In vivo Molecular Signatures of Cervical Spinal Cord Pathology in Degenerative Compression

. 2021 Nov 01 ; 38 (21) : 2999-3010.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34428934

Grantová podpora
P30 NS076408 NINDS NIH HHS - United States
P41 EB027061 NIBIB NIH HHS - United States

Degenerative cervical myelopathy (DCM) is a severe consequence of degenerative cervical spinal cord (CSC) compression. The non-myelopathic stage of compression (NMDC) is highly prevalent and often progresses to disabling DCM. This study aims to disclose markers of progressive neurochemical alterations in NMDC and DCM by utilizing an approach based on state-of-the-art proton magnetic resonance spectroscopy (1H-MRS). Proton-MRS data were prospectively acquired from 73 participants with CSC compression and 47 healthy controls (HCs). The MRS voxel was centered at the C2 level. Compression-affected participants were clinically categorized as NMDC and DCM, radiologically as mild (MC) or severe (SC) compression. CSC volumes and neurochemical concentrations were compared between cohorts (HC vs. NMDC vs. DCM and HC vs. MC vs. SC) with general linear models adjusted for age and height (pFWE < 0.05) and correlated to stenosis severity, electrophysiology, and myelopathy symptoms (p < 0.05). Whereas the ratio of total creatine (tCr) to total N-acetylaspartate (tNAA) increased in NMDC (+11%) and in DCM (+26%) and SC (+21%), myo-inositol/tNAA, glutamate + glutamine/tNAA, and volumes changed only in DCM (+20%, +73%, and -14%) and SC (+12%, +46%, and -8%, respectively) relative to HCs. Both tCr/tNAA and myo-inositol/tNAA correlated with compression severity and volume (-0.376 < r < -0.259). Myo-inositol/tNAA correlated with myelopathy symptoms (r = -0.670), whereas CSC volume did not. Short-echo 1H-MRS provided neurochemical signatures of CSC impairment that reflected compression severity and clinical significance. Whereas volumetry only reflected clinically manifest myelopathy (DCM), MRS detected neurochemical changes already before the onset of myelopathy symptoms.

Zobrazit více v PubMed

Gore, D.R., Sepic, S.B., and Gardner, G.M. (1986). Roentgenographic findings of the cervical spine in asymptomatic people. Spine 11, 521–524. PubMed

Kovalova, I., Kerkovsky, M., Kadanka, Z., Kadanka, Z., Nemec, M., Jurova, B., Dusek, L., Jarkovsky, J., and Bednarik, J. (2016). Prevalence and imaging characteristics of nonmyelopathic and myelopathic spondylotic cervical cord compression. Spine 41, 1908–1916. PubMed

Montgomery, D.M., and Brower, R.S. (1992). Cervical spondylotic myelopathy. clinical syndrome and natural history. Orthop. Clin. North Am. 23, 487–493. PubMed

Badhiwala, J.H., Ahuja, C.S., Akbar, M.A., Witiw, C.D., Nassiri, F., Furlan, J.C., Curt, A., Wilson, J.R., and Fehlings, M.G. (2020). Degenerative cervical myelopathy—update and future directions. Nat. Rev. Neurol. 16, 108–124. PubMed

Jutzeler, C.R., Ulrich, A., Huber, B., Rosner, J., Kramer, J.L.K., and Curt, A. (2017). Improved diagnosis of cervical spondylotic myelopathy with contact heat evoked potentials. J. Neurotrauma 34, 2045–2053. PubMed

Stroman, P.W., Wheeler-Kingshott, C., Bacon, M., Schwab, J.M., Bosma, R., Brooks, J., Cadotte, D., Carlstedt, T., Ciccarelli, O., Cohen-Adad, J., Curt, A., Evangelou, N., Fehlings, M.G., Filippi, M., Kelley, B.J., Kollias, S., Mackay, A., Porro, C.A., Smith, S., Strittmatter, S.M., Summers, P., and Tracey, I. (2014). The current state-of-the-art of spinal cord imaging: methods. Neuroimage 84, 1070–1081. PubMed PMC

Martin, A.R., Aleksanderek, I., Cohen-Adad, J., Tarmohamed, Z., Tetreault, L., Smith, N., Cadotte, D.W., Crawley, A., Ginsberg, H., Mikulis, D.J., and Fehlings, M.G. (2016). Translating state-of-the-art spinal cord MRI techniques to clinical use: a systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. Neuroimage Clin. 10, 192–238. PubMed PMC

Oz, G., Alger, J.R., Barker, P.B., Bartha, R., Bizzi, A., Boesch, C., Bolan, P.J., Brindle, K.M., Cudalbu, C., Dinçer, A., Dydak, U., Emir, U.E., Frahm, J., González, R.G., Gruber, S., Gruetter, R., Gupta, R.K., Heerschap, A., Henning, A., Hetherington, H.P., Howe, F.A., Hüppi, P.S., Hurd, R.E., Kantarci, K., Klomp, D.W.J., Kreis, R., Kruiskamp, M.J., Leach, M.O., Lin, A.P., Luijten, P.R., Marjańska, M., Maudsley, A.A., Meyerhoff, D.J., Mountford, C.E., Nelson, S.J., Pamir, M.N., Pan, J.W., Peet, A.C., Poptani, H., Posse, S., Pouwels, P.J.W., Ratai, E.-M., Ross, B.D., Scheenen, T.W., Schuster, C., Smith, I.C.P., Soher, B.J., Tkáč, I., Vigneron, D.B., and Kauppinen, R.A.; MRS Consensus Group. (2014). Clinical proton MR spectroscopy in central nervous system disorders. Radiology 270, 658–679. PubMed PMC

