Systematic review of pharmacokinetics and potential pharmacokinetic interactions of flavonolignans from silymarin

. 2021 Jul ; 41 (4) : 2195-2246. [epub] 20210215

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, systematický přehled

Perzistentní odkaz   https://www.medvik.cz/link/pmid33587317

Silymarin is an extract from the seeds (fruits) of Silybum marianum that contains flavonolignans and flavonoids. Although it is frequently used as a hepatoprotective agent, its application remains somewhat debatable, in particular, due to the low oral bioavailability of flavonolignans. Moreover, there are claims of its potential interactions with concomitantly used drugs. This review aims at a systematic summary and critical assessment of known information on the pharmacokinetics of particular silymarin flavonolignans. There are two known major reasons for poor systemic oral bioavailability of flavonolignans: (1) rapid conjugation in intestinal cells or the liver and (2) efflux of parent flavonolignans or formed conjugates back to the lumen of the gastrointestinal tract by intestinal cells and rapid excretion by the liver into the bile. The metabolism of phase I appears to play a minor role, in contrast to extensive conjugation and indeed the unconjugated flavonolignans reach low plasma levels after common doses. Only about 1%-5% of the administered dose is eliminated by the kidneys. Many in vitro studies tested the inhibitory potential of silymarin and its components toward different enzymes and transporters involved in the absorption, metabolism, and excretion of xenobiotics. In most cases, effective concentrations are too high to be relevant under real biological conditions. Most human studies showed no silymarin-drug interactions explainable by these suggested interferences. More interactions were found in animal studies, likely due to the much higher doses administered.

Zobrazit více v PubMed

Šimánek V, Křen V, Ulrichová J, Vičar J, Cvak L. Silymarin: what is in the name…? An appeal for a change of editorial policy. Hepatology. 2000;32(2):442-443.

Petrásková L, Káňová K, Biedermann D, Křen V, Valentová K. Simple and rapid HPLC separation and quantification of flavonoid, flavonolignans, and 2,3-dehydroflavonolignans in silymarin. Foods. 2020;9(2):116.

Stafford AH, Lester HH, Porter JL. Chemical and enzymatic synthesis of monomeric procyanidins (leucocyanidins or 3′,4′,5,7-tetrahydroxyflavan-3,4-diols) from (2R,3R)-dihydroquercetin. Phytochemistry. 1985;24(2):333-338.

Pyszková M, Biler M, Biedermann D, et al. Flavonolignan 2,3-dehydroderivatives: preparation, antiradical and cytoprotective activity. Free Radic Biol Med. 2016;90:114-125.

Althagafy HS, Meza-Aviña ME, Oberlies NH, Croatt MP. Mechanistic study of the biomimetic synthesis of flavonolignan diastereoisomers in milk thistle. J Org Chem. 2013;78(15):7594-7600.

Merlini L, Zanarotti A, Pelter A, Rochefort MP, Hansel R. Benzodioxans by oxidative phenol coupling-synthesis of silybin. J Chem Soc Perkin Trans I. 1980;3:775-778.

Chambers CS, Valentová K, Křen V. “Non-taxifolin” derived flavonolignans: phytochemistry and biology. Curr Pharm Design. 2015;21(38):5489-5500.

Biedermann D, Vavříková E, Cvak L, Křen V. Chemistry of silybin. Nat Prod Rep. 2014;31(9):1138-1157.

Sciacca MFM, Romanucci V, Zarrelli A, et al. Inhibition of Aβ amyloid growth and toxicity by silybins: the crucial role of stereochemistry. ACS Chem Neurosci. 2017;8(8):1767-1778.

Vargas-Mendoza N Hepatoprotective effect of silymarin. World J Hepatol. 2014;6:144-149.

Abenavoli L, Capasso R, Milic N, Capasso F. Milk thistle in liver diseases: past, present, future. Phytotherapy Research. 2010;24(10):1423-1432.

Valková V, Ďúranová H, Bilčíková J, Habán M. Milk thistle (Silybum marianum): a valuable medicinal plant with several therapeutic purposes. J Microbiol Biotechnol Food Sci. 2020, 9:9-843.

Kvasnička F, Biba B, Ševčík R, Voldřich M, Krátká J. Analysis of the active components of silymarin. J Chromatogr A. 2003;990(1-2):239-245.

Biedermann D, Buchta M, Holečková V, et al. Silychristin: skeletal alterations and biological activities. J Nat Prod. 2016;79(12):3086-3092.

Viktorová J, Dobiasová S, Řehořová K, et al. Antioxidant, anti-inflammatory, and multidrug resistance modulation activity of silychristin derivatives. Antioxidants. 2019;8(8):303.

Biedermann D, Moravcová V, Valentová K, et al. Oxidation of flavonolignan silydianin to unexpected lactone-acid derivative. Phytochem Lett. 2019;30:14-20.

Pyszková M, Biler M, Biedermann D, et al. Flavonolignan 2,3-dehydroderivatives: preparation, antiradical and cytoprotective activity. Free Radic Biol Med. 2016;90:114-125.

Valentová K, Biedermann D, Křen V. 2,3-Dehydroderivatives of silymarin flavonolignans: prospective natural compounds for the prevention of chronic diseases. Proceedings. 2019;11(1):21.

Tvrdý V, Catapano MC, Rawlik T, et al. Interaction of isolated silymarin flavonolignans with iron and copper. J Inorg Biochem. 2018;189:115-123.

Roubalová L, Dinkova-Kostova AT, Biedermann D, Křen V, Ulrichová J, Vrba J. Flavonolignan 2,3-dehydrosilydianin activates Nrf2 and upregulates NAD(P)H: quinone oxidoreductase 1 in Hepa1c1c7 cells. Fitoterapia. 2017;119:115-120.

Filippopoulou K, Papaevgeniou N, Lefaki M, et al. 2,3-Dehydrosilybin A/B as a pro-longevity and anti-aggregation compound. Free Radic Biol Med. 2017;103:256-267.

Gažák R, Valentová K, Fuksová K, et al. Synthesis and antiangiogenic activity of new silybin galloyl esters. J Med Chem. 2011;54(20):7397-7407.

Karas D, Gažák R, Valentová K, et al. Effects of 2,3-dehydrosilybin and its galloyl ester and methyl ether derivatives on human umbilical vein endothelial cells. J Nat Prod. 2016;79(4):812-820.

Tilley C, Deep G, Agarwal C, et al. Silibinin and its 2,3-dehydro-derivative inhibit basal cell carcinoma growth via suppression of mitogenic signaling and transcription factors activation. Mol Carcinogen. 2016;55(1):3-14.

Pourová J, Applová L, Macáková K, et al. The effect of silymarin flavonolignans and their sulfated conjugates on platelet aggregation and blood vessels ex vivo . Nutrients 2019;11(10):2286.

Valentová K, Purchartová K, Rydlová L, et al. Sulfated metabolites of flavonolignans and 2,3-dehydroflavonolignans: preparation and properties. Int J Mol Sci. 2018;19(8):2349.

Rothwell JA, Urpi-Sarda M, Boto-Ordoñez M, et al. Systematic analysis of the polyphenol metabolome using the Phenol-Explorer database. Mol Nutr Food Res. 2016;60(1):203-211.

Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Sign. 2013;18(14):1818-1892.

Najmanová I, Vopršálová M, Saso L, Mladěnka P. The pharmacokinetics of flavanones. Crit Rev Food Sci Nutr. 2019, 60:1-17.

Bijak M. Silybin, a major bioactive component of milk thistle (Silybum marianum l. Gaernt.)-chemistry, bioavailability, and metabolism. Molecules. 2017;22, 1942(11).

