Adsorption and Release Properties of Drug Delivery System Naproxen-SBA-15: Effect of Surface Polarity, Sodium/Acid Drug Form and pH
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
ITMS 2014+:313011AUW7
European Regional Development Fund
PubMed
36547535
PubMed Central
PMC9781637
DOI
10.3390/jfb13040275
PII: jfb13040275
Knihovny.cz E-zdroje
- Klíčová slova
- SBA-15, drug delivery system, naproxen sodium/acid, pH, polar and nonpolar functional groups, surface modification,
- Publikační typ
- časopisecké články MeSH
Mesoporous silica SBA-15 was prepared via sol-gel synthesis and functionalized with different types of organosilanes containing various organic functional groups: (3-aminopropyl)triethoxysilane (SBA-15-NH2), (3-mercaptopropyl)triethoxysilane (SBA-15-SH), triethoxymethylsilane (SBA-15-CH3), triethoxyphenylsilane (SBA-15-Ph), and (3-isocynatopropyl)triethoxysilane (SBA-15-NCO). The prepared materials were investigated as drug delivery systems for naproxen. As model drugs, naproxen acid (HNAP) and its sodium salt (NaNAP) were used. Mentioned medicaments belong to the group of non-steroidal anti-inflammatory drugs (NSAIDs). The prepared materials were characterized by different analytical methods such as transmission electron microscopy (TEM), infrared spectroscopy (IR), nitrogen adsorption/desorption analysis (N2), thermogravimetric analysis (TG), 1H, 13C and 23Na solid-state nuclear magnetic resonance spectroscopy (1H, 13C and 23Na ss-NMR). The abovementioned analytical techniques confirmed the successful grafting of functional groups to the SBA-15 surface and the adsorption of drugs after the impregnation process. The BET area values decreased from 927 m2 g-1 for SBA-15 to 408 m2 g-1 for SBA-15-NCO. After drug encapsulation, a more significant decrease in surface area was observed due to the filling of pores with drug molecules, while the most significant decrease was observed for the SBA-15-NH2 material (115 m2 g-1 for NaNAP and 101 m2 g-1 for HNAP). By combining TG and nitrogen adsorption results, the occurrence of functional groups and the affinity of drugs to the carriers' surface were calculated. The dominant factor was the volume of functional groups and intermolecular interactions. The highest drug affinity values were observed for phenyl and amine-modified materials (SBA-15-Ph = 1.379 μmol m-2 mmol-1 for NaNAP, 1.761 μmol m-2 mmol-1 for HNAP and SBA-15-NH2 = 1.343 μmol m-2 mmol-1 for NaNAP, 1.302 μmol m-2 mmol-1 for HNAP) due to the formation of hydrogen bonds and π-π interactions, respectively. Drug release properties and kinetic studies were performed at t = 37 °C (normal human body temperature) in different media with pH = 2 as simulated human gastric fluid and pH = 7.4, which simulated a physiological environment. Determination of drug release quantity was performed with UV-VIS spectroscopy. The surface polarity, pH and naproxen form influenced the total released amount of drug. In general, naproxen sodium salt has a higher solubility than its acid form, thus significantly affecting drug release from surface-modified SBA-15 materials. Different pH conditions involved surface protonation and formation/disruption of intermolecular interactions, influencing both the release rate and the total released amount of naproxen. Different kinetic models, zero-order, first-order, Higuchi and Hixson-Crowell models, were used to fit the drug release data. According to the obtained experimental results, the drug release rates and mechanisms were determined.
Zobrazit více v PubMed
Verma M., Karandikar P., Furin J., Langer R., Traverso G. Nanotechnology Approaches for Global Infectious Diseases. Nat. Nanotechnol. 2021;16:369–384. doi: 10.1038/s41565-021-00866-8. PubMed DOI
Almáši M. A Review on State of Art and Perspectives of Metal-Organic Frameworks (MOFs) in the Fight against Coronavirus SARS-CoV-2. J. Coord. Chem. 2021;74:2111–2127. doi: 10.1080/00958972.2021.1965130. DOI
Bergman M.M. The World after COVID. World. 2020;1:5. doi: 10.3390/world1010005. DOI
Lechner K., Waldeyer C., Shapiro M.D., Koenig W. Inflammation and Cardiovascular Disease: The Future. Eur. Cardiol. Rev. 2021;16:e20. doi: 10.15420/ecr.2020.50. PubMed DOI PMC
Zhang Y., Zhong Y., Ye Y., Hu X., Gu L., Xiong X. Inflammation-Mediated Angiogenesis in Ischemic Stroke. Front. Cell. Neurosci. 2021;15:652647. doi: 10.3389/fncel.2021.652647. PubMed DOI PMC
Sagris M., Oikonomou E., Antonopoulos A.S., Siasos G., Tsioufis C., Tousoulis D. Inflammatory Mechanisms Contributing to Endothelial Dysfunction. Biomedicines. 2021;9:781. doi: 10.3390/biomedicines9070781. PubMed DOI PMC
Bekeschus S., Weltmann K.D., von Woedtke T., Wende K. Non-steroidal Anti-inflammatory Drugs: Recent Advances in the Use of Synthetic COX-2 Inhibitors. RSC Med. Chem. 2022;13:471–496. doi: 10.1039/d1md00280e. PubMed DOI PMC
Paek S.M. Recent Advances in the Synthesis of Ibuprofen and Naproxen. Molecules. 2021;26:4792. doi: 10.3390/molecules26164792. PubMed DOI PMC
Almáši M., Zeleňák V., Palotai P., Beňová E., Zeleňáková A. Metal-Organic Framework MIL-101(Fe)-NH2 Functionalized with Different Long-Chain Polyamines as Drug Delivery System. Inorg. Chem. Commun. 2018;93:115–120. doi: 10.1016/j.inoche.2018.05.007. DOI
Liang T., Zhang R., Ding Q., Wu S., Li C., Lin Y., Ye Y., Zhong Z., Zhou M. Iron-Based Metal–Organic Frameworks in Drug Delivery and Biomedicine. ACS Appl. Mater. Interfaces. 2021;13:9643–9655. doi: 10.1021/acsami.0c21486. PubMed DOI
He S., Wu L., Li X., Sun H., Xiong T., Liu J., Huang C., Xu H., Sun H., Chen W., et al. Metal-Organic Frameworks for Advanced Drug Delivery. Acta Pharm. Sin. B. 2021;11:2362–2395. doi: 10.1016/j.apsb.2021.03.019. PubMed DOI PMC
Almáši M., Matiašová A.A., Šuleková M., Beňová E., Ševc J., Váhovská L., Lisnichuk M., Girman V., Zeleňáková A., Hudák A., et al. In Vivo Study of Light-Driven Naproxen Release from Gated Mesoporous Silica Drug Delivery System. Sci. Rep. 2021;11:20191. doi: 10.1038/s41598-021-99678-y. PubMed DOI PMC
Manzano M., Vallet-Regí M. Mesoporous Silica Nanoparticles for Drug Delivery. Adv. Funct. Mater. 2020;30:1902634. doi: 10.1002/adfm.201902634. DOI
García-Fernández A., Sancenón F., Martínez-Máñez R. Mesoporous Silica Nanoparticles for Pulmonary Drug Delivery. Adv. Drug Deliv. Rev. 2021;177:113953. doi: 10.1016/j.addr.2021.113953. PubMed DOI
Large D.E., Abdelmessih R.G., Fink E.A., Auguste D.T. Liposome Composition in Drug Delivery Design, Synthesis, Characterization, and Clinical Application. Adv. Drug Deliv. Rev. 2021;176:113851. doi: 10.1016/j.addr.2021.113851. PubMed DOI
Mondal S., Das S., Nandi A.K. A Review on Recent Advances in Polymer and Peptide Hydrogels. Soft Matter. 2020;16:1404–1454. doi: 10.1039/C9SM02127B. PubMed DOI
