Sulfated Metabolites of Flavonolignans and 2,3-Dehydroflavonolignans: Preparation and Properties

. 2018 Aug 09 ; 19 (8) : . [epub] 20180809

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30096957

Silymarin, an extract from milk thistle (Silybum marianum) fruits, is consumed in various food supplements. The metabolism of silymarin flavonolignans in mammals is complex, the exact structure of their metabolites still remains partly unclear and standards are not commercially available. This work is focused on the preparation of sulfated metabolites of silymarin flavonolignans. Sulfated flavonolignans were prepared using aryl sulfotransferase from Desulfitobacterium hafniense and p-nitrophenyl sulfate as a sulfate donor and characterized by high-resolution mass spectrometry (HRMS) and nuclear magnetic resonance (NMR). Their 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and N,N-dimethyl-p-phenylenediamine (DMPD) radical scavenging; ferric (FRAP) and Folin⁻Ciocalteu reagent (FCR) reducing activity; anti-lipoperoxidant potential; and effect on the nuclear erythroid 2-related factor 2 (Nrf2) signaling pathway were examined. Pure silybin A 20-O-sulfate, silybin B 20-O-sulfate, 2,3-dehydrosilybin-20-O-sulfate, 2,3-dehydrosilybin-7,20-di-O-sulfate, silychristin-19-O-sulfate, 2,3-dehydrosilychristin-19-O-sulfate, and silydianin-19-O-sulfate were prepared and fully characterized. Sulfated 2,3-dehydroderivatives were more active in FCR and FRAP assays than the parent compounds, and remaining sulfates were less active chemoprotectants. The sulfated flavonolignans obtained can be now used as authentic standards for in vivo metabolic experiments and for further research on their biological activity.

Zobrazit více v PubMed

Abenavoli L., Capasso R., Milic N., Capasso F. Milk thistle in liver diseases: Past, present, future. Phytother. Res. 2010;24:1423–1432. doi: 10.1002/ptr.3207. PubMed DOI

Gažák R., Walterová D., Křen V. Silybin and silymarin-new and emerging applications in medicine. Curr. Med. Chem. 2007;14:315–338. doi: 10.2174/092986707779941159. PubMed DOI

Biedermann D., Vavříková E., Cvak L., Křen V. Chemistry of silybin. Nat. Prod. Rep. 2014;31:1138–1157. doi: 10.1039/C3NP70122K. PubMed DOI

Wagner H., Seligmann O., Seitz M., Abraham D., Sonnenbichler J. Silydianin and silychristin, 2 isomeric silymarins from Silybum marianum L. Gaertn (milk thistle) Z. Naturforsch. B. 1976;31:876–884. doi: 10.1515/znb-1976-0630. DOI

Pyszková M., Biler M., Biedermann D., Valentová K., Kuzma M., Vrba J., Ulrichová J., Sokolová R., Mojovic M., Popovic-Bijelic A., et al. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radic. Biol. Med. 2016;90:114–125. doi: 10.1016/j.freeradbiomed.2015.11.014. PubMed DOI

Biedermann D., Buchta M., Holečková V., Sedlák D., Valentová K., Cvačka J., Bednárová L., Křenková A., Kuzma M., Škuta C., et al. Silychristin: Skeletal alterations and biological activities. J. Nat. Prod. 2016;79:3086–3092. doi: 10.1021/acs.jnatprod.6b00750. PubMed DOI

Křenek K., Marhol P., Peikerová Ž., Křen V., Biedermann D. Preparatory separation of the silymarin flavonolignans by Sephadex LH-20 gel. Food Res. Int. 2014;65:115–120. doi: 10.1016/j.foodres.2014.02.001. DOI

Egea J., Fabregat I., Frapart Y.M., Ghezzi P., Görlach A., Kietzmann T., Kubaichuk K., Knaus U.G., Lopez M.G., Olaso-Gonzalez G., et al. European contribution to the study of ROS: A summary of the findings and prospects for the future from the COST action BM1203 (EU-ROS) Redox Biol. 2017;13:94–162. doi: 10.1016/j.redox.2017.05.007. PubMed DOI PMC

Moosavi F., Hosseini R., Saso L., Firuzi O. Modulation of neurotrophic signaling pathways by polyphenols. Drug Des. Dev. Ther. 2016;10:23–42. doi: 10.2147/dddt.s96936. PubMed DOI PMC

Křen V., Marhol P., Purchartová K., Gabrielová E., Modrianský M. Biotransformation of silybin and its congeners. Curr. Drug Metab. 2013;14:1009–1021. doi: 10.2174/1389200214666131118234507. PubMed DOI

Theodosiou E., Purchartová K., Stamatis H., Kolisis F., Křen V. Bioavailability of silymarin flavonolignans: Drug formulations and biotransformation. Phytochem. Rev. 2014;13:1–18. doi: 10.1007/s11101-013-9285-5. DOI

Miranda S.R., Lee J.K., Brouwer K.L.R., Wen Z.M., Smith P.C., Hawke R.L. Hepatic metabolism and biliary excretion of silymarin flavonolignans in isolated perfused rat livers: Role of multidrug resistance-associated protein 2 (abcc2) Drug Metab. Dispos. 2008;36:2219–2226. doi: 10.1124/dmd.108.021790. PubMed DOI PMC

Kr̆en V., Ulrichová J., Kosina P., Stevenson D., Sedmera P., Přikrylová V., Halada P., Šimánek V. Chemoenzymatic preparation of silybin β-glucuronides and their biological evaluation. Drug Metab. Dispos. 2000;28:1513–1517. PubMed

Marhol P., Bednář P., Kolářová P., Večeřa R., Ulrichová J., Tesařová E., Vavříková E., Kuzma M., Křen V. Pharmacokinetics of pure silybin diastereoisomers and identification of their metabolites in rat plasma. J. Funct. Food. 2015;14:570–580. doi: 10.1016/j.jff.2015.02.031. DOI

Almeida A.F., Borge G.I.A., Piskula M., Tudose A., Tudoreanu L., Valentová K., Williamson G., Santos C.N. Bioavailability of quercetin in humans with a focus on interindividual variation. Compr. Rev. Food Sci. Food Saf. 2018;17:714–731. doi: 10.1111/1541-4337.12342. PubMed DOI

Gonzalez-Sarrias A., Garcia-Villalba R., Romo-Vaquero M., Alasalvar C., Orem A., Zafrilla P., Tomas-Barberan F.A., Selma M.V., Espin J.C. Clustering according to urolithin metabotype explains the interindividual variability in the improvement of cardiovascular risk biomarkers in overweight-obese individuals consuming pomegranate: A randomized clinical trial. Mol. Nutr. Food Res. 2017;61:ARTN 1600830. doi: 10.1002/mnfr.201600830. PubMed DOI

Marhol P., Hartog A.F., van der Horst M.A., Wever R., Purchartová K., Fuksová K., Kuzma M., Cvačka J., Křen V. Preparation of silybin and isosilybin sulfates by sulfotransferase from Desulfitobacterium hafniense. J. Mol. Catal. B-Enzym. 2013;89:24–27. doi: 10.1016/j.molcatb.2012.12.005. DOI

Purchartová K., Engels L., Marhol P., Šulc M., Kuzma M., Slámová K., Elling L., Křen V. Enzymatic preparation of silybin phase II metabolites: Sulfation using aryl sulfotransferase from rat liver. Appl. Microbiol. Biot. 2013;97:10391–10398. doi: 10.1007/s00253-013-4794-0. PubMed DOI

Purchartová K., Valentová K., Pelantová H., Marhol P., Cvačka J., Havlíček L., Křenkova A., Vavříková E., Biedermann D., Chambers C.S., et al. Prokaryotic and eukaryotic aryl sulfotransferases: Sulfation of quercetin and its derivatives. ChemCatChem. 2015;7:3152–3162. doi: 10.1002/cctc.201500298. DOI

Trouillas P., Marsal P., Svobodová A., Vostálová J., Gažák R., Hrbáč J., Sedmera P., Křen V., Lazzaroni R., Duroux J.-L., et al. Mechanism of the antioxidant action of silybin and 2,3-dehydrosilybin flavonolignans: A joint experimental and theoretical study. J. Phys. Chem. A. 2008;112:1054–1063. doi: 10.1021/jp075814h. PubMed DOI

Gažák R., Trouillas P., Biedermann D., Fuksová K., Marhol P., Kuzma M., Křen V. Base-catalyzed oxidation of silybin and isosilybin into 2,3-dehydro derivatives. Tetrahedron Lett. 2013;54:315–317. doi: 10.1016/j.tetlet.2012.11.049. DOI

Kawabata K., Mukai R., Ishisaka A. Quercetin and related polyphenols: New insights and implications for their bioactivity and bioavailability. Food Funct. 2015;6:1399–1417. doi: 10.1039/C4FO01178C. PubMed DOI

Valentová K., Káňová K., Di Meo F., Pelantová H., Chambers C., Rydlová L., Petrásková L., Křenková A., Cvačka J., Trouillas P. Chemoenzymatic preparation and biophysical properties of sulfated quercetin metabolites. Int. J. Mol. Sci. 2017;18:2231. doi: 10.3390/ijms18112231. PubMed DOI PMC

Roubalová L., Purchartová K., Papoušková B., Vacek J., Křen V., Ulrichová J., Vrba J. Sulfation modulates the cell uptake, antiradical activity and biological effects of flavonoids in vitro: An examination of quercetin, isoquercitrin and taxifolin. Bioorg. Med. Chem. 2015;23:5402–5409. doi: 10.1016/j.bmc.2015.07.055. PubMed DOI

Seyoum A., Asres K., El-Fiky F.K. Structure–radical scavenging activity relationships of flavonoids. Phytochemistry. 2006;67:2058–2070. doi: 10.1016/j.phytochem.2006.07.002. PubMed DOI

Chambers C.S., Holečková V., Petrásková L., Biedermann D., Valentová K., Buchta M., Křen V. The silymarin composition… and why does it matter??? Food Res. Int. 2017;100:339–353. doi: 10.1016/j.foodres.2017.07.017. PubMed DOI

Surh Y.J., Kundu J.K., Na H.K. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med. 2008;74:1526–1539. doi: 10.1055/s-0028-1088302. PubMed DOI

Zhang Y., Talalay P., Cho C.G., Posner G.H. A major inducer of anticarcinogenic protective enzymes from broccoli: Isolation and elucidation of structure. Proc. Natl. Acad. Sci. USA. 1992;89:2399–2403. doi: 10.1073/pnas.89.6.2399. PubMed DOI PMC

Roubalová L., Dinkova-Kostova A.T., Biedermann D., Křen V., Ulrichová J., Vrba J. Flavonolignan 2,3-dehydrosilydianin activates Nrf2 and upregulates NAD(P)H:quinone oxidoreductase 1 in Hepa1c1c7 cells. Fitoterapia. 2017;119:115–120. doi: 10.1016/j.fitote.2017.04.012. PubMed DOI PMC

Gažák R., Marhol P., Purchartová K., Monti D., Biedermann D., Riva S., Cvak L., Křen V. Large-scale separation of silybin diastereoisomers using lipases. Process Biochem. 2010;45:1657–1663. doi: 10.1016/j.procbio.2010.06.019. DOI

Džubák P., Hajdúch M., Gažák R., Svobodová A., Psotová J., Walterová D., Sedmera P., Křen V. New derivatives of silybin and 2,3-dehydrosilybin and their cytotoxic and P-glycoprotein modulatory activity. Bioorg. Med. Chem. 2006;14:3793–3810. doi: 10.1016/j.bmc.2006.01.035. PubMed DOI

Van der Horst M.A., van Lieshout J.F.T., Bury A., Hartog A.F., Wever R. Sulfation of various alcoholic groups by an arylsulfate sulfotransferase from Desulfitobacterium hafniense and synthesis of estradiol sulfate. Adv. Synth. Catal. 2012;354:3501–3508. doi: 10.1002/adsc.201200564. DOI

Fogliano V., Verde V., Randazzo G., Ritieni A. Method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J. Agric. Food Chem. 1999;47:1035–1040. doi: 10.1021/jf980496s. PubMed DOI

Miller N.J., RiceEvans C.A. Factors influencing the antioxidant activity determined by the ABTS+ radical cation assay. Free Radic. Res. 1997;26:195–199. doi: 10.3109/10715769709097799. PubMed DOI

Jones A., Pravadali-Cekic S., Dennis G.R., Bashir R., Mahon P.J., Shalliker R.A. Ferric reducing antioxidant potential (FRAP) of antioxidants using reaction flow chromatography. Anal. Chim. Acta. 2017;967:93–101. doi: 10.1016/j.aca.2017.02.032. PubMed DOI

Sharma O.P., Bhat T.K. DPPH antioxidant assay revisited. Food Chem. 2009;113:1202–1205. doi: 10.1016/j.foodchem.2008.08.008. DOI

Singleton V.L., Orthofer R., Lamuela-Raventós R.M. Methods in Enzymol. Volume 299. Academic Press; Cambridge, MA, USA: 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent; pp. 152–178.

