Flavonolignans silybin, silychristin and 2,3-dehydrosilybin showed differential cytoprotective, antioxidant and anti-apoptotic effects on splenocytes from Balb/c mice

. 2025 Feb 15 ; 15 (1) : 5631. [epub] 20250215

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39955331

Grantová podpora
VEGA 2/0033/21, grant number APVV-17-0410 the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences,
MVTS no.CA21111 European Union-the COST Action no. CA21111

Odkazy

PubMed 39955331
PubMed Central PMC11830019
DOI 10.1038/s41598-025-89824-1
PII: 10.1038/s41598-025-89824-1
Knihovny.cz E-zdroje

Silymarin is an extract obtained from the seeds of milk thistle (Sylibum marianum L., Asteraceae) and contains several structurally related flavonolignans and a small family of flavonoids. Mouse spleen cells represent highly sensitive primary cells suitable for studying the pharmacological potential and biofunctional properties of natural substances. Cultivation of splenocytes for 24 h under standard culture conditions (humidity, 37 °C, 5% CO2, atmospheric oxygen) resulted in decreased viability of splenocytes compared to intact cells. A cytoprotective effect of silybin (SB), silychristin (SCH) and 2,3-dehydrosilybin (DHSB) was observed at concentrations as low as 5 µmol/ml. At 50 µmol/ml, these substances restored and/or stimulated viability and mitochondrial membrane potential and had anti-apoptotic effect in the order SB > DHSB > SCH. The substances demonstrated a concentration-dependent activity in restoring the redox balance based on the changes in the concentration of reactive oxygen species (ROS), hydrogen peroxide (H2O2) and nitric oxide. This was in the order DHSB > SCH > SB, which correlated with the suppressed expression of nuclear factor erythroid 2-related factor 2 (Nrf2), catalase and glutathione peroxidase. The strong stimulation of the superoxide dismutase 1 gene converting ROS to H2O2 points to its dominant role in the maintaining redox homeostasis in splenocytes, which was disrupted by oxidative stress due to non-physiological culture conditions. Our study showed significant differences in the cytoprotective, antioxidant and anti-apoptotic activities of SB, SCH, and DHSB on splenocytes exposed to mild and AAPH-induced oxidative stress.

Zobrazit více v PubMed

Petraskova, L., Kanova, K., Biedermann, D., Kren, V. & Valentova, K. Simple and rapid HPLC separation and quantification of flavonoid, flavonolignans, and 2,3-dehydroflavonolignans in silymarin. Foods 10.3390/Foods9020116 (2020). PubMed PMC

Tvrdy, V. et al. Systematic review of pharmacokinetics and potential pharmacokinetic interactions of flavonolignans from silymarin. Med. Res. Rev.41, 2195–2246. 10.1002/med.21791 (2021). PubMed

Gazák, R., Walterová, D. & Kren, V. Silybin and silymarin -: New and emerging applications in medicine. Curr. Med. Chem.14, 315–338. 10.2174/092986707779941159 (2007). PubMed

Kuo, F. H. & Jan, T. R. Silibinin attenuates antigen-specific IgE production through the modulation of Th1/Th2 balance in ovalbumin-sensitized BALB/c mice. Phytomedicine16, 271–276. 10.1016/j.phymed.2008.07.006 (2009). PubMed

Esmaeil, N., Anaraki, S. B., Gharagozloo, M. & Moayedi, B. Silymarin impacts on immune system as an immunomodulator: One key for many locks. Int. Immunopharmacol.50, 194–201. 10.1016/j.intimp.2017.06.030 (2017). PubMed

Chambers, C. S. et al. The silymarin composition … and why does it matter???. Food Res. Int.100, 339–353. 10.1016/j.foodres.2017.07.017 (2017). PubMed

Camini, F. C. & Costa, D. C. Silymarin: Not just another antioxidant. J. Basic Clin. Physiol. Pharmacol.10.1515/jbcpp-2019-0206 (2020). PubMed

Gu, M. et al. Silymarin ameliorates metabolic dysfunction associated with diet-induced obesity via activation of farnesyl X receptor. Front. Pharmacol.7, 345. 10.3389/Fphar.2016.00345 (2016). PubMed PMC

