In vivo Molecular Signatures of Cervical Spinal Cord Pathology in Degenerative Compression
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
P30 NS076408
NINDS NIH HHS - United States
P41 EB027061
NIBIB NIH HHS - United States
PubMed
34428934
PubMed Central
PMC8917902
DOI
10.1089/neu.2021.0151
Knihovny.cz E-zdroje
- Klíčová slova
- cervical spinal cord, compression, degenerative, magnetic resonance, myelopathy, spectroscopy,
- MeSH
- dospělí MeSH
- inositol metabolismus MeSH
- komprese míchy metabolismus patologie MeSH
- krční mícha * MeSH
- krční obratle MeSH
- kreatin metabolismus MeSH
- kyselina aspartová analogy a deriváty metabolismus MeSH
- kyselina glutamová metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie * MeSH
- senioři MeSH
- senzitivita a specificita MeSH
- studie případů a kontrol MeSH
- stupeň závažnosti nemoci MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- inositol MeSH
- kreatin MeSH
- kyselina aspartová MeSH
- kyselina glutamová MeSH
- N-acetylaspartate MeSH Prohlížeč
Degenerative cervical myelopathy (DCM) is a severe consequence of degenerative cervical spinal cord (CSC) compression. The non-myelopathic stage of compression (NMDC) is highly prevalent and often progresses to disabling DCM. This study aims to disclose markers of progressive neurochemical alterations in NMDC and DCM by utilizing an approach based on state-of-the-art proton magnetic resonance spectroscopy (1H-MRS). Proton-MRS data were prospectively acquired from 73 participants with CSC compression and 47 healthy controls (HCs). The MRS voxel was centered at the C2 level. Compression-affected participants were clinically categorized as NMDC and DCM, radiologically as mild (MC) or severe (SC) compression. CSC volumes and neurochemical concentrations were compared between cohorts (HC vs. NMDC vs. DCM and HC vs. MC vs. SC) with general linear models adjusted for age and height (pFWE < 0.05) and correlated to stenosis severity, electrophysiology, and myelopathy symptoms (p < 0.05). Whereas the ratio of total creatine (tCr) to total N-acetylaspartate (tNAA) increased in NMDC (+11%) and in DCM (+26%) and SC (+21%), myo-inositol/tNAA, glutamate + glutamine/tNAA, and volumes changed only in DCM (+20%, +73%, and -14%) and SC (+12%, +46%, and -8%, respectively) relative to HCs. Both tCr/tNAA and myo-inositol/tNAA correlated with compression severity and volume (-0.376 < r < -0.259). Myo-inositol/tNAA correlated with myelopathy symptoms (r = -0.670), whereas CSC volume did not. Short-echo 1H-MRS provided neurochemical signatures of CSC impairment that reflected compression severity and clinical significance. Whereas volumetry only reflected clinically manifest myelopathy (DCM), MRS detected neurochemical changes already before the onset of myelopathy symptoms.
Department of Biomedical Engineering University Hospital Olomouc Czechia
Department of Imaging Methods Faculty of Medicine University of Ostrava Czechia
Department of Neurology Faculty of Medicine and Dentistry Palacky University Olomouc Czechia
Department of Neurology University Hospital Brno Brno Czechia
Department of Radiology University Hospital Brno Brno Czechia
Faculty of Medicine Masaryk University Brno Czechia
Multimodal and Functional Imaging Laboratory Central European Institute of Technology Brno Czechia
Zobrazit více v PubMed
Gore, D.R., Sepic, S.B., and Gardner, G.M. (1986). Roentgenographic findings of the cervical spine in asymptomatic people. Spine 11, 521–524. PubMed