Joyeux M., Lobstein A., Anton R., Mortier F. Comparative antilipoperoxidant, antinecrotic and scavenging properties of terpenes and biflavones from Ginkgo and some flavonoids. Planta Med. 1995;61:126–129. doi: 10.1055/s-2006-958030. PubMed DOI

Heřmánková-Vavříková E., Křenková A., Petrásková L., Chambers C., Zápal J., Kuzma M., Valentová K., Křen V. Synthesis and antiradical activity of isoquercitrin esters with aromatic acids and their homologues. Int. J. Mol. Sci. 2017;18:1074. doi: 10.3390/ijms18051074. PubMed DOI PMC

Vavříková E., Křen V., Jezova-Kalachova L., Biler M., Chantemargue B., Pyszková M., Riva S., Kuzma M., Valentová K., Ulrichová J. Novel flavonolignan hybrid antioxidants: From enzymatic preparation to molecular rationalization. Eur. J. Med. Chem. 2017;127:263–274. doi: 10.1016/j.ejmech.2016.12.051. PubMed DOI

Vavříková E., Langschwager F., Jezova-Kalachova L., Křenková A., Mikulová B., Kuzma M., Křen V., Valentová K. Isoquercitrin esters with mono- or dicarboxylic acids: Enzymatic preparation and properties. Int. J. Mol. Sci. 2016;17:899. doi: 10.3390/ijms17060899. PubMed DOI PMC

Ertl P., Rohde B., Selzer P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem. 2000;43:3714–3717. doi: 10.1021/jm000942e. PubMed DOI

Fahey J.W., Dinkova-Kostova A.T., Stephenson K.K., Talalay P. Methods in Enzymol. Volume 382. Academic Press; Cambridge, MA, USA: 2004. The “Prochaska” microtiter plate bioassay for inducers of NQO1; pp. 243–258. PubMed

Vrba J., Papoušková B., Roubalová L., Zatloukalová M., Biedermann D., Křen V., Valentová K., Ulrichová J., Vacek J. Metabolism of flavonolignans in human hepatocytes. J. Pharm. Biomed. Anal. 2018;152:94–101. doi: 10.1016/j.jpba.2018.01.048. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Effects of catechins, resveratrol, silymarin components and some of their conjugates on xanthine oxidase-catalyzed xanthine and 6-mercaptopurine oxidation

. 2025 Mar 30 ; 105 (5) : 2765-2776. [epub] 20241128

New Bacterial Aryl Sulfotransferases: Effective Tools for Sulfation of Polyphenols

. 2024 Oct 09 ; 72 (40) : 22208-22216. [epub] 20241001

Sulfation of Phenolic Acids: Chemoenzymatic vs. Chemical Synthesis

. 2022 Dec 02 ; 23 (23) : . [epub] 20221202

Sulfated Phenolic Substances: Preparation and Optimized HPLC Analysis

. 2022 May 20 ; 23 (10) : . [epub] 20220520

Silymarin Dehydroflavonolignans Chelate Zinc and Partially Inhibit Alcohol Dehydrogenase

. 2021 Nov 25 ; 13 (12) : . [epub] 20211125

Chirality Matters: Biological Activity of Optically Pure Silybin and Its Congeners

. 2021 Jul 23 ; 22 (15) : . [epub] 20210723

Dehydroflavonolignans from Silymarin Potentiate Transition Metal Toxicity In Vitro but Are Protective for Isolated Erythrocytes Ex Vivo

. 2021 Apr 27 ; 10 (5) : . [epub] 20210427

Identification of Human Sulfotransferases Active towards Silymarin Flavonolignans and Taxifolin

. 2020 Aug 12 ; 10 (8) : . [epub] 20200812

The Effect of Silymarin Flavonolignans and Their Sulfated Conjugates on Platelet Aggregation and Blood Vessels Ex Vivo

. 2019 Sep 24 ; 11 (10) : . [epub] 20190924

Antioxidant, Anti-Inflammatory, and Multidrug Resistance Modulation Activity of Silychristin Derivatives

. 2019 Aug 14 ; 8 (8) : . [epub] 20190814

Preparation of Retinoyl-Flavonolignan Hybrids and Their Antioxidant Properties

. 2019 Jul 23 ; 8 (7) : . [epub] 20190723

Differential Effects of the Flavonolignans Silybin, Silychristin and 2,3-Dehydrosilybin on Mesocestoides vogae Larvae (Cestoda) under Hypoxic and Aerobic In Vitro Conditions

. 2018 Nov 16 ; 23 (11) : . [epub] 20181116

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace