Effects of catechins, resveratrol, silymarin components and some of their conjugates on xanthine oxidase-catalyzed xanthine and 6-mercaptopurine oxidation
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Czech Science Foundation
Magyar Tudományos Akadémia
Nemzeti Kutatási Fejlesztési és Innovációs Hivatal
PubMed
39606799
PubMed Central
PMC11909324
DOI
10.1002/jsfa.14045
Knihovny.cz E-zdroje
- Klíčová slova
- catechins, enzyme inhibition, resveratrol, silymarin, sulfate conjugates, xanthine oxidase,
- MeSH
- inhibitory enzymů * chemie farmakologie MeSH
- katalýza MeSH
- katechin * chemie analogy a deriváty farmakologie MeSH
- lidé MeSH
- merkaptopurin * chemie farmakologie metabolismus MeSH
- oxidace-redukce * MeSH
- resveratrol * chemie farmakologie MeSH
- silymarin * farmakologie chemie MeSH
- xanthin chemie metabolismus farmakologie MeSH
- xanthinoxidasa * antagonisté a inhibitory metabolismus chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- inhibitory enzymů * MeSH
- katechin * MeSH
- merkaptopurin * MeSH
- resveratrol * MeSH
- silymarin * MeSH
- xanthin MeSH
- xanthinoxidasa * MeSH
BACKGROUND: Over the past two decades, the global incidence of gout has markedly increased, affecting people worldwide. Considering the side effects of xanthine oxidase (XO) inhibitor drugs (e.g. allopurinol and febuxostat) used in the treatment of hyperuricemia and gout, the potential application of phytochemicals has been widely studied. In addition, XO also takes part in the elimination of certain drugs, including 6-mercaptopurine. In the current explorative study, we aimed to examine the potential effects of tea catechins, resveratrol, silymarin flavonolignans and some of their conjugated metabolites on XO-catalyzed xanthine and 6-mercaptopurine oxidation, applying in vitro assays and modeling studies. RESULTS: Catechins, resveratrol and resveratrol conjugates exerted no or only weak inhibitory effects on XO. Silybin A, silybin B and isosilybin A were weak, silychristin was a moderate, while 2,3-dehydrosilychristin was a potent inhibitor of the enzyme. Sulfate metabolites of silybin A, silybin B and isosilybin A were considerably stronger inhibitors compared to the parent flavonolignans, and the sulfation of 2,3-dehydrosilychristin slightly increased its inhibitory potency. Silychristin was the sole flavonolignan tested, where sulfate conjugation decreased its inhibitory effect. CONCLUSION: 2,3-Dehydrosilychristin seems to be a promising candidate for examining its in vivo antihyperuricemic effects, because both the parent compound and its sulfate conjugate are highly potent inhibitors of XO. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Department of Laboratory Medicine Medical School University of Pécs Pécs Hungary
Department of Pharmacognosy Faculty of Pharmacy University of Pécs Pécs Hungary
Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
Molecular Medicine Research Group János Szentágothai Research Centre University of Pécs Pécs Hungary
National Laboratory for Drug Research and Development Budapest Hungary
Zobrazit více v PubMed
Musial C, Kuban‐Jankowska A and Gorska‐Ponikowska M, Beneficial properties of green tea catechins. Int J Mol Sci 21:1744 (2020). PubMed PMC
van het Hof KH, Kivits GA, Weststrate JA and Tijburg LB, Bioavailability of catechins from tea: the effect of milk. Eur J Clin Nutr 52:356–359 (1998). 10.1038/sj.ejcn.1600568. PubMed DOI
Widlansky ME, Duffy SJ, Hamburg NM, Gokce N, Warden BA, Wiseman S et al., Effects of black tea consumption on plasma catechins and markers of oxidative stress and inflammation in patients with coronary artery disease. Free Radic Biol Med 38:499–506 (2005). 10.1016/j.freeradbiomed.2004.11.013. PubMed DOI
Khattar S, Khan SA, Zaidi SAA, Darvishikolour M, Farooq U, Naseef PP et al., Resveratrol from dietary supplement to a drug candidate: an assessment of potential. Pharmaceuticals 15:957 (2022). PubMed PMC
Berman AY, Motechin RA, Wiesenfeld MY and Holz MK, The therapeutic potential of resveratrol: a review of clinical trials. NPJ Precis Oncol 1:35 (2017). 10.1038/s41698-017-0038-6. PubMed DOI PMC
Walle T, Bioavailability of resveratrol: resveratrol bioavailability. Ann N Y Acad Sci 1215:9–15 (2011). 10.1111/j.1749-6632.2010.05842.x. PubMed DOI
Yu C, Shin YG, Chow A, Li Y, Kosmeder JW, Lee YS et al., Human, rat, and mouse metabolism of resveratrol. Pharm Res 19:1907–1914 (2002). 10.1023/A:1021414129280. PubMed DOI
Wenzel E, Soldo T, Erbersdobler H and Somoza V, Bioactivity and metabolism of trans‐resveratrol orally administered to Wistar rats. Mol Nutr Food Res 49:482–494 (2005). 10.1002/mnfr.200500003. PubMed DOI
Patel KR, Brown VA, Jones DJL, Britton RG, Hemingway D, Miller AS et al., Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients. Cancer Res 70:7392–7399 (2010). 10.1158/0008-5472.CAN-10-2027. PubMed DOI PMC
Boocock DJ, Faust GES, Patel KR, Schinas AM, Brown VA, Ducharme MP et al., Phase I dose escalation pharmacokinetic study in healthy volunteers of resveratrol, a potential cancer chemopreventive agent. Cancer Epidemiol Biomarkers Prev 16:1246–1252 (2007). 10.1158/1055-9965.EPI-07-0022. PubMed DOI
Brown VA, Patel KR, Viskaduraki M, Crowell JA, Perloff M, Booth TD et al., Repeat dose study of the cancer chemopreventive agent resveratrol in healthy volunteers: safety, pharmacokinetics, and effect on the insulin‐like growth factor axis. Cancer Res 70:9003–9011 (2010). 10.1158/0008-5472.CAN-10-2364. PubMed DOI PMC
Abenavoli L, Izzo AA, Milić N, Cicala C, Santini A and Capasso R, Milk thistle (Silybum marianum): a concise overview on its chemistry, pharmacological, and nutraceutical uses in liver diseases. Phytother Res 32:2202–2213 (2018). 10.1002/ptr.6171. PubMed DOI
Chambers CS, Holeckova V, Petraskova L, Biedermann D, Valentova K, Buchta M et al., The silymarin composition… and why does it matter??? Food Res Int 100:339–353 (2017). 10.1016/j.foodres.2017.07.017. PubMed DOI
Křen V and Valentová K, Silybin and its congeners: from traditional medicine to molecular effects. Nat Prod Rep 39:1264–1281 (2022). 10.1039/d2np00013j. PubMed DOI
Hoh C, Boocock D, Marczylo T, Singh R, Berry DP, Dennison AR et al., Pilot study of oral silibinin, a putative chemopreventive agent, in colorectal cancer patients: silibinin levels in plasma, colorectum, and liver and their pharmacodynamic consequences. Clin Cancer Res 12:2944–2950 (2006). 10.1158/1078-0432.ccr-05-2724. PubMed DOI
Lněničková K, Vrba J, Kosina P, Papoušková B, Mekadim C, Mrázek J et al., Metabolic profiling of silymarin constituents in urine and feces of healthy volunteers: a 90‐day study. J Funct Food 100:105391 (2023). 10.1016/j.jff.2022.105391. DOI
Brinda BJ, Zhu HJ and Markowitz JS, A sensitive LC–MS/MS assay for the simultaneous analysis of the major active components of silymarin in human plasma. J Chromatogr B 902:1–9 (2012). 10.1016/j.jchromb.2012.06.003. PubMed DOI
Saller R, Meier R and Brignoli R, The use of silymarin in the treatment of liver diseases. Drugs 61:2035–2063 (2001). 10.2165/00003495-200161140-00003. PubMed DOI
He Q, Mok TN, Sin TH, Yin J, Li S, Yin Y et al., Global, regional, and national prevalence of gout from 1990 to 2019: age‐period‐cohort analysis with future burden prediction. JMIR Public Health Surveill 9:e45943 (2023). 10.2196/45943. PubMed DOI PMC
Yang S, Liu H, Fang XM, Yan F and Zhang Y, Signaling pathways in uric acid homeostasis and gout: from pathogenesis to therapeutic interventions. Int Immunopharmacol 132:111932 (2024). PubMed
Schmidt HM, Kelley EE and Straub AC, The impact of xanthine oxidase (XO) on hemolytic diseases. Redox Biol 21:101072 (2019). PubMed PMC
Harrison R, Structure and function of xanthine oxidoreductase: where are we now? Free Radic Biol Med 33:774–797 (2002). 10.1016/s0891-5849(02)00956-5. PubMed DOI
Berry CE and Hare JM, Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol 555:589–606 (2004). 10.1113/jphysiol.2003.055913. PubMed DOI PMC
Galbusera C, Orth P, Fedida D and Spector T, Superoxide radical production by allopurinol and xanthine oxidase. Biochem Pharmacol 71:1747–1752 (2006). 10.1016/j.bcp.2006.02.008. PubMed DOI
Mehmood A, Ishaq M, Zhao L, Safdar B, Rehman A, Munir M et al., Natural compounds with xanthine oxidase inhibitory activity: a review. Chem Biol Drug Des 93:387–418 (2019). 10.1111/cbdd.13437. PubMed DOI
Naeem A, Ming Y, Pengyi H, Jie KY, Yali L, Haiyan Z et al., The fate of flavonoids after oral administration: a comprehensive overview of its bioavailability. Crit Rev Food Sci Nutr 62:6169–6186 (2022). 10.1080/10408398.2021.1898333. PubMed DOI
Mohos V, Pánovics A, Fliszár‐Nyúl E, Schilli G, Hetényi C, Mladěnka P et al., Inhibitory effects of quercetin and its human and microbial metabolites on xanthine oxidase enzyme. Int J Mol Sci 20:2681 (2019). PubMed PMC
Balázs O, Dombi Á, Zsidó BZ, Hetényi C, Valentová K, Vida RG et al., Inhibition of xanthine oxidase‐catalyzed xanthine and 6‐mercaptopurine oxidation by luteolin, naringenin, myricetin, ampelopsin and their conjugated metabolites. Biomed Pharmacother 167:115548 (2023). PubMed
Yuan M, Liu Y, Xiao A, Leng J, Liao L, Ma L et al., The interaction of dietary flavonoids with xanthine oxidase in vitro: molecular property‐binding affinity relationship aspects. RSC Adv 9:10781–10788 (2019). 10.1039/c8ra09926j. PubMed DOI PMC
Rashidinejad A, Birch EJ and Everett DW, Green tea catechins suppress xanthine oxidase activity in dairy products: an improved HPLC analysis. J Food Compos Anal 48:120–127 (2016). 10.1016/j.jfca.2016.03.001. DOI
Zhang G, Zhu M, Liao Y, Gong D and Hu X, Action mechanisms of two key xanthine oxidase inhibitors in tea polyphenols and their combined effect with allopurinol. J Sci Food Agric 102:7195–7208 (2022). 10.1002/jsfa.12085. PubMed DOI
Huang XF, Li HQ, Shi L, Xue JY, Ruan BF and Zhu HL, Synthesis of resveratrol analogues, and evaluation of their cytotoxic and xanthine oxidase inhibitory activities. Chem Biodivers 5:636–642 (2008). 10.1002/cbdv.200890059. PubMed DOI
Agbadua OG, Kúsz N, Berkecz R, Gáti T, Tóth G and Hunyadi A, Oxidized resveratrol metabolites as potent antioxidants and xanthine oxidase inhibitors. Antioxidants 11:1832 (2022). PubMed PMC
Varga Z, Seres I, Nagy E, Ujhelyi L, Balla G, Balla J et al., Structure prerequisite for antioxidant activity of silybin in different biochemical systems in vitro. Phytomedicine 13:85–93 (2006). 10.1016/j.phymed.2004.06.019. PubMed DOI
Pauff JM and Hille R, Inhibition studies of bovine xanthine oxidase by luteolin, silibinin, quercetin, and curcumin. J Nat Prod 72:725–731 (2009). 10.1021/np8007123. PubMed DOI PMC
Mottet C, Schoepfer AM, Juillerat P, Cosnes J, Froehlich F, Kessler‐Brondolo V et al., Experts opinion on the practical use of azathioprine and 6‐mercaptopurine in inflammatory bowel disease. Inflamm Bowel Dis 22:2733–2747 (2016). 10.1097/MIB.0000000000000923. PubMed DOI
McLeod HL, Clinically relevant drug‐drug interactions in oncology. Br J Clin Pharm 45:539–544 (1998). 10.1046/j.1365-2125.1998.00719.x. PubMed DOI PMC
Valentová K, Purchartová K, Rydlová L, Roubalová L, Biedermann D, Petrásková L et al., Sulfated metabolites of flavonolignans and 2,3‐dehydroflavonolignans: preparation and properties. Int J Mol Sci 19:2349 (2018). PubMed PMC
Faisal Z, Mohos V, Fliszár‐Nyúl E, Valentová K, Káňová K, Lemli B et al., Interaction of silymarin components and their sulfate metabolites with human serum albumin and cytochrome P450 (2C9, 2C19, 2D6, and 3A4) enzymes. Biomed Pharmacother 138:111459 (2021). PubMed