Surai, P. F. Silymarin as a natural antioxidant: An overview of the current evidence and perspectives. Antioxid. Basel.4, 204–247. 10.3390/antiox4010204 (2015). PubMed PMC

Oufi, H. G. & Al-Shawi, N. N. The effects of different doses of silibinin in combination with methotrexate on testicular tissue of mice. Eur. J. Pharmacol.730, 36–40. 10.1016/j.ejphar.2014.02.010 (2014). PubMed

Adhikari, M. & Arora, R. Nano-silymarin provides protection against γ-radiation-induced oxidative stress in cultured human embryonic kidney cells. Mutat. Res. Genet. Toxicol. Environ. Mutagenesis.792, 1–11. 10.1016/j.mrgentox.2015.08.006 (2015). PubMed

Svobodová, A. R. et al. UVA-photoprotective potential of silymarin and silybin. Arch. Dermatol. Res.310, 413–424. 10.1007/s00403-018-1828-6 (2018). PubMed

Qin, N. B. et al. Hypoglycemic effect of silychristin A from fruit via protecting pancreatic islet cells from oxidative damage and inhibiting α-glucosidase activity and in rats with type 1 diabetes. J. Funct. Foods38, 168–179. 10.1016/j.jff.2017.09.013 (2017).

Bijak, M., Dziedzic, A., Synowiec, E., Sliwinski, T. & Saluk-Bijak, J. Flavonolignans Inhibit IL1-β-induced cross-talk between blood platelets and leukocytes. Nutrients9, 1022. 10.3390/Nu9091022 (2017). PubMed PMC

Gazak, R. et al. Molecular mechanisms of silybin and 2,3-dehydrosilybin antiradical activity–role of individual hydroxyl groups. Free Radic. Biol. Med.46, 745–758. 10.1016/j.freeradbiomed.2008.11.016 (2009). PubMed

Dobiasová, S. et al. Multidrug resistance modulation activity of silybin derivatives and their anti-inflammatory potential. Antioxid.-Basel9, 455. 10.3390/Antiox9050455 (2020). PubMed PMC

Gillessen, A. & Schmidt, H. H. J. Silymarin as supportive treatment in liver diseases: A narrative review. Adv. Therapy37, 1279–1301. 10.1007/s12325-020-01251-y (2020). PubMed PMC

Cemerski, S., Van Meerwijk, J. P. & Romagnoli, P. Oxidative-stress-induced T lymphocyte hyporesponsiveness is caused by structural modification rather than proteasomal degradation of crucial TCR signaling molecules. Eur. J. Immunol.33, 2178–2185. 10.1002/eji.200323898 (2003). PubMed

Alva, R., Gardner, G. L., Liang, P. & Stuart, J. A. Supraphysiological oxygen levels in mammalian cell culture: Current state and future perspectives. Cells11, 3123. 10.3390/Cells11193123 (2022). PubMed PMC

Krenek, K., Marhol, P., Peikerová, Z., Kren, V. & Biedermann, D. Preparatory separation of the silymarin flavonolignans by Sephadex LH-20 gel. Food Res. Int.65, 115–120. 10.1016/j.foodres.2014.02.001 (2014).

Maitrejean, M. et al. The flavanolignan silybin and its hemisynthetic derivatives, a novel series of potential modulators of P-glycoprotein. Bioorg. Med. Chem. Lett.10, 157–160. 10.1016/s0960-894x(99)00636-8 (2000). PubMed

Repetto, G., Del Peso, A. & Zurita, J. L. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc.3, 1125–1131. 10.1038/nprot.2008.75 (2008). PubMed

Tirichen, H. et al. Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress. Front. Physiol.12, 627837. 10.3389/Fphys.2021.627837 (2021). PubMed PMC

Santos, L. C., Honda, N. K., Carlos, I. Z. & Vilegas, W. Intermediate reactive oxygen and nitrogen from macrophages induced by Brazilian lichens. Fitoterapia75, 473–479. 10.1016/j.fitote.2004.04.002 (2004). PubMed

