarek, P., Sliwinski, T. & Saluk-Bijak, J. Evaluation of the cytotoxicity and genotoxicity of flavonolignans in different cellular models. Nutrients9, 1356. 10.3390/Nu9121356 (2017). PubMed PMC
Ly, J. D., Grubb, D. R. & Lawen, A. The mitochondrial membrane potential (Δψm) in apoptosis: An update. Apoptosis8, 115–128. 10.1023/A:1022945107762 (2003). PubMed
Zorova, L. D. et al. Mitochondrial membrane potential. Anal. Biochem.552, 50–59. 10.1016/j.ab.2017.07.009 (2018). PubMed PMC
Vander Heiden, M. G., Chandel, N. S., Williamson, E. K., Schumacker, P. T. & Thompson, C. B. Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell91, 627–37. 10.1016/s0092-8674(00)80450-x (1997). PubMed
Simon, H. U., Haj-Yehia, A. & Levi-Schaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis5, 415–418. 10.1023/a:1009616228304 (2000). PubMed
Faixová, D. et al. silybin showed higher cytotoxic, antiproliferative, and anti-inflammatory activities in the CaCo cancer cell line while retaining viability and proliferation in normal intestinal IPEC-1 cells. Life-Basel13, 492. 10.3390/Life13020492 (2023). PubMed PMC
Tilley, C. et al. Silibinin and its 2,3-dehydro-derivative inhibit basal cell carcinoma growth via suppression of mitogenic signaling and transcription factors activation. Mol. Carcinog.55, 3–14. 10.1002/mc.22253 (2016). PubMed PMC
Deep, G. et al. Silibinin inhibits hypoxia-induced HIF-1alpha-mediated signaling, angiogenesis and lipogenesis in prostate cancer cells: In vitro evidence and in vivo functional imaging and metabolomics. Mol. Carcinog.56, 833–848. 10.1002/mc.22537 (2017). PubMed PMC
Biedermann, D. et al. Silychristin: Skeletal alterations and biological activities. J. Nat. Prod.79, 3086–3092. 10.1021/acs.jnatprod.6b00750 (2016). PubMed
Carreras, M. C., Franco, M. C., Peralta, J. G. & Poderoso, J. J. Nitric oxide, complex I, and the modulation of mitochondrial reactive species in biology and disease. Mol. Aspects Med.25, 125–139. 10.1016/j.mam.2004.02.014 (2004). PubMed
Flohe, L., Brigelius-Flohe, R., Saliou, C., Traber, M. G. & Packer, L. Redox regulation of NF-kappa B activation. Free Radical Bio Med.22, 1115–1126. 10.1016/S0891-5849(96)00501-1 (1997). PubMed
Ritchie, R. H., Drummond, G. R., Sobey, C. G., De Silva, T. M. & Kemp-Harper, B. K. The opposing roles of NO and oxidative stress in cardiovascular disease. Pharmacol. Res.116, 57–69. 10.1016/j.phrs.2016.12.017 (2017). PubMed
Wang, H. J. et al. Silibinin induces the generation of nitric oxide in human breast cancer MCF-7 cells. Free Radic. Res.44, 577–584. 10.3109/10715761003692495 (2010). PubMed
Nandi, A., Yan, L. J., Jana, C. K. & Das, N. Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxid. Med. Cell. Longev.2019, 9613090. 10.1155/2019/9613090 (2019). PubMed PMC
Pei, J., Pan, X. Y., Wei, G. H. & Hua, Y. Research progress of glutathione peroxidase family (GPX) in redoxidation. Front. Pharmacol.14, 1147414. 10.3389/Fphar.2023.1147414 (2023). PubMed PMC
Tonelli, C., Chio, I. I. C. & Tuveson, D. A. Transcriptional regulation by Nrf2. Antioxid. Redox Signal.29, 1727–1745. 10.1089/ars.2017.7342 (2018). PubMed PMC
Robledinos-Antón, N., Fernández-Ginés, R., Manda, G. & Cuadrado, A. Activators and inhibitors of NRF2: A review of their potential for clinical development. Oxid. Med. Cellul. Longev.2019, 9372182. 10.1155/2019/9372182 (2019). PubMed PMC