Xie Y, Zhang D, Zhang J. Yuan J. Metabolism, transport and drug-drug interactions of silymarin. Molecules. 2019;24, 3693(20).

Javed S, Kohli K, Ali M. Reassessing bioavailability of silymarin. Altern Med Rev. 2011;16(3):239-249.

Wu JW, Lin LC, Tsai TH. Drug-drug interactions of silymarin on the perspective of pharmacokinetics. J Ethnopharmacol. 2009;121(2):185-193.

Křen V, Marhol P, Purchartová K, Gabrielová E, Modrianský M. Biotransformation of silybin and its congeners. Curr Drug Metab. 2013;14(10):1009-1021.

Di Costanzo A, Angelico R. Formulation strategies for enhancing the bioavailability of silymarin: the state of the art. Molecules 2019;24, 2155(11).

Zhou S, Lim LY, Chowbay B. Herbal modulation of P-glycoprotein. Drug Metab Rev. 2004;36(1):57-104.

Pal HC, Hunt KM, Diamond A, Elmets CA, Afaq F. Phytochemicals for the management of melanoma. Mini Rev Med Chem. 2016;16(12):953-979.

Liakopoulou C, Kazazis C, Vallianou NG. Silimarin and cancer. Anticancer Agents Med Chem. 2018;18(14):1970-1974.

Kroll DJ, Shaw HS, Oberlies NH. Milk thistle nomenclature: why it matters in cancer research and pharmacokinetic studies. Integr Cancer Ther. 2007;6(2):110-119.

Kazazis CE, Evangelopoulos AA, Kollas A, Vallianou NG. The therapeutic potential of milk thistle in diabetes. Rev Diabet Stud. 2014;11(2):167-174.

Luper S. A review of plants used in the treatment of liver disease: part 1. Altern Med Rev. 1998;3(6):410-421.

Abenavoli L, Izzo AA, Milic N, Cicala C, Santini A, Capasso R. Milk thistle (Silybum marianum): a concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother Res. 2018;32(11):2202-2213.

Polachi N, Bai G, Li T, et al. Modulatory effects of silibinin in various cell signaling pathways against liver disorders and cancer-a comprehensive review. Eur J Med Chem. 2016;123:577-595.

Dash RP, Kala M, Nivsarkar M, Babu RJ. Implication of formulation strategies on the bioavailability of selected plant-derived hepatoprotectants. Crit Rev Ther Drug Carrier Syst. 2017;34(6):489-526.

Wellington K, Jarvis B. Silymarin: a review of its clinical properties in the management of hepatic disorders. BioDrugs. 2001;15(7):465-489.

Bilia A., Piazzini V, Guccione C, et al. Improving on nature: the role of nanomedicine in the development of clinical natural drugs. Planta Med. 2017;83(5):366-381.

Milic N, Milosevic N, Suvajdzic L, Zarkov M, Abenavoli L. New therapeutic potentials of milk thistle (Silybum marianum). Nat Prod Commun. 2013;8(12):1801-1810.

Pradhan SC, Girish C. Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine. Indian J Med Res. 2006;124(5):491-504.

Jadhav NR, Nadaf SJ, Lohar DA, Ghagare PS, Powar TA. Phytochemicals formulated as nanoparticles: inventions, recent patents and future prospects. Recent Pat Drug Deliv Formul. 2017;11(3):173-186.

Silybum marianum. (milk thistle). Altern Med Rev. 1999;4(4):272-274.

Takke A, Shende P. Nanotherapeutic silibinin: an insight of phytomedicine in healthcare reformation. Nanomedicine. 2019;21:102057.

Luan LB, Zhao N. The absorption characteristics of silybin in small intestine of rat. Yao Xue Xue Bao. 2006;41(2):138-141.

Wu JW, Lin LC, Hung SC, Chi CW, Tsai TH. Analysis of silibinin in rat plasma and bile for hepatobiliary excretion and oral bioavailability application. J Pharm Biomed Anal. 2007;45(4):635-641.

Calani L, Brighenti F, Bruni R, Del Rio D. Absorption and metabolism of milk thistle flavanolignans in humans. Phytomedicine. 2012;20(1):40-46.

Lorenz D, Lucker PW, Mennicke WH, Wetzelsberger N. Pharmacokinetic studies with silymarin in human serum and bile. Methods Find Exp Clin Pharmacol. 1984;6(10):655-661.

Weyhenmeyer R, Mascher H, Birkmayer J. Study on dose-linearity of the pharmacokinetics of silibinin diastereomers using a new stereospecific assay. Int J Clin Pharmacol Ther Toxicol. 1992;30(4):134-138.

Hung CF, Lin YK, Zhang LW, Chang CH, Fang JY. Topical delivery of silymarin constituents via the skin route. Acta Pharmacol Sin. 2010;31(1):118-126.

Valentová K, Purchartová K, Rydlová L, et al. Sulfated metabolites of flavonolignans and 2,3-dehydroflavonolignans: preparation and properties. Int J Mol Sci. 2018;19, 2349(8).

Kosina P, Paloncýová M, Svobodová AR, et al. Dermal delivery of selected polyphenols from Silybum marianum. Theoretical and experimental study. Molecules 2018;24, 61(1)).

U.S. Department of Health and Human Services, Food and Drug Administration. Waiver of in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms based on a biopharmaceutics classification system, guidance for industry. Food and Drug Administration, Biopharmaceutics; 2017

Tan ZR, Zhou YX, Liu J, et al. The influence of ABCB1 polymorphism C3435T on the pharmacokinetics of silibinin. J Clin Pharm Ther. 2015;40(6):685-688.

Xu P, Zhou H, Li YZ, et al. Baicalein enhances the oral bioavailability and hepatoprotective effects of silybin through the inhibition of efflux transporters BCRP and MRP2. Front Pharmacol. 2018;9:1115.

Yuan ZW, Li YZ, Liu ZQ, et al. Role of tangeretin as a potential bioavailability enhancer for silybin: pharmacokinetic and pharmacological studies. Pharmacol Res. 2018;128:153-166.

Kim YC, Kim EJ, Lee ED, et al. Comparative bioavailability of silibinin in healthy male volunteers. Int J Clin Pharmacol Ther. 2003;41(12):593-596.

Mendez-Sanchez N, Dibildox-Martinez M, Sosa-Noguera J, Sanchez-Medal R, Flores-Murrieta FJ. Superior silybin bioavailability of silybin-phosphatidylcholine complex in oily-medium soft-gel capsules versus conventional silymarin tablets in healthy volunteers. BMC Pharmacol Toxicol. 2019;20(1):5.

Kidd P, Head K. A review of the bioavailability and clinical efficacy of milk thistle phytosome: a silybin-phosphatidylcholine complex (Siliphos). Altern Med Rev. 2005;10(3):193-203.

Kidd PM. Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts. Altern Med Rev. 2009;14(3):226-246.

Rosso N, Marin V, Giordani A, et al. The pros and the cons for the use of silybin-rich oral formulations in treatment of liver damage (NAFLD in particular). Curr Med Chem. 2015;22(25):2954-2971.

Javed S, Kohli K, Ali M. Patented bioavailability enhancement techniques of silymarin. Recent Pat Drug Deliv Formul. 2010;4(2):145-152.

Morazzoni P, Montalbetti A, Malandrino S, Pifferi G. Comparative pharmacokinetics of silipide and silymarin in rats. Eur J Drug Metab Pharmacokinet. 1993;18(3):289-297.

Cao X, Deng W, Fu M, et al. Seventy-two-hour release formulation of the poorly soluble drug silybin based on porous silica nanoparticles: in vitro release kinetics and in vitro/in vivo correlations in beagle dogs. Eur J Pharm Sci. 2013;48(1-2):64-71.

Cao X, Fu M, Wang L, et al. Oral bioavailability of silymarin formulated as a novel 3-day delivery system based on porous silica nanoparticles. Acta Biomater. 2012;8(6):2104-2112.

Cao X, Deng WW, Fu M, et al. In vitro release and in vitro-in vivo correlation for silybin meglumine incorporated into hollow-type mesoporous silica nanoparticles. Int J Nanomed. 2012;7:753-762.

Ashraf M, Abid F, Riffat S, et al. Rationalized and complementary findings of silymarin (milk thistle) in pakistani healthy volunteers. Acta Pol Pharm. 2015;72(3):607-614.

Hussein A, El-Menshawe S, Afouna M. Enhancement of the in-vitro dissolution and in-vivo oral bioavailability of silymarin from liquid-filled hard gelatin capsules of semisolid dispersion using Gelucire 44/14 as a carrier. Pharmazie. 2012;67(3):209-214.

Pérez-Sánchez A, Cuyàs E, Ruiz-Torres V, et al. Intestinal permeability study of clinically relevant formulations of silibinin in Caco-2 cell monolayers. Int J Mol Sci. 2019;20(7):1606.

Ahmad U, Akhtar J, Singh SP, Ahmad FJ, Siddiqui S. Silymarin nanoemulsion against human hepatocellular carcinoma: development and optimization. Artif Cells Nanomed Biotechnol. 2018;46(2):231-241.

Li WY, Yu G, Hogan RM, et al. Relative bioavailability of silybin A and silybin B from 2 multiconstituent dietary supplement formulations containing milk thistle extract: a single-dose study. Clin Ther. 2018;40(1):103-113.

Flaig TW, Gustafson DL, Su LJ, et al. A phase I and pharmacokinetic study of silybin-phytosome in prostate cancer patients. Invest New Drugs. 2007;25(2):139-146.

Schandalik R, Perucca E. Pharmacokinetics of silybin following oral administration of silipide in patients with extrahepatic biliary obstruction. Drugs Exp Clin Res. 1994;20(1):37-42.

Voinovich D, Perissutti B, Grassi M, Passerini N, Bigotto A. Solid state mechanochemical activation of Silybum marianum dry extract with betacyclodextrins: characterization and bioavailability of the coground systems. J Pharm Sci. 2009;98(11):4119-4129.

Kandimalla R, Dash S, Bhowal AC, et al. Glycogen-gold nanohybrid escalates the potency of silymarin. Int J Nanomed. 2017;12:7025-7038.

Sornsuvit C, Hongwiset D, Yotsawimonwat S, Toonkum M, Thongsawat S, Taesotikul W. The bioavailability and pharmacokinetics of silymarin SMEDDS formulation study in healthy Thai volunteers. Evid Based Complement Alternat Med. 2018;2018:1507834-7.

Yang G, Zhao Y, Zhang Y, Dang B, Liu Y, Feng N. Enhanced oral bioavailability of silymarin using liposomes containing a bile salt: preparation by supercritical fluid technology and evaluation in vitro and in vivo . Int J Nanomed. 2015;10:6633-6644.

Wen Z, Dumas TE, Schrieber SJ, Hawke RL, Fried MW, Smith PC. Pharmacokinetics and metabolic profile of free, conjugated, and total silymarin flavonolignans in human plasma after oral administration of milk thistle extract. Drug Metab Dispos. 2008;36(1):65-72.

Chambers CS, Viktorová J, Řehořová K, et al. Defying multidrug resistance! Modulation of related transporters by flavonoids and flavonolignans. J Agric Food Chem. 2019. 68(7):1763-1779.

U.S. Department of Health and Human Services Food and Drug Administration. In vitro drug interaction studies-cytochrome P450 enzyme- and transporter-mediated drug interactions guidance for industry. Food and Drug Administration, Clinical Pharmacology; 2020

Bi X, Yuan Z, Qu B, Zhou H, Liu Z, Xie Y. Piperine enhances the bioavailability of silybin via inhibition of efflux transporters BCRP and MRP2. Phytomedicine 2019;54:98-108.

Gatti G, Perucca E. Plasma concentrations of free and conjugated silybin after oral intake of a silybin-phosphatidylcholine complex (Silipide) in healthy volunteers. Int J Clin Pharmacol Ther. 1994;32(11):614-617.

Hawke RL, Schrieber SJ, Soule TA, et al. Silymarin ascending multiple oral dosing phase I study in noncirrhotic patients with chronic hepatitis C. J Clin Pharmacol. 2010;50(4):434-449.

Barzaghi N, Crema F, Gatti G, Pifferi G, Perucca E. Pharmacokinetic studies on IdB 1016, a silybin- phosphatidylcholine complex, in healthy human subjects. Eur J Drug Metab Pharmacokinet. 1990;15(4):333-338.

Brinda BJ, Zhu HJ, Markowitz JS. A sensitive LC-MS/MS assay for the simultaneous analysis of the major active components of silymarin in human plasma. J Chromatogr B. 2012;902:1-9.

Flaig TW, Glodé M, Gustafson D, et al. A study of high-dose oral silybin-phytosome followed by prostatectomy in patients with localized prostate cancer. Prostate. 2010;70(8):848-855.

Hoh C, Boocock D, Marczylo T, et al. Pilot study of oral silibinin, a putative chemopreventive agent, in colorectal cancer patients: silibinin levels in plasma, colorectum, and liver and their pharmacodynamic consequences. Clin Cancer Res. 2006;12(9):2944-2950.

Lazzeroni M, Guerrieri-Gonzaga A, Gandini S, et al. A presurgical study of oral silybin-phosphatidylcholine in patients with early breast cancer. Cancer Prev Res. 2016;9(1):89-95.

Li W, Gao J, Zhao HZ, Liu CX. Development of a HPLC-UV assay for silybin-phosphatidylcholine complex (silybinin capsules) and its pharmacokinetic study in healthy male Chinese volunteers. Eur J Drug Metab Pharmacokinet. 2006;31(4):265-270.

Rickling B, Hans B, Kramarczyk R, Krumbiegel G, Weyhenmeyer R. Two high-performance liquid chromatographic assays for the determination of free and total silibinin diastereomers in plasma using column switching with electrochemical detection and reversed-phase chromatography with ultraviolet detection. J Chromatogr B Biomed Appl. 1995;670(2):267-277.

Savio D, Harrasser PC, Basso G. Softgel capsule technology as an enhancer device for the absorption of natural principles in humans. A bioavailability cross-over randomised study on silybin. Drug Res. 1998;48(11):1104-1106.

Zhu HJ, Brinda BJ, Chavin KD, Bernstein HJ, Patrick KS, Markowitz JS. An assessment of pharmacokinetics and antioxidant activity of free silymarin flavonolignans in healthy volunteers: a dose escalation study. Drug Metab Dispos. 2013;41(9):1679-1685.

Arcari M, Brambilla A, Brandt A, et al. A new inclusion complex of silibinin and β-cyclodextrins: in vitro dissolution kinetics and in vivo absorption in comparison with traditional formulations. Boll Chim Farm. 1992;131(5):205-209.

Hackett ES, Mama KR, Twedt DC, Gustafson DL. Pharmacokinetics and safety of silibinin in horses. Am J Vet Res. 2013;74(10):1327-1332.

Ha ES, Han DG, Seo SW, et al. A simple HPLC method for the quantitative determination of silybin in rat plasma: application to a comparative pharmacokinetic study on commercial silymarin products. Molecules. 2019;24, 2180(11).