Jurčacková, Z. et al. Astaxanthin extract from and its fractions of astaxanthin mono- and diesters obtained by CCC show differential antioxidant and cytoprotective effects on naive-mouse spleen cells. Antioxid. Basel12, 1144. 10.3390/Antiox12061144 (2023). PubMed PMC

Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods25, 402–408. 10.1006/meth.2001.1262 (2001). PubMed

Carreau, A., El Hafny-Rahbi, B., Matejuk, A., Grillon, C. & Kieda, C. Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. J. Cell Mol. Med.15, 1239–1253. 10.1111/j.1582-4934.2011.01258.x (2011). PubMed PMC

Fonseca, J., Moradi, F., Valente, A. J. E. & Stuart, J. A. Oxygen and glucose levels in cell culture media determine resveratrol’s effects on growth, hydrogen peroxide production, and mitochondrial dynamics. Antioxid. Basel7, 157. 10.3390/Antiox7110157 (2018). PubMed PMC

Moradi, F., Moffatt, C. & Stuart, J. A. The effect of oxygen and micronutrient composition of cell growth media on cancer cell bioenergetics and mitochondrial networks. Biomolecules10.3390/biom11081177 (2021). PubMed PMC

Alva, R. et al. Oxygen toxicity: Cellular mechanisms in normobaric hyperoxia. Cell Biol. Toxicol.39, 111–143. 10.1007/s10565-022-09773-7 (2023). PubMed PMC

Valenzuela, A. & Garrido, A. Biochemical bases of the pharmacological action of the flavonoid silymarin and of its structural isomer silibinin. Biol. Res.27, 105–112 (1994). PubMed

Svobodová, A., Walterová, D. & Psotová, J. Influence of silymarin and its flavonolignans on H2O2-induced oxidative stress in human keratinocytes and mouse fibroblasts. Burns32, 973–979. 10.1016/j.burns.2006.04.004 (2006). PubMed

Trouillas, P. et al. Mechanism of the antioxidant action of silybin and 2,3-dehydrosilybin flavonolignans: A joint experimental and theoretical study. J. Phys. Chem. A.112, 1054–1063. 10.1021/jp075814h (2008). PubMed

Anthony, K. P. & Saleh, M. A. Free radical scavenging and antioxidant activities of silymarin components. Antioxid. Basel2, 398–407. 10.3390/antiox2040398 (2013). PubMed PMC

Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol.194, 7–15. 10.1083/jcb.201102095 (2011). PubMed PMC

Kaulmann, A. & Bohn, T. Carotenoids, inflammation, and oxidative stress-implications of cellular signaling pathways and relation to chronic disease prevention. Nutr. Res.34, 907–929. 10.1016/j.nutres.2014.07.010 (2014). PubMed

Zhang, J. X. et al. ROS and ROS-mediated cellular signaling. Oxid. Med. Cell. Longev.2016, 4350965. 10.1155/2016/4350965 (2016). PubMed PMC

Juarez, J. C. et al. Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling. Proc. Natl. Acad. Sci. U. S. A.105, 7147–7152. 10.1073/pnas.0709451105 (2008). PubMed PMC

Maddalena, L. A. et al. Hydrogen peroxide production is affected by oxygen levels in mammalian cell culture. Biochem. Biophys. Res. Commun.493, 246–251. 10.1016/j.bbrc.2017.09.037 (2017). PubMed

Liochev, S. I. Reactive oxygen species and the free radical theory of aging. Free Radical Bio Med.60, 1–4. 10.1016/j.freeradbiomed.2013.02.011 (2013). PubMed

Tan, H. Y. et al. The reactive oxygen species in macrophage polarization: Reflecting its dual role in progression and treatment of human diseases. Oxid. Med. Cell Longev.2016, 2795090. 10.1155/2016/2795090 (2016). PubMed PMC

Guo, C. Y., Sun, L., Chen, X. P. & Zhang, D. S. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regener. Res.8, 2003–2014. 10.3969/j.issn.1673-5374.2013.21.009 (2013). PubMed PMC

Bijak, M., Synowiec, E., Sitarek, P., Sliwinski, T. & Saluk-Bijak, J. Evaluation of the cytotoxicity and genotoxicity of flavonolignans in different cellular models. Nutrients9, 1356. 10.3390/Nu9121356 (2017). PubMed PMC