Kovalova, I., Kerkovsky, M., Kadanka, Z., Kadanka, Z., Nemec, M., Jurova, B., Dusek, L., Jarkovsky, J., and Bednarik, J. (2016). Prevalence and imaging characteristics of nonmyelopathic and myelopathic spondylotic cervical cord compression. Spine 41, 1908–1916. PubMed
Montgomery, D.M., and Brower, R.S. (1992). Cervical spondylotic myelopathy. clinical syndrome and natural history. Orthop. Clin. North Am. 23, 487–493. PubMed
Badhiwala, J.H., Ahuja, C.S., Akbar, M.A., Witiw, C.D., Nassiri, F., Furlan, J.C., Curt, A., Wilson, J.R., and Fehlings, M.G. (2020). Degenerative cervical myelopathy—update and future directions. Nat. Rev. Neurol. 16, 108–124. PubMed
Jutzeler, C.R., Ulrich, A., Huber, B., Rosner, J., Kramer, J.L.K., and Curt, A. (2017). Improved diagnosis of cervical spondylotic myelopathy with contact heat evoked potentials. J. Neurotrauma 34, 2045–2053. PubMed
Stroman, P.W., Wheeler-Kingshott, C., Bacon, M., Schwab, J.M., Bosma, R., Brooks, J., Cadotte, D., Carlstedt, T., Ciccarelli, O., Cohen-Adad, J., Curt, A., Evangelou, N., Fehlings, M.G., Filippi, M., Kelley, B.J., Kollias, S., Mackay, A., Porro, C.A., Smith, S., Strittmatter, S.M., Summers, P., and Tracey, I. (2014). The current state-of-the-art of spinal cord imaging: methods. Neuroimage 84, 1070–1081. PubMed PMC
Martin, A.R., Aleksanderek, I., Cohen-Adad, J., Tarmohamed, Z., Tetreault, L., Smith, N., Cadotte, D.W., Crawley, A., Ginsberg, H., Mikulis, D.J., and Fehlings, M.G. (2016). Translating state-of-the-art spinal cord MRI techniques to clinical use: a systematic review of clinical studies utilizing DTI, MT, MWF, MRS, and fMRI. Neuroimage Clin. 10, 192–238. PubMed PMC
Oz, G., Alger, J.R., Barker, P.B., Bartha, R., Bizzi, A., Boesch, C., Bolan, P.J., Brindle, K.M., Cudalbu, C., Dinçer, A., Dydak, U., Emir, U.E., Frahm, J., González, R.G., Gruber, S., Gruetter, R., Gupta, R.K., Heerschap, A., Henning, A., Hetherington, H.P., Howe, F.A., Hüppi, P.S., Hurd, R.E., Kantarci, K., Klomp, D.W.J., Kreis, R., Kruiskamp, M.J., Leach, M.O., Lin, A.P., Luijten, P.R., Marjańska, M., Maudsley, A.A., Meyerhoff, D.J., Mountford, C.E., Nelson, S.J., Pamir, M.N., Pan, J.W., Peet, A.C., Poptani, H., Posse, S., Pouwels, P.J.W., Ratai, E.-M., Ross, B.D., Scheenen, T.W., Schuster, C., Smith, I.C.P., Soher, B.J., Tkáč, I., Vigneron, D.B., and Kauppinen, R.A.; MRS Consensus Group. (2014). Clinical proton MR spectroscopy in central nervous system disorders. Radiology 270, 658–679. PubMed PMC
Solanky, B.S., Abdel-Aziz, K., Yiannakas, M.C., Berry, A.M., Ciccarelli, O., and Wheeler-Kingshott, C.A. (2013). In vivo magnetic resonance spectroscopy detection of combined glutamate-glutamine in healthy upper cervical cord at 3 T. NMR Biomed. 26, 357–366. PubMed
Craciunas, S.C., Gorgan, M.R., Ianosi, B., Lee, P., Burris, J., and Cirstea, C.M. (2017). Remote motor system metabolic profile and surgery outcome in cervical spondylotic myelopathy. J. Neurosurg. Spine 26, 668–678. PubMed
Aleksanderek, I., McGregor, S.M.K., Stevens, T.K., Goncalves, S., Bartha, R., and Duggal, N. (2017). Cervical spondylotic myelopathy: metabolite changes in the primary motor cortex after surgery. Radiology 282, 817–825. PubMed
Holly, L.T., Ellingson, B.M., and Salamon, N. (2017). Metabolic imaging using proton magnetic spectroscopy as a predictor of outcome after surgery for cervical spondylotic myelopathy. Clin. Spine Surg. 30, E615–E619. PubMed PMC
Holly, L.T., Freitas, B., McArthur, D.L., and Salamon, N. (2009). Proton magnetic resonance spectroscopy to evaluate spinal cord axonal injury in cervical spondylotic myelopathy. J. Neurosurg. Spine 10, 194–200. PubMed