Yan-yu X, Yun-mei S, Zhi-peng C, Qi-neng P. Preparation of silymarin proliposome: a new way to increase oral bioavailability of silymarin in beagle dogs. Int J Pharm. 2006;319(1-2):162-168.

Shangguan M, Lu Y, Qi J, et al. Binary lipids-based nanostructured lipid carriers for improved oral bioavailability of silymarin. J Biomater Appl. 2014;28(6):887-896.

Shangguan M, Qi J, Lu Y, Wu W. Comparison of the oral bioavailability of silymarin-loaded lipid nanoparticles with their artificial lipolysate counterparts: implications on the contribution of integral structure. Int J Pharm. 2015;489(1-2):195-202.

Yu J., Zhu Y, Wang L, et al. Enhancement of oral bioavailability of the poorly water-soluble drug silybin by sodium cholate/phospholipid-mixed micelles. Acta Pharmacol Sin. 2010;31(6):759-764.

Liu ZH, Li XJ, Huang AW, Zhang J, Song HT. Preparation and characterization of silymarin synchronized and sustained release dropping pill. Curr Drug Deliv. 2017;14(5):650-657.

Lian R, Lu Y, Qi J, et al. Silymarin glyceryl monooleate/poloxamer 407 liquid crystalline matrices: physical characterization and enhanced oral bioavailability. AAPS PharmSciTech. 2011;12(4):1234-1240.

Filburn CR, Kettenacker R, Griffin DW. Bioavailability of a silybin-phosphatidylcholine complex in dogs. J Vet Pharmacol Ther. 2007;30(2):132-138.

Zhu Y, Wang M, Zhang Y, et al. In vitro release and bioavailability of silybin from micelle-templated porous calcium phosphate microparticles. AAPS PharmSciTech. 2016;17(5):1232-1239.

Wang Y, Zhang D, Liu Z, et al. In vitro and in vivo evaluation of silybin nanosuspensions for oral and intravenous delivery. Nanotechnology 2010;21(15):155104.

Sun N, Zhang X, Lu Y, Wu W. In vitro evaluation and pharmacokinetics in dogs of solid dispersion pellets containing Silybum marianum extract prepared by fluid-bed coating. Planta Med. 2008;74(2):126-132.

Li X, Yuan Q, Huang Y, Zhou Y, Liu Y. Development of silymarin self-microemulsifying drug delivery system with enhanced oral bioavailability. AAPS PharmSciTech. 2010;11(2):672-678.

Xu D, Ni R, Sun W, Li LC, Mao S. In vivo absorption comparison of nanotechnology-based silybin tablets with its water-soluble derivative. Drug Dev Ind Pharm. 2015;41(4):552-559.

Choi H.G., Yong C.S., Yang K.Y., et al. Silymarin-loaded solid nanoparticles provide excellent hepatic protection: physicochemical characterization and in vivo evaluation. Int J Nanomed. 2013;8:3333-3343.

Ma Y, He H, Xia F, et al. In vivo fate of lipid-silybin conjugate nanoparticles: Implications on enhanced oral bioavailability. Nanomed. 2017;13(8):2643-2654.

Parveen R, Baboota S, Ali J, Ahuja A, Vasudev SS, Ahmad S. Oil based nanocarrier for improved oral delivery of silymarin: in vitro and in vivo studies. Int J Pharm. 2011;413(1-2):245-253.

Yin T, Zhang Y, Liu Y, et al. The efficiency and mechanism of N-octyl-O, N-carboxymethyl chitosan-based micelles to enhance the oral absorption of silybin. Int J Pharm. 2018;536(1):231-240.

Yanyu X, Yunmei S, Zhipeng C, Qineng P. The preparation of silybin-phospholipid complex and the study on its pharmacokinetics in rats. Int J Pharm. 2006;307(1):77-82.

Huang X, Wu Z, Gao W, Chen Q, Yu B. Polyamidoamine dendrimers as potential drug carriers for enhanced aqueous solubility and oral bioavailability of silybin. Drug Dev Ind Pharm. 2011;37(4):419-427.

Chaudhary S, Garg T, Murthy RS, Rath G, Goyal AK. Development, optimization and evaluation of long chain nanolipid carrier for hepatic delivery of silymarin through lymphatic transport pathway. Int J Pharm. 2015;485(1-2):108-121.

Liang J, Liu Y, Liu J, et al. Chitosan-functionalized lipid-polymer hybrid nanoparticles for oral delivery of silymarin and enhanced lipid-lowering effect in NAFLD. J Nanobiotechnology. 2018;16(1):64.

Chang LW, Hou ML, Tsai TH. Silymarin in liposomes and ethosomes: pharmacokinetics and tissue distribution in free-moving rats by high-performance liquid chromatography-tandem mass spectrometry. J Agric Food Chem. 2014;62(48):11657-11665.

Yi T, Liu C, Zhang J, Wang F, Wang J, Zhang J. A new drug nanocrystal self-stabilized Pickering emulsion for oral delivery of silybin. Eur J Pharm Sci. 2017;96:420-427.

Fu T, Lu J, Guo L, Zhang L, Cai X, Zhu H. Improving bioavailability of silybin by inclusion into SBA-15 mesoporous silica materials. J Nanosci Nanotechnol. 2012;12(5):3997-4006.

Woo JS, Kim TS, Park JH, Chi SC. Formulation and biopharmaceutical evaluation of silymarin using SMEDDS. Arch Pharm Res. 2007;30(1):82-89.

Hwang D.H., Kim YI, Cho KH, et al. A novel solid dispersion system for natural product-loaded medicine: silymarin-loaded solid dispersion with enhanced oral bioavailability and hepatoprotective activity. J Microencapsul. 2014;31(7):619-626.

Liu CH, Lin CC, Hsu WC, et al. Highly bioavailable silibinin nanoparticles inhibit HCV infection. Gut. 2017;66(10):1853-1861.

Passerini N, Perissutti B, Albertini B, et al. A new approach to enhance oral bioavailability of Silybum marianum dry extract: association of mechanochemical activation and spray congealing. Phytomedicine. 2012;19(2):160-168.

Iosio T, Voinovich D, Perissutti B, et al. Oral bioavailability of silymarin phytocomplex formulated as self-emulsifying pellets. Phytomedicine. 2011;18(6):505-512.

Chen CH, Chang CC, Shih TH, Aljuffali IA, Yeh TS, Fang JY. Self-nanoemulsifying drug delivery systems ameliorate the oral delivery of silymarin in rats with Roux-en-Y gastric bypass surgery. Int J Nanomed. 2015;10:2403-2416.

Morazzoni P, Magistretti MJ, Giachetti C, Zanolo G. Comparative bioavailability of Silipide, a new flavanolignan complex, in rats. Eur J Drug Metab Pharmacokinet. 1992;17(1):39-44.

Kumar N, Rai A, Reddy ND, et al. Silymarin liposomes improves oral bioavailability of silybin besides targeting hepatocytes, and immune cells. Pharmacol Rep. 2014;66(5):788-798.

Comoglio A, Leonarduzzi G, Carini R, et al. Studies on the antioxidant and free radical scavenging properties of IdB 1016 a new flavanolignan complex. Free Radic Res Commun. 1990;11(1-3):109-115.

Tung NT, Tran CS, Nguyen HA, et al. Formulation and biopharmaceutical evaluation of supersaturatable self-nanoemulsifying drug delivery systems containing silymarin. Int J Pharm. 2019;555:63-76.

Chu C, Tong S., Xu Y, et al. Proliposomes for oral delivery of dehydrosilymarin: preparation and evaluation in vitro and in vivo . Acta Pharmacol Sin. 2011;32(7):973-980.