Ly, J. D., Grubb, D. R. & Lawen, A. The mitochondrial membrane potential (Δψm) in apoptosis: An update. Apoptosis8, 115–128. 10.1023/A:1022945107762 (2003). PubMed

Zorova, L. D. et al. Mitochondrial membrane potential. Anal. Biochem.552, 50–59. 10.1016/j.ab.2017.07.009 (2018). PubMed PMC

Vander Heiden, M. G., Chandel, N. S., Williamson, E. K., Schumacker, P. T. & Thompson, C. B. Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell91, 627–37. 10.1016/s0092-8674(00)80450-x (1997). PubMed

Simon, H. U., Haj-Yehia, A. & Levi-Schaffer, F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis5, 415–418. 10.1023/a:1009616228304 (2000). PubMed

Faixová, D. et al. silybin showed higher cytotoxic, antiproliferative, and anti-inflammatory activities in the CaCo cancer cell line while retaining viability and proliferation in normal intestinal IPEC-1 cells. Life-Basel13, 492. 10.3390/Life13020492 (2023). PubMed PMC

Tilley, C. et al. Silibinin and its 2,3-dehydro-derivative inhibit basal cell carcinoma growth via suppression of mitogenic signaling and transcription factors activation. Mol. Carcinog.55, 3–14. 10.1002/mc.22253 (2016). PubMed PMC

Deep, G. et al. Silibinin inhibits hypoxia-induced HIF-1alpha-mediated signaling, angiogenesis and lipogenesis in prostate cancer cells: In vitro evidence and in vivo functional imaging and metabolomics. Mol. Carcinog.56, 833–848. 10.1002/mc.22537 (2017). PubMed PMC

Biedermann, D. et al. Silychristin: Skeletal alterations and biological activities. J. Nat. Prod.79, 3086–3092. 10.1021/acs.jnatprod.6b00750 (2016). PubMed

Carreras, M. C., Franco, M. C., Peralta, J. G. & Poderoso, J. J. Nitric oxide, complex I, and the modulation of mitochondrial reactive species in biology and disease. Mol. Aspects Med.25, 125–139. 10.1016/j.mam.2004.02.014 (2004). PubMed

Flohe, L., Brigelius-Flohe, R., Saliou, C., Traber, M. G. & Packer, L. Redox regulation of NF-kappa B activation. Free Radical Bio Med.22, 1115–1126. 10.1016/S0891-5849(96)00501-1 (1997). PubMed

Ritchie, R. H., Drummond, G. R., Sobey, C. G., De Silva, T. M. & Kemp-Harper, B. K. The opposing roles of NO and oxidative stress in cardiovascular disease. Pharmacol. Res.116, 57–69. 10.1016/j.phrs.2016.12.017 (2017). PubMed

Wang, H. J. et al. Silibinin induces the generation of nitric oxide in human breast cancer MCF-7 cells. Free Radic. Res.44, 577–584. 10.3109/10715761003692495 (2010). PubMed

Nandi, A., Yan, L. J., Jana, C. K. & Das, N. Role of catalase in oxidative stress- and age-associated degenerative diseases. Oxid. Med. Cell. Longev.2019, 9613090. 10.1155/2019/9613090 (2019). PubMed PMC

Pei, J., Pan, X. Y., Wei, G. H. & Hua, Y. Research progress of glutathione peroxidase family (GPX) in redoxidation. Front. Pharmacol.14, 1147414. 10.3389/Fphar.2023.1147414 (2023). PubMed PMC

Tonelli, C., Chio, I. I. C. & Tuveson, D. A. Transcriptional regulation by Nrf2. Antioxid. Redox Signal.29, 1727–1745. 10.1089/ars.2017.7342 (2018). PubMed PMC

Robledinos-Antón, N., Fernández-Ginés, R., Manda, G. & Cuadrado, A. Activators and inhibitors of NRF2: A review of their potential for clinical development. Oxid. Med. Cellul. Longev.2019, 9372182. 10.1155/2019/9372182 (2019). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace