Synthesis and Antiradical Activity of Isoquercitrin Esters with Aromatic Acids and Their Homologues
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
28513572
PubMed Central
PMC5454983
DOI
10.3390/ijms18051074
PII: ijms18051074
Knihovny.cz E-zdroje
- Klíčová slova
- DPPH, Novozym 435, antioxidant activity, aromatic acid, cinnamic acid, gallic acid, isoquercitrin, lipase, lipoperoxidation,
- MeSH
- estery * chemie MeSH
- hmotnostní spektrometrie MeSH
- molekulární struktura MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- peroxidace lipidů účinky léků MeSH
- quercetin analogy a deriváty analýza chemická syntéza farmakologie MeSH
- scavengery volných radikálů analýza chemická syntéza farmakologie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- estery * MeSH
- isoquercitrin MeSH Prohlížeč
- quercetin MeSH
- scavengery volných radikálů MeSH
Isoquercitrin, (IQ, quercetin-3-O-β-d-glucopyranoside) is known for strong chemoprotectant activities. Acylation of flavonoid glucosides with carboxylic acids containing an aromatic ring brings entirely new properties to these compounds. Here, we describe the chemical and enzymatic synthesis of a series of IQ derivatives at the C-6″. IQ benzoate, phenylacetate, phenylpropanoate and cinnamate were prepared from respective vinyl esters using Novozym 435 (Lipase B from Candida antarctica immobilized on acrylic resin). The enzymatic procedure gave no products with "hydroxyaromatic" acids, their vinyl esters nor with their benzyl-protected forms. A chemical protection/deprotection method using Steglich reaction yielded IQ 4-hydroxybenzoate, vanillate and gallate. In case of p-coumaric, caffeic, and ferulic acid, the deprotection lead to the saturation of the double bonds at the phenylpropanoic moiety and yielded 4-hydroxy-, 3,4-dihydroxy- and 3-methoxy-4-hydroxy-phenylpropanoates. Reducing capacity of the cinnamate, gallate and 4-hydroxyphenylpropanoate towards Folin-Ciocalteau reagent was significantly lower than that of IQ, while other derivatives displayed slightly better or comparable capacity. Compared to isoquercitrin, most derivatives were less active in 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging, but they showed significantly better 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid, ABTS) scavenging activity and were substantially more active in the inhibition of tert-butylhydroperoxide induced lipid peroxidation of rat liver microsomes. The most active compounds were the hydroxyphenylpropanoates.
Zobrazit více v PubMed
Wang W.Y., Sun C.X., Mao L.K., Ma P.H., Liu F.G., Yang J., Gao Y.X. The biological activities, chemical stability, metabolism and delivery systems of quercetin: A review. Trends Food Sci. Technol. 2016;56:21–38. doi: 10.1016/j.tifs.2016.07.004. DOI
FDA GRAS Notice for High Purity Quercetin. [(accessed on 25 February 2014)];2010 Available online: http://www.accessdata.fda.gov/scripts/fcn/gras_notices/grn341–1.pdf.
Neveu V., Perez-Jiménez J., Vos F., Crespy V., du Chaffaut L., Mennen L., Knox C., Eisner R., Cruz J., Wishart D., et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database. 2010;2010 doi: 10.1093/database/bap024. PubMed DOI PMC
Valentová K., Vrba J., Bancířová M., Ulrichová J., Křen V. Isoquercitrin: Pharmacology, toxicology, and metabolism. Food Chem. Toxicol. 2014;68:267–282. doi: 10.1016/j.fct.2014.03.018. PubMed DOI
Emura K., Yokomoto A., Toyoshi T., Moriwak M. Effect of enzymatically modified isoquercitrin in spontaneously hypertensive rats. J. Nutr. Sci. Vitaminol. 2007;53:68–74. doi: 10.3177/jnsv.53.68. PubMed DOI
Rogerio A.P., Kanashiro A., Fontanari C., da Silva E.V.G., Lucisano-Valim Y.M., Soares E.G., Faccioli L.H. Anti-inflammatory activity of quercetin and isoquercitrin in experimental murine allergic asthma. Inflamm. Res. 2007;56:402–408. doi: 10.1007/s00011-007-7005-6. PubMed DOI