Wyss, P.O., Huber, E., Curt, A., Kollias, S., Freund, P., and Henning, A. (2019). MR spectroscopy of the cervical spinal cord in chronic spinal cord injury. Radiology 291, 131–138. PubMed
Ellingson, B.M., Salamon, N., Hardy, A.J., and Holly, L.T. (2015). Prediction of neurological impairment in cervical spondylotic myelopathy using a combination of diffusion MRI and proton MR spectroscopy. PLoS One 10, e0139451. PubMed PMC
Salamon, N., Ellingson, B.M., Nagarajan, R., Gebara, N., Thomas, A., and Holly, L.T. (2013). Proton magnetic resonance spectroscopy of human cervical spondylosis at 3T. Spinal Cord 51, 558–563. PubMed PMC
Aleksanderek, I., Stevens, T.K., Goncalves, S., Bartha, R., and Duggal, N. (2017). Metabolite and functional profile of patients with cervical spondylotic myelopathy. J. Neurosurg. Spine 26, 547–553. PubMed
Karadimas, S.K., Erwin, W.M., Ely, C.G., Dettori, J.R., and Fehlings, M.G. (2013). Pathophysiology and natural history of cervical spondylotic myelopathy. Spine (Phila Pa 1976) 38, S21–S36. PubMed
Tetreault, L., Kopjar, B., Nouri, A., Arnold, P., Barbagallo, G., Bartels, R., Qiang, Z., Singh, A., Zileli, M., Vaccaro, A., and Fehlings, M.G. (2017). The modified Japanese Orthopaedic Association scale: establishing criteria for mild, moderate and severe impairment in patients with degenerative cervical myelopathy. Eur. Spine J. 26, 78–84. PubMed
Bednařík, J., Kadaňka, Z., Voháňka, S., Novotný, O., Šurelová, D., Filipovičová, D., and Prokeš, B. (1998). The value of somatosensory and motor evoked potentials in pre-clinical spondylotic cervical cord compression. Eur. Spine J. 7, 493–500. PubMed PMC
Bednarik, J., Kadanka, Z., Dusek, L., Kerkovsky, M., Vohanka, S., Novotny, O., Urbanek, I., and Kratochvilova, D. (2008). Presymptomatic spondylotic cervical myelopathy: an updated predictive model. Eur. Spine J. 17, 421–431. PubMed PMC
Kadanka, Z., Adamova, B., Kerkovsky, M., Kadanka, Z., Dusek, L., Jurova, B., Vlckova, E., and Bednarik, J. (2017). Predictors of symptomatic myelopathy in degenerative cervical spinal cord compression. Brain Behav. 7, e00797. PubMed PMC
Joers, J.M., Deelchand, D.K., Lyu, T., Emir, U.E., Hutter, D., Gomez, C.M., Bushara, K.O., Eberly, L.E., and Öz, G. (2018). Neurochemical abnormalities in premanifest and early spinocerebellar ataxias. Ann. Neurol. 83, 816–829. PubMed PMC
Gruetter, R., and Tkác, I. (2000). Field mapping without reference scan using asymmetric echo-planar techniques. Magn. Reson. Med. 43, 319–323. PubMed
Tkáč, I., Starčuk, Z., Choi, I.-Y., and Gruetter, R. (1999). In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time. Magn. Reson. Med. 41, 649–656. PubMed
Oz, G., and Tkáč, I. (2011). Short-echo, single-shot, full-intensity proton magnetic resonance spectroscopy for neurochemical profiling at 4 T: validation in the cerebellum and brainstem. Magn. Reson. Med. 65, 901–910. PubMed PMC
Öz, G., Deelchand, D.K., Wijnen, J.P., Mlynárik, V., Xin, L., Mekle, R., Noeske, R., Scheenen, T.W.J., andTkáč , I.; Experts' Working Group on Advanced Single Voxel 1H MRS. (2020). Advanced single voxel 1 H magnetic resonance spectroscopy techniques in humans: experts' consensus recommendations. NMR Biomed. doi: 10.1002/nbm.4236. PubMed DOI PMC
De Leener, B., Lévy, S., Dupont, S.M., Fonov, V.S., Stikov, N., Louis Collins, D., Callot, V., and Cohen-Adad, J. (2017). SCT: Spinal Cord Toolbox, an open-source software for processing spinal cord MRI data. Neuroimage 145, 24–43. PubMed
Provencher, S.W. (1993). Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn. Reson. Med. 30, 672–679. PubMed
Deelchand, D.K., Adanyeguh, I.M., Emir, U.E., Nguyen, T.-M., Valabregue, R., Henry, P.-G., Mochel, F., and Öz, G. (2015). Two-site reproducibility of cerebellar and brainstem neurochemical profiles with short-echo, single-voxel MRS at 3T. Magn. Reson. Med. 73, 1718–1725. PubMed PMC
Bednařík, P., Henry, P.-G., Khowaja, A., Rubin, N., Kumar, A., Deelchand, D., Eberly, L.E., Seaquist, E., Öz, G., and Moheet, A. (2020). Hippocampal neurochemical profile and glucose transport kinetics in patients with type 1 diabetes. J. Clin. Endocrinol. Metab. 105, 479–491. PubMed PMC
Cooke, F.J., Blamire, A.M., Manners, D.N., Styles, P., and Rajagopalan, B. (2004). Quantitative proton magnetic resonance spectroscopy of the cervical spinal cord. Magn. Reson. Med. 51, 1122–1128. PubMed
Hock, A., Fuchs, A., Boesiger, P., Kollias, S.S., and Henning, A. (2013). Electrocardiogram-triggered, higher order, projection-based B0 shimming allows for fast and reproducible shim convergence in spinal cord 1H MRS. NMR Biomed. 26, 329–335. PubMed
Hock, A., Henning, A., Boesiger, P., and Kollias, S.S. (2013). (1)H-MR spectroscopy in the human spinal cord. AJNR Am. J. Neuroradiol. 34, 1682–1689. PubMed PMC
Dydak, U., Kollias, S., Schär, M., Meier, D., and Boesiger, P. (2005). MR spectroscopy in different regions of the spinal cord and in spinal cord tumors. Presented at thye Proceedings of the Annual Meeting of the International Society of Magnetic Resonance in Medicine, Miami Beach, FL.
Nouri, A., Martin, A.R., Mikulis, D., and Fehlings, M.G. (2016). Magnetic resonance imaging assessment of degenerative cervical myelopathy: a review of structural changes and measurement techniques. Neurosurg. Focus 40, E5. PubMed
Grabher, P., Mohammadi, S., David, G., and Freund, P. (2017). Neurodegeneration in the spinal ventral horn prior to motor impairment in cervical spondylotic myelopathy. J. Neurotrauma 34, 2329–2334. PubMed
Qian, J., Herrera, J.J., and Narayana, P.A. (2010). Neuronal and axonal degeneration in experimental spinal cord injury: in vivo proton magnetic resonance spectroscopy and histology. J. Neurotrauma 27, 599–610. PubMed PMC
Heckova, E., Strasser, B., Hangel, G.J., Považan, M., Dal-Bianco, A., Rommer, P.S., Bednarik, P., Gruber, S., Leutmezer, F., Lassmann, H., Trattnig, S., and Bogner, W. (2019). 7 T magnetic resonance spectroscopic imaging in multiple sclerosis: how does spatial resolution affect the detectability of metabolic changes in brain lesions? Invest. Radiol. 54, 247–254. PubMed PMC
Carew, J.D., Nair, G., Pineda-Alonso, N., Usher, S., Hu, X., and Benatar, M. (2011). Magnetic resonance spectroscopy of the cervical cord in amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. 12, 185–191. PubMed
Lenglet, C., Joers, J., Pisharady, P., Deelchand, D., Hutter, D., and Bushara, K. (2016). Cross-sectional and longitudinal diffusion MRI and MRS of the spinal cord in Friedreich's Ataxia. Presented at OHBM 2016: 22nd Annual Meeting of the Organization for Human Brain Mapping, Rome.
Grabher, P., Mohammadi, S., Trachsler, A., Friedl, S., David, G., Sutter, R., Weiskopf, N., Thompson, A.J., Curt, A., and Freund, P. (2016). Voxel-based analysis of grey and white matter degeneration in cervical spondylotic myelopathy. Sci. Rep. 6, 24636. PubMed PMC
Reproducible Spinal Cord Quantitative MRI Analysis with the Spinal Cord Toolbox
Quantitative MR Markers in Non-Myelopathic Spinal Cord Compression: A Narrative Review
Semi-automated detection of cervical spinal cord compression with the Spinal Cord Toolbox