Solanky, B.S., Abdel-Aziz, K., Yiannakas, M.C., Berry, A.M., Ciccarelli, O., and Wheeler-Kingshott, C.A. (2013). In vivo magnetic resonance spectroscopy detection of combined glutamate-glutamine in healthy upper cervical cord at 3 T. NMR Biomed. 26, 357–366. PubMed

Craciunas, S.C., Gorgan, M.R., Ianosi, B., Lee, P., Burris, J., and Cirstea, C.M. (2017). Remote motor system metabolic profile and surgery outcome in cervical spondylotic myelopathy. J. Neurosurg. Spine 26, 668–678. PubMed

Aleksanderek, I., McGregor, S.M.K., Stevens, T.K., Goncalves, S., Bartha, R., and Duggal, N. (2017). Cervical spondylotic myelopathy: metabolite changes in the primary motor cortex after surgery. Radiology 282, 817–825. PubMed

Holly, L.T., Ellingson, B.M., and Salamon, N. (2017). Metabolic imaging using proton magnetic spectroscopy as a predictor of outcome after surgery for cervical spondylotic myelopathy. Clin. Spine Surg. 30, E615–E619. PubMed PMC

Holly, L.T., Freitas, B., McArthur, D.L., and Salamon, N. (2009). Proton magnetic resonance spectroscopy to evaluate spinal cord axonal injury in cervical spondylotic myelopathy. J. Neurosurg. Spine 10, 194–200. PubMed

Wyss, P.O., Huber, E., Curt, A., Kollias, S., Freund, P., and Henning, A. (2019). MR spectroscopy of the cervical spinal cord in chronic spinal cord injury. Radiology 291, 131–138. PubMed

Ellingson, B.M., Salamon, N., Hardy, A.J., and Holly, L.T. (2015). Prediction of neurological impairment in cervical spondylotic myelopathy using a combination of diffusion MRI and proton MR spectroscopy. PLoS One 10, e0139451. PubMed PMC

Salamon, N., Ellingson, B.M., Nagarajan, R., Gebara, N., Thomas, A., and Holly, L.T. (2013). Proton magnetic resonance spectroscopy of human cervical spondylosis at 3T. Spinal Cord 51, 558–563. PubMed PMC

Aleksanderek, I., Stevens, T.K., Goncalves, S., Bartha, R., and Duggal, N. (2017). Metabolite and functional profile of patients with cervical spondylotic myelopathy. J. Neurosurg. Spine 26, 547–553. PubMed

Karadimas, S.K., Erwin, W.M., Ely, C.G., Dettori, J.R., and Fehlings, M.G. (2013). Pathophysiology and natural history of cervical spondylotic myelopathy. Spine (Phila Pa 1976) 38, S21–S36. PubMed

Tetreault, L., Kopjar, B., Nouri, A., Arnold, P., Barbagallo, G., Bartels, R., Qiang, Z., Singh, A., Zileli, M., Vaccaro, A., and Fehlings, M.G. (2017). The modified Japanese Orthopaedic Association scale: establishing criteria for mild, moderate and severe impairment in patients with degenerative cervical myelopathy. Eur. Spine J. 26, 78–84. PubMed

Bednařík, J., Kadaňka, Z., Voháňka, S., Novotný, O., Šurelová, D., Filipovičová, D., and Prokeš, B. (1998). The value of somatosensory and motor evoked potentials in pre-clinical spondylotic cervical cord compression. Eur. Spine J. 7, 493–500. PubMed PMC

Bednarik, J., Kadanka, Z., Dusek, L., Kerkovsky, M., Vohanka, S., Novotny, O., Urbanek, I., and Kratochvilova, D. (2008). Presymptomatic spondylotic cervical myelopathy: an updated predictive model. Eur. Spine J. 17, 421–431. PubMed PMC

Kadanka, Z., Adamova, B., Kerkovsky, M., Kadanka, Z., Dusek, L., Jurova, B., Vlckova, E., and Bednarik, J. (2017). Predictors of symptomatic myelopathy in degenerative cervical spinal cord compression. Brain Behav. 7, e00797. PubMed PMC

Joers, J.M., Deelchand, D.K., Lyu, T., Emir, U.E., Hutter, D., Gomez, C.M., Bushara, K.O., Eberly, L.E., and Öz, G. (2018). Neurochemical abnormalities in premanifest and early spinocerebellar ataxias. Ann. Neurol. 83, 816–829. PubMed PMC

Gruetter, R., and Tkác, I. (2000). Field mapping without reference scan using asymmetric echo-planar techniques. Magn. Reson. Med. 43, 319–323. PubMed

Tkáč, I., Starčuk, Z., Choi, I.-Y., and Gruetter, R. (1999). In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn. Reson. Med. 41, 649–656. PubMed

Oz, G., and Tkáč, I. (2011). Short-echo, single-shot, full-intensity proton magnetic resonance spectroscopy for neurochemical profiling at 4 T: validation in the cerebellum and brainstem. Magn. Reson. Med. 65, 901–910. PubMed PMC

Öz, G., Deelchand, D.K., Wijnen, J.P., Mlynárik, V., Xin, L., Mekle, R., Noeske, R., Scheenen, T.W.J., andTkáč , I.; Experts' Working Group on Advanced Single Voxel 1H MRS. (2020). Advanced single voxel 1 H magnetic resonance spectroscopy techniques in humans: experts' consensus recommendations. NMR Biomed. doi: 10.1002/nbm.4236. PubMed DOI PMC

De Leener, B., Lévy, S., Dupont, S.M., Fonov, V.S., Stikov, N., Louis Collins, D., Callot, V., and Cohen-Adad, J. (2017). SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage 145, 24–43. PubMed

Provencher, S.W. (1993). Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 30, 672–679. PubMed

Deelchand, D.K., Adanyeguh, I.M., Emir, U.E., Nguyen, T.-M., Valabregue, R., Henry, P.-G., Mochel, F., and Öz, G. (2015). Two-site reproducibility of cerebellar and brainstem neurochemical profiles with short-echo, single-voxel MRS at 3T. Magn. Reson. Med. 73, 1718–1725. PubMed PMC

Bednařík, P., Henry, P.-G., Khowaja, A., Rubin, N., Kumar, A., Deelchand, D., Eberly, L.E., Seaquist, E., Öz, G., and Moheet, A. (2020). Hippocampal neurochemical profile and glucose transport kinetics in patients with type 1 diabetes. J. Clin. Endocrinol. Metab. 105, 479–491. PubMed PMC

Cooke, F.J., Blamire, A.M., Manners, D.N., Styles, P., and Rajagopalan, B. (2004). Quantitative proton magnetic resonance spectroscopy of the cervical spinal cord. Magn. Reson. Med. 51, 1122–1128. PubMed

Hock, A., Fuchs, A., Boesiger, P., Kollias, S.S., and Henning, A. (2013). Electrocardiogram-triggered, higher order, projection-based B0 shimming allows for fast and reproducible shim convergence in spinal cord 1H MRS. NMR Biomed. 26, 329–335. PubMed

Hock, A., Henning, A., Boesiger, P., and Kollias, S.S. (2013). (1)H-MR spectroscopy in the human spinal cord. AJNR Am. J. Neuroradiol. 34, 1682–1689. PubMed PMC

Dydak, U., Kollias, S., Schär, M., Meier, D., and Boesiger, P. (2005). MR spectroscopy in different regions of the spinal cord and in spinal cord tumors. Presented at thye Proceedings of the Annual Meeting of the International Society of Magnetic Resonance in Medicine, Miami Beach, FL.

Nouri, A., Martin, A.R., Mikulis, D., and Fehlings, M.G. (2016). Magnetic resonance imaging assessment of degenerative cervical myelopathy: a review of structural changes and measurement techniques. Neurosurg. Focus 40, E5. PubMed

Grabher, P., Mohammadi, S., David, G., and Freund, P. (2017). Neurodegeneration in the spinal ventral horn prior to motor impairment in cervical spondylotic myelopathy. J. Neurotrauma 34, 2329–2334. PubMed

Qian, J., Herrera, J.J., and Narayana, P.A. (2010). Neuronal and axonal degeneration in experimental spinal cord injury: in vivo proton magnetic resonance spectroscopy and histology. J. Neurotrauma 27, 599–610. PubMed PMC

Heckova, E., Strasser, B., Hangel, G.J., Považan, M., Dal-Bianco, A., Rommer, P.S., Bednarik, P., Gruber, S., Leutmezer, F., Lassmann, H., Trattnig, S., and Bogner, W. (2019). 7 T magnetic resonance spectroscopic imaging in multiple sclerosis: how does spatial resolution affect the detectability of metabolic changes in brain lesions? Invest. Radiol. 54, 247–254. PubMed PMC

Carew, J.D., Nair, G., Pineda-Alonso, N., Usher, S., Hu, X., and Benatar, M. (2011). Magnetic resonance spectroscopy of the cervical cord in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 12, 185–191. PubMed

Lenglet, C., Joers, J., Pisharady, P., Deelchand, D., Hutter, D., and Bushara, K. (2016). Cross-sectional and longitudinal diffusion MRI and MRS of the spinal cord in Friedreich's Ataxia. Presented at OHBM 2016: 22nd Annual Meeting of the Organization for Human Brain Mapping, Rome.

Grabher, P., Mohammadi, S., Trachsler, A., Friedl, S., David, G., Sutter, R., Weiskopf, N., Thompson, A.J., Curt, A., and Freund, P. (2016). Voxel-based analysis of grey and white matter degeneration in cervical spondylotic myelopathy. Sci. Rep. 6, 24636. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...