Wu W, Wang Y, Que L. Enhanced bioavailability of silymarin by self-microemulsifying drug delivery system. Eur J Pharm Biopharm. 2006;63(3):288-294.

Fenclova M, Stranska-Zachariasova M, Benes F, et al. Liquid chromatography-drift tube ion mobility-mass spectrometry as a new challenging tool for the separation and characterization of silymarin flavonolignans. Anal Bioanal Chem. 2020;412(4):819-832.

Koch HP, Ritschel WA. Bioavailability of silymarin, I: volumes of distribution of silybin, silydianin, and silychristin from in-vitro data. Arch Pharm. 1981;314(6):515-517.

Švagera Z, Škottová N, Váňa P, et al. Plasma lipoproteins in transport of silibinin, an antioxidant flavonolignan from Silybum marianum . Phytother Res. 2003;17(5):524-530.

Yamasaki K, Sato H, Minagoshi S, et al. The binding of silibinin, the main constituent of silymarin, to site I on human serum albumin. Biol Pharm Bull. 2017;40(3):310-317.

Poór M, Boda G, Mohos V, et al. Pharmacokinetic interaction of diosmetin and silibinin with other drugs: Inhibition of CYP2C9-mediated biotransformation and displacement from serum albumin. Biomed Pharmacother. 2018;102:912-921.

Persiani S, Sala F, Cole R, et al. Silibinin hemisuccinate binding to proteins in plasma and blood cell/plasma partitioning in mouse, rat, dog and man in vitro . Drug Metabol Drug Interact. 2013;28(2):115-122.

Jia L, Zhang D, Li Z, et al. Nanostructured lipid carriers for parenteral delivery of silybin: biodistribution and pharmacokinetic studies. Colloids Surf B Biointerfaces. 2010;80(2):213-218.

Wang Y, Wang L, Liu Z, Zhang D, Zhang Q. In vivo evaluation of silybin nanosuspensions targeting liver. J Biomed Nanotechnol. 2012;8(5):760-769.

Pan TL, Wang PW, Hung CF, Aljuffali IA, Dai YS, Fang JY. The impact of retinol loading and surface charge on the hepatic delivery of lipid nanoparticles. Colloids Surf B Biointerfaces. 2016;141:584-594.

Škottová N, Švagera Z, Večeřa R, Urbánek K, Jegorov A, Šimánek V. Pharmacokinetic study of iodine-labeled silibinins in rat. Pharmacol Res. 2001;44(3):247-253.

Sonnenbichler J, Mattersberger J, Hanser G. Mechanism of silybin action, III. Resorption of the flavonolignane derivative silybin into rat liver cells. Hoppe Seylers Z Physiol Chem. 1980;361(11):1751-1756.

Dube D, Khatri K, Goyal AK, Mishra N, Vyas SP. Preparation and evaluation of galactosylated vesicular carrier for hepatic targeting of silibinin. Drug Dev Ind Pharm. 2010;36(5):547-555.

Zhao J, Agarwal R. Tissue distribution of silibinin, the major active constituent of silymarin, in mice and its association with enhancement of phase II enzymes: implications in cancer chemoprevention. Carcinogenesis 1999;20(11):2101-2108.

Xu P, Yin Q, Shen J, et al. Synergistic inhibition of breast cancer metastasis by silibinin-loaded lipid nanoparticles containing TPGS. Int J Pharm. 2013;454(1):21-30.

Lu C, Li X, Liang X, et al. Liver targeting albumin-coated silybin-phospholipid particles prepared by nab technology for improving treatment effect of acute liver damage in intravenous administration. AAPS PharmSciTech. 2019;20(7):293.

Li X, Huang Y, Chen X, et al. Self-assembly and characterization of Pluronic P105 micelles for liver-targeted delivery of silybin. J Drug Target. 2009;17(10):739-750.

Zhou X, Chen Z. Preparation and performance evaluation of emulsomes as a drug delivery system for silybin. Arch Pharm Res. 2015;38(12):2193-2200.

Hsu CY, Chen CH, Aljuffali IA, Dai YS, Fang JY. Nanovesicle delivery to the liver via retinol binding protein and platelet-derived growth factor receptors: how targeting ligands affect biodistribution. Nanomedicine. 2017;12(4):317-331.

Purchartová K, Engels L, Marhol P, et al. Enzymatic preparation of silybin phase II metabolites: sulfation using aryl sulfotransferase from rat liver. Appl Microbiol Biotechnol. 2013;97(24):10391-10398.

Gunaratna C, Zhang T. Application of liquid chromatography-electrospray ionization-ion trap mass spectrometry to investigate the metabolism of silibinin in human liver microsomes. J Chromatogr B Analyt Technol Biomed Life Sci. 2003;794(2):303-310.

Marhol P, Bednář P, Kolářová P, et al. Pharmacokinetics of pure silybin diastereoisomers and identification of their metabolites in rat plasma. J Funct Foods. 2015;14:570-580.

Flory PJ, Krug G, Lorenz D, Mennicke WH. Studies on elimination of silymarin in cholecystectomized patients. I. Biliary and renal elimination after a single oral dose. Planta Med. 1980;38(3):227-237.

Lorenz D, Mennicke WH, Behrendt W. Elimination of silymarin by cholecystectomied patients. 2. Biliary elimination after multiple oral doses. Planta Med. 1982;45(4):216-223.

Najmanová I, Pourová J, Vopršalová M, et al. Flavonoid metabolite 3-(3-hydroxyphenyl)propionic acid formed by human microflora decreases arterial blood pressure in rats. Mol Nutr Food Res. 2016;60(5):981-991.

Pourová J, Najmanová I, Vopršalová M, et al. Two flavonoid metabolites, 3,4-dihydroxyphenylacetic acid and 4-methylcatechol, relax arteries ex vivo and decrease blood pressure in vivo . Vascul Pharmacol. 2018;111:36-43.

Valentová K, Havlík J, Kosina P, et al. Biotransformation of silymarin flavonolignans by human fecal microbiota. Metabolites. 2020;10, 29(1).

Jančová P, Šiller M, Anzenbacherová E, Křen V, Anzenbacher P, Šimánek V. Evidence for differences in regioselective and stereoselective glucuronidation of silybin diastereomers from milk thistle (Silybum marianum) by human UDP-glucuronosyltransferases. Xenobiotica. 2011;41(9):743-751.

Vrba J, Papoušková B, Kosina P, Lněničková K, Valentová K, Ulrichová J. Identification of human sulfotransferases active towards silymarin flavonolignans and taxifolin. Metabolites. 2020;10:8.

Schandalik R, Gatti G, Perucca E. Pharmacokinetics of silybin in bile following administration of silipide and silymarin in cholecystectomy patients. Drug Res. 1992;42(7):964-968.

Vrba J, Papoušková B, Roubalová L, et al. Metabolism of flavonolignans in human hepatocytes. J Pharm Biomed Anal. 2018;152:94-101.

Jančová P, Anzenbacherová E, Papoušková B, et al. Silybin is metabolized by cytochrome P450 2C8 in vitro . Drug Metab Dispos. 2007;35(11):2035-2039.

Křen V, Ulrichová J, Kosina P, et al. Chemoenzymatic preparation of silybin β-glucuronides and their biological evaluation. Drug Metab Dispos. 2000;28(12):1513-1517.

Xie Y, Miranda SR, Hoskins JM, Hawke RL. Role of UDP-glucuronosyltransferase 1A1 in the metabolism and pharmacokinetics of silymarin flavonolignans in patients with HCV and NAFLD. Molecules. 2017;22(1):142.

Vrba J, Papoušková B, Lněničková K, Kosina P, Křen V, Ulrichová J. Identification of UDP-glucuronosyltransferases involved in the metabolism of silymarin flavonolignans. J Pharm Biomed Anal. 2020;178:112972.

Wu JW, Tsai TH. Effect of silibinin on the pharmacokinetics of pyrazinamide and pyrazinoic acid in rats. Drug Metab Dispos. 2007;35(9):1603-1610.

Wu JW, Lin LC, Hung SC, Lin CH, Chi CW, Tsai TH. Hepatobiliary excretion of silibinin in normal and liver cirrhotic rats. Drug Metab Dispos. 2008;36(3):589-596.

Miranda SR, Lee JK, Brouwer KL, Wen Z, Smith PC, Hawke RL. Hepatic metabolism and biliary excretion of silymarin flavonolignans in isolated perfused rat livers: role of multidrug resistance-associated protein 2 (Abcc2). Drug Metab Dispos. 2008;36(11):2219-2226.

Schrieber SJ, Wen Z, Vourvahis M, et al. The pharmacokinetics of silymarin is altered in patients with hepatitis C virus and nonalcoholic Fatty liver disease and correlates with plasma caspase-3/7 activity. Drug Metab Dispos. 2008;36(9):1909-1916.

Saller R, Brignoli R, Melzer J, Meier R. An updated systematic review with meta-analysis for the clinical evidence of silymarin. Forsch Komplementmed. 2008;15(1):9-20.

Meyer-Burg J. Absorption of silymarin in the rat. Klin Wochenschr. 1972;50(22):1060-1061.

Liu Y, Wang Y. Zhao J. Design, optimization and in vitro-in vivo evaluation of smart nanocaged carrier delivery of multifunctional PEG-chitosan stabilized silybin nanocrystals. Int J Biol Macromol. 2019;124:667-680.

Montonye ML, Tian DD, Arman T, et al. A pharmacokinetic natural product-disease-drug interaction: a double hit of silymarin and nonalcoholic steatohepatitis on hepatic transporters in a rat model. J Pharmacol Exp Ther. 2019;371(2):385-393.

Schrieber SJ, Hawke RL, Wen Z, et al. Differences in the disposition of silymarin between patients with nonalcoholic fatty liver disease and chronic hepatitis C. Drug Metab Dispos. 2011;39(12):2182-2190.

Han YH, Lou HX, Ren DM, Sun LR, Ma B, Ji M. Stereoselective metabolism of silybin diastereoisomers in the glucuronidation process. J Pharm Biomed Anal. 2004;34(5):1071-1078.

Tsaroucha AK, Valsami G, Kostomitsopoulos N, et al. Silibinin effect on Fas/FasL, HMGB1, and CD45 expressions in a rat model subjected to liver ischemia-reperfusion injury. J Invest Surg. 2018;31(6):491-502.

Kullak-Ublick GA, Baretton GB, Oswald M, Renner EL, Paumgartner G, Beuers U. Expression of the hepatocyte canalicular multidrug resistance protein (MRP2) in primary biliary cirrhosis. Hepatol Res. 2002;23(1):78-82.

Brantley SJ, Argikar AA, Lin YS, Nagar S, Paine MF. Herb-drug interactions: challenges and opportunities for improved predictions. Drug Metab Dispos. 2014;42(3):301-317.

Hermann R, von Richter O. Clinical evidence of herbal drugs as perpetrators of pharmacokinetic drug interactions. Planta Med. 2012;78(13):1458-1477.

Izzo AA. Interactions between herbs and conventional drugs: overview of the clinical data. Med Prin Pract. 2012;21(5):404-428.

Zhang A, Li Q, He X, Si D, Liu C. Interactions between transporters and herbal medicines/drugs: a focus on hepatoprotective compounds. Curr Drug Metab. 2015;16(10):911-918.

Baer-Dubowska W, Szaefer H, Krajka-Kuzniak V. Inhibition of murine hepatic cytochrome P450 activities by natural and synthetic phenolic compounds. Xenobiotica. 1998;28(8):735-743.

Beckmann-Knopp S, Rietbrock S, Weyhenmeyer R, et al. Inhibitory effects of silibinin on cytochrome P-450 enzymes in human liver microsomes. Pharmacol Toxicol. 2000;86(6):250-256.

Brantley SJ, Graf TN, Oberlies NH, Paine MF. A systematic approach to evaluate herb-drug interaction mechanisms: investigation of milk thistle extracts and eight isolated constituents as CYP3A inhibitors. Drug Metab Dispos. 2013;41(9):1662-1670.

Brantley SJ, Oberlies NH, Kroll DJ, Paine MF. Two flavonolignans from milk thistle (Silybum marianum) inhibit CYP2C9-mediated warfarin metabolism at clinically achievable concentrations. J Pharmacol Exp Ther. 2010;332(3):1081-1087.

Budzinski JW, Trudeau VL, Drouin CE, Panahi M, Arnason JT, Foster BC. Modulation of human cytochrome P450 3A4 (CYP3A4) and P-glycoprotein (P-gp) in Caco-2 cell monolayers by selected commercial-source milk thistle and goldenseal products. Can J Physiol Pharmacol. 2007;85(9):966-978.

Doehmer J, Tewes B, Klein KU, Gritzko K, Muschick H, Mengs U. Assessment of drug-drug interaction for silymarin. Toxicol In Vitro. 2008;22(3):610-617.

Doehmer J, Weiss G, McGregor GP, Appel K. Assessment of a dry extract from milk thistle (Silybum marianum) for interference with human liver cytochrome-P450 activities. Toxicol In Vitro. 2011;25(1):21-27.

Kosina P, Maurel P, Ulrichová J, Dvořák Z. Effect of silybin and its glycosides on the expression of cytochromes P450 1A2 and 3A4 in primary cultures of human hepatocytes. J Biochem Mol Toxicol. 2005;19(3):149-153.

Letschert K, Faulstich H, Keller D, Keppler D. Molecular characterization and inhibition of amanitin uptake into human hepatocytes. Toxicol Sci. 2006;91(1):140-149.

Miguez MP, Anundi I, Sainz-Pardo LA, Lindros KO. Hepatoprotective mechanism of silymarin: no evidence for involvement of cytochrome P450 2E1. Chem Biol Interact. 1994;91(1):51-63.

Patel J, Buddha B, Dey S, Pal D, Mitra AK. In vitro interaction of the HIV protease inhibitor ritonavir with herbal constituents: changes in P-gp and CYP3A4 activity. Am J Ther. 2004;11(4):262-277.

Sridar C, Goosen TC, Kent UM, Williams JA, Hollenberg PF. Silybin inactivates cytochromes P450 3A4 and 2C9 and inhibits major hepatic glucuronosyltransferases. Drug Metab Dispos. 2004;32(6):587-594.

Venkataramanan R, Ramachandran V, Komoroski BJ, Zhang S, Schiff PL, Strom SC. Milk thistle, a herbal supplement, decreases the activity of CYP3A4 and uridine diphosphoglucuronosyl transferase in human hepatocyte cultures. Drug Metab Dispos. 2000;28(11):1270-1273.

Wang L, Wang Z, Xia MM, Wang YY, Wang HY, Hu GX. Inhibitory effect of silybin on pharmacokinetics of imatinib in vivo and in vitro . Can J Physiol Pharmacol. 2014;92(11):961-964.

Wang X, Zhu HJ, Munoz J, Gurley BJ, Markowitz JS. An ex vivo approach to botanical-drug interactions: a proof of concept study. J Ethnopharmacol. 2015;163:149-156.

Wang H, Yan T, Xie Y, et al. Mechanism-based inhibitory and peroxisome proliferator-activated receptor alpha-dependent modulating effects of silybin on principal hepatic drug-metabolizing enzymes. Drug Metab Dispos. 2015;43(4):444-454.

Zuber R, Modrianský M, Dvořák Z, et al. Effect of silybin and its congeners on human liver microsomal cytochrome P450 activities. Phytother Res. 2002;16(7):632-638.

Kim CS, Choi SJ, Park CY, Li C, Choi JS. Effects of silybinin on the pharmacokinetics of tamoxifen and its active metabolite, 4-hydroxytamoxifen in rats. Anticancer Res. 2010;30(1):79-85.

Maharao N, Venitz J, Gerk PM. Use of generally recognized as safe or dietary compounds to inhibit buprenorphine metabolism: potential to improve buprenorphine oral bioavailability. Biopharm Drug Dispos. 2019;40(1):18-31.

Li C, Lee MY, Choi JS. Effects of silybinin, CYP3A4 and P-glycoprotein inhibitor in vitro, on the bioavailability of loratadine in rats. Pharmazie. 2010;65(7):510-514.

Lee CK, Choi JS. Effects of silibinin on the pharmacokinetics of carvedilol after oral administration in rats. J Pharm Investig. 2011;41(3):153-159.

Gufford BT, Chen G, Lazarus P, Graf TN, Oberlies NH, Paine MF. Identification of diet-derived constituents as potent inhibitors of intestinal glucuronidation. Drug Metab Dispos. 2014;42(10):1675-1683.

Deng JW, Shon JH, Shin HJ, et al. Effect of silymarin supplement on the pharmacokinetics of rosuvastatin. Pharm Res. 2008;25(8):1807-1814.

Kock K, Xie Y, Hawke RL, Oberlies NH, Brouwer KL. Interaction of silymarin flavonolignans with organic anion-transporting polypeptides. Drug Metab Dispos. 2013;41(5):958-965.

Nguyen H, Zhang S, Morris ME. Effect of flavonoids on MRP1-mediated transport in Panc-1 cells. J Pharm Sci. 2003;92(2):250-257.

Tamaki H, Satoh H, Hori S, Ohtani H, Sawada Y. Inhibitory effects of herbal extracts on breast cancer resistance protein (BCRP) and structure-inhibitory potency relationship of isoflavonoids. Drug Metab Pharmacokinet. 2010;25(2):170-179.

Wang X, Wolkoff AW, Morris ME. Flavonoids as a novel class of human organic anion-transporting polypeptide OATP1B1 (OATP-C) modulators. Drug Metab Dispos. 2005;33(11):1666-1672.

Zhang S, Sagawa K, Arnold RD, Tseng E, Wang X, Morris ME. Interactions between the flavonoid biochanin A and P-glycoprotein substrates in rats: in vitro and in vivo . J Pharm Sci. 2010;99(1):430-441.

Zhang S, Yang X, Coburn RA, Morris ME. Structure activity relationships and quantitative structure activity relationships for the flavonoid-mediated inhibition of breast cancer resistance protein. Biochem Pharmacol. 2005;70(4):627-639.

Zhang S, Morris ME. Effects of the flavonoids biochanin A, morin, phloretin, and silymarin on P-glycoprotein-mediated transport. J Pharmacol Exp Ther. 2003;304(3):1258-1267.

Zhang S, Yang X, Morris ME. Combined effects of multiple flavonoids on breast cancer resistance protein (ABCG2)-mediated transport. Pharm Res. 2004;21(7):1263-1273.

Zhang S, Morris ME. Effect of the flavonoids biochanin A and silymarin on the P-glycoprotein-mediated transport of digoxin and vinblastine in human intestinal Caco-2 cells. Pharm Res. 2003;20(8):1184-1191.

Kaur M, Badhan RK. Phytoestrogens modulate breast cancer resistance protein expression and function at the blood-cerebrospinal fluid barrier. J Pharm Pharm Sci. 2015;18(2):132-154.

Cooray HC, Janvilisri T, van Veen HW, Hladky SB, Barrand MA. Interaction of the breast cancer resistance protein with plant polyphenols. Biochem Biophys Res Commun. 2004;317(1):269-275.

Maréchal E. Measuring bioactivity: KI, IC50 and EC50. In: Maréchal E , Roy S , Lafanechère L , eds. Chemogenomics and Chemical Genetics: A User's Introduction for Biologists, Chemists and Informaticians. Berlin, Heidelberg: Springer; 2011:55-65.

Zhang ZB, Shen ZG, Wang JX, et al. Micronization of silybin by the emulsion solvent diffusion method. Int J Pharm. 2009;376(1-2):116-122.

Kalthoff S, Strassburg CP. Contribution of human UDP-glucuronosyltransferases to the antioxidant effects of propolis, artichoke and silymarin. Phytomedicine. 2019;56:35-39.

Kim DH, Jin YH, Park JB, Kobashi K. Silymarin and its components are inhibitors of β-glucuronidase. Biol Pharm Bull. 1994;17(3):443-445.

Dobiasová S, Řehořová K, Kučerová D, et al. Multidrug resistance modulation activity of silybin derivatives and their anti-inflammatory potential. Antioxidants. 2020;9(5):455.

Saller R, Meier R, Brignoli R. The use of silymarin in the treatment of liver diseases. Drugs. 2001;61(14):2035-2063.

Johannes J, Jayarama-Naidu R, Meyer F, et al. Silychristin, a flavonolignan derived from the milk thistle, is a potent inhibitor of the thyroid hormone transporter MCT8. Endocrinology. 2016;157(4):1694-1701.

Leber HW, Knauff S. Influence of silymarin on drug metabolizing enzymes in rat and man. Drug Res. 1976;26(8):1603-1605.

Favari L, Soto C, Mourelle M. Effect of portal vein ligation and silymarin treatment on aspirin metabolism and disposition in rats. Biopharm Drug Dispos. 1997;18(1):53-64.

Gurley BJ, Barone GW, Williams DK, et al. Effect of milk thistle (Silybum marianum) and black cohosh (Cimicifuga racemosa) supplementation on digoxin pharmacokinetics in humans. Drug Metab Dispos. 2006;34(1):69-74.

Gurley B., Gardner S., Hubbard M., et al. In vivo assessment of botanical supplementation on human cytochrome P450 phenotypes: Citrus aurantium, Echinacea purpurea, milk thistle, and saw palmetto. Clin Pharmac Ther. 2004;76(5):428-440.

Gurley BJ, Swain A, Hubbard MA, et al. Clinical assessment of CYP2D6-mediated herb-drug interactions in humans: effects of milk thistle, black cohosh, goldenseal, kava kava, St. John's wort, and Echinacea. Mol Nutr Food Res. 2008;52(7):755-763.

Kawaguchi-Suzuki M, Frye RF, Zhu HJ, et al. The effects of milk thistle (Silybum marianum) on human cytochrome P450 activity. Drug Metab Dispos. 2014;42(10):1611-1616.

Mills E, Wilson K, Clarke M, et al. Milk thistle and indinavir: a randomized controlled pharmacokinetics study and meta-analysis. Eur J Clin Pharmacol. 2005;61(1):1-7.

Molto J, Valle M, Miranda C, Cedeno S, Negredo E, Clotet B. Effect of milk thistle on the pharmacokinetics of darunavir-ritonavir in HIV-infected patients. Antimicrob Agents Chemother. 2012;56(6):2837-2841.

Piscitelli SC, Formentini E, Burstein AH, Alfaro R, Jagannatha S, Falloon J. Effect of milk thistle on the pharmacokinetics of indinavir in healthy volunteers. Pharmacotherapy. 2002;22(5):551-556.

Rao BN, Srinivas M, Kumar YS, Rao YM. Effect of silymarin on the oral bioavailability of ranitidine in healthy human volunteers. Drug Metabol Drug Interact. 2007;22(2-3):175-185.

van Erp N.P.H., Baker SD, Zhao M, et al. Effect of milk thistle (Silybum marianum) on the pharmacokinetics of irinotecan. Clin Cancer Res. 2005;11(21):7800-7806.

Gurley B, Hubbard MA, Williams DK, et al. Assessing the clinical significance of botanical supplementation on human cytochrome P450 3A activity: comparison of a milk thistle and black cohosh product to rifampin and clarithromycin. J Clin Pharmacol. 2006;46(2):201-213.

DiCenzo R, Shelton M, Jordan K, et al. Coadministration of milk thistle and indinavir in healthy subjects. Pharmacotherapy. 2003;23(7):866-870.

Han Y, Guo D, Chen Y, Chen Y, Tan ZR, Zhou HH. Effect of silymarin on the pharmacokinetics of losartan and its active metabolite E-3174 in healthy Chinese volunteers. Eur J Clin Pharmacol. 2009;65(6):585-591.

Han Y, Guo D, Chen Y, Tan ZR, Zhou HH. Effect of continuous silymarin administration on oral talinolol pharmacokinetics in healthy volunteers. Xenobiotica. 2009;39(9):694-699.

Fuhr U, Beckmann-Knopp S, Jetter A, Luck H, Mengs U. The effect of silymarin on oral nifedipine pharmacokinetics. Planta Med. 2007;73(14):1429-1435.

Rajnarayana K, Reddy MS, Vidyasagar J, Krishna DR. Study on the influence of silymarin pretreatment on metabolism and disposition of metronidazole. Drug Res. 2004;54(2):109-113.

Xu P, Jiang ZP, Zhang BK, Tu JY, Li HD. Impact of MDR1 haplotypes derived from C1236T, G2677T/A and C3435T on the pharmacokinetics of single-dose oral digoxin in healthy Chinese volunteers. Pharmacology. 2008;82(3):221-227.

Niemeijer MN, van den Berg ME, Deckers JW, et al. ABCB1 gene variants, digoxin and risk of sudden cardiac death in a general population. Heart. 2015;101(24):1973-1979.

Yamsani SK, Yamsani MR. Effect of silymarin pretreatment on the bioavailability of domperidone in healthy human volunteers. Drug Metabol Drug Interact. 2014;29(4):261-267.

Chen XP, Zheng HT, Cai WW, Li MK, Zhang JW, Hu J. The effect of silibinin on the pharmacokinetics of ivabradine and N-desmethylivabradine in rats. Pharmacology. 2015;96(3-4):107-111.

Pan PP, Wang J, Luo J, et al. Silibinin affects the pharmacokinetics of methadone in rats. Drug Test Anal. 2018;10(3):557-561.

Ravikumar Reddy D, Khurana A, Bale S, et al. Natural flavonoids silymarin and quercetin improve the brain distribution of co-administered P-gp substrate drugs. SpringerPlus. 2016;5(1):1618.

Voruganti S, Yamsani SK, Yamsani MR. Effect of silibinin on the pharmacokinetics of nitrendipine in rabbits. Eur J Drug Metab Pharmacokinet. 2014;39(4):277-281.

Park JH, Park JH, Hur HJ, Woo JS, Lee HJ. Effects of silymarin and formulation on the oral bioavailability of paclitaxel in rats. Eur J Pharm Sci. 2012;45(3):296-301.

Lee CK, Choi JS. Effects of silibinin, inhibitor of CYP3A4 and P-glycoprotein in vitro, on the pharmacokinetics of paclitaxel after oral and intravenous administration in rats. Pharmacology. 2010;85(6):350-356.

Vereckei A, Zipes DP, Besch H, Jr. Combined amiodarone and silymarin treatment, but not amiodarone alone, prevents sustained atrial flutter in dogs. J Cardiovasc Electrophysiol. 2003;14(8):861-867.

Li Y, Wu Y, Li YJ, Meng L, Ding CY, Dong ZJ. Effects of silymarin on the in vivo pharmacokinetics of simvastatin and its active metabolite in rats. Molecules. 2019;24:9.

Ferreira A, Rodrigues M, Meirinho S, Fortuna A, Falcao A, Alves G. Silymarin as a flavonoid-type P-glycoprotein inhibitor with impact on the pharmacokinetics of carbamazepine, oxcarbazepine and phenytoin in rats. Drug Chem Toxicol. 2019:1-12.

Sun D, Sharma AK, Dellinger RW, et al. Glucuronidation of active tamoxifen metabolites by the human UDP glucuronosyltransferases. Drug Metab Dispos. 2007;35(11):2006-2014.

Ferreira A, Rodrigues M, Marques A, Falcao A, Alves G. Influence of the dual combination of silymarin and (-)-epigallocatechin gallate, natural dietary flavonoids, on the pharmacokinetics of oxcarbazepine in rats. Food Chem Toxicol. 2017;106(Pt A):446-454.

Chang JC, Wu YT, Lee WC, Lin LC, Tsai TH. Herb-drug interaction of silymarin or silibinin on the pharmacokinetics of trazodone in rats. Chem Biol Interact. 2009;182(2-3):227-232.

Kang MK, Bae SK, Kim JW, Lee MG. Pharmacokinetic interaction between oltipraz and silymarin in rats. J Pharm Pharm Sci. 2009;12(1):1-16.

Lee KS, Chae SW, Park JH, et al. Effects of single or repeated silymarin administration on pharmacokinetics of risperidone and its major metabolite, 9-hydroxyrisperidone in rats. Xenobiotica. 2013;43(3):303-310.

Liao S, Jin X, Li J, et al. Effects of silymarin, glycyrrhizin, and oxymatrine on the pharmacokinetics of ribavirin and its major metabolite in rats. Phytother Res. 2016;30(4):618-626.

Malekinejad H, Rokhsartalab-Azar S, Hassani-Dizaj S, Alizadeh-Fanalou S, Rezabakhsh A, Amniattalab A. Effects of silymarin on the pharmacokinetics of atorvastatin in diabetic rats. Eur J Drug Metab Pharmacokinet. 2014;39(4):311-320.

Mourelle M, Favari L. Silymarin improves metabolism and disposition of aspirin in cirrhotic rats. Life Sci. 1988;43(3):201-207.

Xu R, Wang Q, Zhang J, Zang M, Liu X, Yang J. Changes in pharmacokinetic profiles of acetaminophen and its glucuronide after pretreatment with combinations of N-acetylcysteine and either glycyrrhizin, silibinin or spironolactone in rat. Xenobiotica. 2014;44(6):541-546.

Chrungoo VJ, Reen RK, Singh K, Singh J. Effects of silymarin on UDP-glucuronic acid and glucuronidation activity in the rat isolated hepatocytes and liver in relation to D-galactosamine toxicity. Indian J Exp Biol. 1997;35(3):256-263.

Jiao Z, Shi XJ, Li ZD, Zhong MK. Population pharmacokinetics of sirolimus in de novo Chinese adult renal transplant patients. Br J Clin Pharmacol. 2009;68(1):47-60.

Williams JA, Hyland R, Jones BC, et al. Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos. 2004;32(11):1201-1208.

Nigam SK, Bush KT, Martovetsky G, et al. The organic anion transporter (OAT) family: a systems biology perspective. Physiol Rev. 2015;95(1):83-123.

Chambers CS, Holečková V, Petrásková L, et al. The silymarin composition… and why does it matter??? Food Res Int. 2017;100(Pt 3):339-353.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...