Balázs O, Dombi Á, Zsidó BZ, Hetényi C, Vida RG and Poór M, Probing the interactions of 31 mycotoxins with xanthine oxidase: alternariol, alternariol‐3‐sulfate, and α‐zearalenol are allosteric inhibitors of the enzyme. Toxins 15:250 (2023). PubMed PMC
Hu T and Liu Y, Probing the interaction of cefodizime with human serum albumin using multi‐spectroscopic and molecular docking techniques. J Pharm Biomed Anal 107:325–332 (2015). 10.1016/j.jpba.2015.01.010. PubMed DOI
Wang T, Zeng LH and Li DL, A review on the methods for correcting the fluorescence inner‐filter effect of fluorescence spectrum. Appl Spectrosc Rev 52:883–908 (2017). 10.1080/05704928.2017.1345758. DOI
Najaran A, Divsalar A, Saboury AA and Roodbari NH, Probing the interaction of newly synthesized Pt(II) complex on human serum albumin using competitive binding site markers. J Fluoresc 29:827–835 (2019). 10.1007/s10895-019-02383-3. PubMed DOI
Mohammadgholi A, Leilabadi‐Asl A, Divsalar A and Eslami‐Moghadam M, Multi‐spectroscopic studies of the interaction of new synthesized platin complex with human carrier protein of serum albumin. J Biomol Struct Dyn 39:1506–1511 (2021). 10.1080/07391102.2020.1745690. PubMed DOI
Chaves OA, dos Santos Oliveira CHC, Ferreira RC, Cesarin‐Sobrinho D, da Hora Machado AE and Netto‐Ferreira JC, Synthetic dimethoxyxanthones bind similarly to human serum albumin compared with highly oxygenated xanthones. Chem Phys Impact 8:100411 (2024).
Mohos V, Fliszár‐Nyúl E, Lemli B, Zsidó BZ, Hetényi C, Mladěnka P et al., Testing the pharmacokinetic interactions of 24 colonic flavonoid metabolites with human serum albumin and cytochrome P450 enzymes. Biomolecules 10:409 (2020). PubMed PMC
Csenki Z, Bartók T, Bock I, Horváth L, Lemli B, Zsidó BZ et al., Interaction of fumonisin B1, N‐palmitoyl‐fumonisin B1, 5‐O‐palmitoyl‐fumonisin B1, and fumonisin B4 mycotoxins with human serum albumin and their toxic impacts on zebrafish embryos. Biomolecules 13:755 (2023). PubMed PMC
Pauff JM, Cao H and Hille R, Substrate orientation and catalysis at the molybdenum site in xanthine oxidase. J Biol Chem 284:8760–8767 (2009). 10.1074/jbc.M804517200. PubMed DOI PMC
Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK et al., Automated docking using a Lamarckian genetic algorithm and empirical binding free energy function. J Comput Chem 19:1639–1662 (1998). 10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B. DOI
Zsidó BZ, Börzsei R, Szél V and Hetényi C, Determination of ligand binding modes in hydrated viral ion channels to foster drug design and repositioning. J Chem Inf Model 61:4011–4022 (2021). 10.1021/acs.jcim.1c00488. PubMed DOI PMC
Zsidó BZ, Balog M, Erős N, Poór M, Mohos V, Fliszár‐Nyúl E et al., Synthesis of spin‐labelled bergamottin: a potent CYP3A4 inhibitor with antiproliferative activity. Int J Mol Sci 21:508 (2020). PubMed PMC
Mahomoodally MF, Coodian K, Hosenally M, Zengin G, Shariati MA, Abdalla AN et al., Herbal remedies in the management of hyperuricemia and gout: a review of in vitro, in vivo and clinical evidences. Phytother Res 38:3370–3400 (2024). 10.1002/ptr.8211. PubMed DOI
Mohos V, Fliszár‐Nyúl E and Poór M, Inhibition of xanthine oxidase‐catalyzed xanthine and 6‐mercaptopurine oxidation by flavonoid aglycones and some of their conjugates. Int J Mol Sci 21:3256 (2020). PubMed PMC
Petrásková L, Káňová K, Biedermann D, Křen V and Valentová K, Simple and rapid HPLC separation and quantification of flavonoid, flavonolignans, and 2,3‐dehydroflavonolignans in silymarin. Foods 9:116 (2020). PubMed PMC
Tvrdý V, Pourová J, Jirkovský E, Křen V, Valentová K and Mladěnka P, Systematic review of pharmacokinetics and potential pharmacokinetic interactions of flavonolignans from silymarin. Med Res Rev 41:2195–2246 (2021). 10.1002/med.21791. PubMed DOI