Panda S., Kar A. Antidiabetic and antioxidative effects of Annona squamosa leaves are possibly mediated through quercetin-3-O-glucoside. Biofactors. 2007;31:201–210. doi: 10.1002/biof.5520310307. PubMed DOI
Gerstorferová D., Fliedrová B., Halada P., Marhol P., Křen V., Weignerová L. Recombinant α-l-rhamnosidase from Aspergillus terreus in selective trimming of rutin. Process. Biochem. 2012;47:828–835. doi: 10.1016/j.procbio.2012.02.014. DOI
Weignerová L., Marhol P., Gerstorferová D., Křen V. Preparatory production of quercetin-3-β-d-glucopyranoside using alkali-tolerant thermostable α-l-rhamnosidase from Aspergillus terreus. Bioresour. Technol. 2012;115:222–227. doi: 10.1016/j.biortech.2011.08.029. PubMed DOI
Monti D., Pišvejcová A., Křen V., Lama M., Riva S. Generation of an α-l-rhamnosidase library and its application for the selective derhamnosylation of natural products. Biotechnol. Bioeng. 2004;87:763–771. doi: 10.1002/bit.20187. PubMed DOI
Ishihara K., Nakajima N. Structural aspects of acylated plant pigments: Stabilization of flavonoid glucosides and interpretation of their functions. J. Mol. Catal. B Enzym. 2003;23:411–417. doi: 10.1016/S1381-1177(03)00106-1. DOI
Veitch N.C., Grayer R.J. Flavonoids and their glycosides, including anthocyanins. Nat. Prod. Rep. 2011;28:1626–1695. doi: 10.1039/c1np00044f. PubMed DOI
Bloor S.J. Deep blue anthocyanins from blue Dianella berries. Phytochemistry. 2001;58:923–927. doi: 10.1016/S0031-9422(01)00343-0. PubMed DOI
Alluis B., Dangles O. Acylated flavone glucosides: Synthesis, conformational investigation, and complexation properties. Helv. Chim. Acta. 1999;82:2201–2212. doi: 10.1002/(SICI)1522-2675(19991215)82:12<2201::AID-HLCA2201>3.0.CO;2-4. DOI
Matsuda H., Ninomiya K., Shimoda H., Yoshikawa M. Hepatoprotective principles from the flowers of Tilia argentea (Linden): Structure requirements of tiliroside and mechanisms of action. Bioorg. Med. Chem. 2002;10:707–712. doi: 10.1016/S0968-0896(01)00321-2. PubMed DOI
Vavříková E., Langschwager F., Ježová-Kalachová L., Křenková A., Mikulová B., Kuzma M., Křen V., Valentová K. Isoquercitrin esters with mono- or dicarboxylic acids: Enzymatic preparation and properties. Int. J. Mol. Sci. 2016;17:899. doi: 10.3390/ijms17060899. PubMed DOI PMC
Danieli B., Bertario A. Chemoenzymatic synthesis of 6″-O-(3-arylprop-2-enoyl) derivatives of the flavonol glucoside isoquercitrin. Helv. Chim. Acta. 1993;76:2981–2991. doi: 10.1002/hlca.19930760823. DOI
Nakajima N., Ishihara K., Hamada H., Kawabe S., Furuya T. Regioselective acylation of flavonoid glucoside with aromatic acid by an enzymatic reaction system from cultured cells of Ipomoea batatas. J. Biosci. Bioeng. 2000;90:347–349. doi: 10.1016/S1389-1723(00)80095-X. PubMed DOI
Kajjout M., Rolando C. Regiospecific synthesis of quercetin O-β-d-glucosylated and O-β-d-glucuronidated isomers. Tetrahedron. 2011;67:4731–4741. doi: 10.1016/j.tet.2011.03.110. DOI
Ren X.H., Shen L.L., Muraoka O., Cheng M.S. Synthesis of quercetin 3-O[6″-O-(trans-p-coumaroyl)]-β-d-glucopyranoside. J. Carbohydr. Chem. 2011;30:119–131. doi: 10.1080/07328303.2011.616979. DOI
Gažák R., Purchartová K., Marhol P., Živná L., Sedmera P., Valentová K., Kato N., Matsumura H., Kaihatsu K., Křen V. Antioxidant and antiviral activities of silybin fatty acid conjugates. Eur. J. Med. Chem. 2010;45:1059–1067. doi: 10.1016/j.ejmech.2009.11.056. PubMed DOI
Mastihubová M., Mastihuba V. Donor specificity and regioselectivity in Lipolase mediated acylations of methyl α-d-glucopyranoside by vinyl esters of phenolic acids and their analogues. Bioorg. Med. Chem. Lett. 2013;23:5389–5392. doi: 10.1016/j.bmcl.2013.07.051. PubMed DOI
Krejzová J., Šimon P., Vavříková E., Slámová K., Pelantová H., Riva S., Spiwok V., Křen V. Enzymatic synthesis of new C-6-acylated derivatives of NAG-thiazoline and evaluation of their inhibitor activities towards fungal β-N-acetylhexosaminidase. J. Mol. Catal. B Enzym. 2013;87:128–134. doi: 10.1016/j.molcatb.2012.10.016. DOI
Nakajima N., Ishihara K., Itoh T., Furuya T., Hamada H. Lipase-catalyzed direct and regioselective acylation of flavonoid glucoside for mechanistic investigation of stable plant pigments. J. Biosci. Bioeng. 1999;87:105–107. doi: 10.1016/S1389-1723(99)80017-6. PubMed DOI
Wang L.Y., Tsai H.Y., Lin H.C. Novel supramolecular side-chain banana-shaped liquid crystalline polymers containing covalent- and hydrogen-bonded bent bores. Macromolecules. 2010;43:1277–1288. doi: 10.1021/ma901960c. DOI
Vitoriano B.C., Carvalho L.C.R., Estevao M.S., Sekera M.H., Marques M.M.B. A simple route toward new clomiphene metabolites. Synlett. 2010;5:753–756. doi: 10.1055/s-0029-1219383. DOI
Catel Y., Aladedunye F., Przybylski R. Synthesis, radical scavenging activity, protection during storage, and frying by novel antioxidants. J. Agric. Food Chem. 2010;58:11081–11089. doi: 10.1021/jf102287h. PubMed DOI
Yuan H., Lu W.Q., Wang L.Y., Shan L., Li H.L., Huang J., Sun Q.Y., Zhang W.D. Synthesis of derivatives of methyl rosmarinate and their inhibitory activities against matrix metalloproteinase-1 (MMP-1) Eur. J. Med. Chem. 2013;62:148–157. doi: 10.1016/j.ejmech.2012.09.047. PubMed DOI
Li L.H., Zhao P., Hu J.L., Liu J.H., Liu Y., Wang Z.Q., Xia Y.F., Dai Y., Chen L. Synthesis, in vitro and in vivo antitumor activity of scopoletin-cinnamic acid hybrids. Eur. J. Med. Chem. 2015;93:300–307. doi: 10.1016/j.ejmech.2015.01.040. PubMed DOI
Shaikh Q.U., Yang M.T., Memon K.H., Lateef M., Na D., Wan S.B., Eric D., Zhang L.J., Jiang T. 1,2,3,4,6-Pentakis[-O-(3,4,5-trihydroxybenzoyl)]-α,β-d-glucopyranose (PGG) analogs: Design, synthesis, anti-tumor and anti-oxidant activities. Carbohydr. Res. 2016;430:72–81. doi: 10.1016/j.carres.2016.04.021. PubMed DOI
Venkateswarlu S., Ramachandra M.S., Krishnaraju A.V., Trimurtulu G., Subbaraju G.V. Antioxidant and antimicrobial activity evaluation of polyhydroxycinnamic acid ester derivatives. Indian J. Chem. B. 2006;45:252–257. doi: 10.1002/chin.200618070. DOI
Pyszková M., Biler M., Biedermann D., Valentová K., Kuzma M., Vrba J., Ulrichová J., Sokolová R., Mojovic M., Popovic-Bijelic A., et al. Flavonolignan 2,3-dehydroderivatives: Preparation, antiradical and cytoprotective activity. Free Radic. Biol. Med. 2016;90:114–125. doi: 10.1016/j.freeradbiomed.2015.11.014. PubMed DOI
Nugroho A., Rhim T.J., Choi M.Y., Choi J.S., Kim Y.C., Kim M.S., Park H.J. Simultaneous analysis and peroxynitrite-scavenging activity of galloylated flavonoid glycosides and ellagic acid in Euphorbia supina. Arch. Pharm. Res. 2014;37:890–898. doi: 10.1007/s12272-013-0307-z. PubMed DOI
Masuda T., Iritani K., Yonemori S., Oyama Y., Takeda Y. Isolation and antioxidant activity of galloyl flavonol glycosides from the seashore plant, Pemphis acidula. Biosci. Biotechnol. Biochem. 2001;65:1302–1309. doi: 10.1271/bbb.65.1302. PubMed DOI
Kim B.H., Lee I.J., Lee H.Y., Hwang B.Y., Han S.B., Kim Y. Distinct inhibitory mechanisms of isoquercitrin gallate and its aglycone on zymosan-induced peroxynitrite production in macrophages. Nitric Oxide. 2007;17:134–142. doi: 10.1016/j.niox.2007.06.002. PubMed DOI
Singleton V.L., Orthofer R., Lamuela-Raventós R.M. Methods in Enzymology. Volume 299. Academic Press; Cambridge, MA, USA: 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent; pp. 152–178. DOI
Sharma O.P., Bhat T.K. DPPH antioxidant assay revisited. Food Chem. 2009;113:1202–1205. doi: 10.1016/j.foodchem.2008.08.008. DOI
Miller N.J., Rice-Evans C.A. Factors influencing the antioxidant activity determined by the ABTS+ radical cation assay. Free Radic. Res. 1997;26:195–199. doi: 10.3109/10715769709097799. PubMed DOI
Joyeux M., Lobstein A., Anton R., Mortier F. Comparative antilipoperoxidant, antinecrotic and scavenging properties of terpenes and biflavones from ginkgo and some flavonoids. Planta Med. 1995;61:126–129. doi: 10.1055/s-2006-958030. PubMed DOI
Sulfated Metabolites of Flavonolignans and 2,3-Dehydroflavonolignans: Preparation and Properties