Guimarães D., Cavaco-Paulo A., Nogueira E. Design of Liposomes as Drug Delivery System for Therapeutic Applications. Int. J. Pharm. 2021;601:120571. doi: 10.1016/j.ijpharm.2021.120571. PubMed DOI
Zhou Y., Sun Q., Zhou C., Hu S., Lenahan C., Xu W., Deng Y., Li G., Tao S. Update on Nanoparticle-Based Drug Delivery System for Anti-inflammatory Treatment. Front. Bioeng. Biotechnol. 2021;9:630352. doi: 10.3389/fbioe.2021.630352. PubMed DOI PMC
Gonzalez G., Sagarzazu A., Cordova A., Gomes M.E., Salas J., Contreras L., Noris-Suarez K., Lascano L. Comparative Study of Two Silica Mesoporous Materials (SBA-16 and SBA-15) Modified with a Hydroxyapatite Layer for Clindamycin Controlled Delivery. Microporous Mesoporous Mater. 2018;256:251–265. doi: 10.1016/j.micromeso.2017.07.021. DOI
Prokopowicz M., Żeglinski J., Szewczyk A., Skwira A., Walker G. Surface-Activated Fibre-Like SBA-15 as Drug Carriers for Bone Diseases. AAPS PharmSciTech. 2018;20:17. doi: 10.1208/s12249-018-1243-5. PubMed DOI
Gomte S.S., Prathyusha E.A.P., Agrawal M., Alexander A. Biomedical Applications of Mesoporous Silica Nanoparticles as a Drug Delivery Carrier. J. Drug Deliv. Sci. Technol. 2022;76:103729. doi: 10.1016/j.jddst.2022.103729. DOI
Balakrishnan R.M. Adsorption of Pharmaceuticals Pollutants, Ibuprofen, Acetaminophen, and Streptomycin from the Aqueous Phase Using Amine Functionalized Superparamagnetic Silica Nanocomposite. J. Clean. Prod. 2021;294:126155. doi: 10.1016/j.jclepro.2021.126155. DOI
Al Nuaim M., Fairclough G., Khalife R., Al Hakawati N. Amine-modified Silica for Removing Aspirin from Water. Int. J. Environ. Sci. Technol. 2021;19:4143–4152. doi: 10.1007/s13762-021-03417-9. DOI
Tao X., Yang Y.J., Liu S., Zheng Y.Z., Fu J., Chen J.F. Poly(Amidoamine) Dendrimer-Grafted Porous Hollow Silica Nanoparticles for Enhanced Intracellular Photodynamic Therapy. Acta Biomater. 2013;9:6431–6438. doi: 10.1016/j.actbio.2013.01.028. PubMed DOI
Zhang Y., Wang Z., Zhou W., Min G., Lang M. Cationic Poly(ɛ-Caprolactone) Surface Functionalized Mesoporous Silica Nanoparticles and Their Application in Drug Delivery. Appl. Surf. Sci. 2013;276:769–775. doi: 10.1016/j.apsusc.2013.03.168. DOI
Zauska L., Bova S., Benova E., Bednarcik J., Balaz M., Zelenak V., Hornebecq V., Almasi M. Thermosensitive Drug Delivery System SBA-15-PEI for Controlled Release of Nonsteroidal Anti-Inflammatory Drug Diclofenac Sodium Salt: A Comparative Study. Materials. 2021;14:1880. doi: 10.3390/ma14081880. PubMed DOI PMC
Zeleňák V., Beňová E., Almáši M., Halamová D., Hornebecq V., Hronský V. Photo-Switchable Nanoporous Silica Supports for Controlled Drug Delivery. N. J. Chem. 2018;42:13263–13271. doi: 10.1039/C8NJ00267C. DOI
Beňová E., Zeleňák V., Halamová D., Almáši M., Petrul’ová V., Psotka M., Zeleňáková A., Bačkor M., Hornebecq V. A Drug Delivery System Based on Switchable Photo-Controlled p-Coumaric Acid Derivatives Anchored on Mesoporous Silica. J. Mater. Chem. B. 2017;5:817–825. doi: 10.1039/C6TB02040B. PubMed DOI
Beňová E., Hornebecq V., Zeleňák V., Huntošová V., Almáši M., Máčajová M., Bergé-Lefranc D. pH-Responsive Mesoporous Silica Drug Delivery System, Its Biocompatibility and Co-Adsorption/Co-Release of 5-Fluorouracil and Naproxen. Appl. Surf. Sci. 2021;561:150011. doi: 10.1016/j.apsusc.2021.150011. DOI
Beňová E., Bergé-Lefranc D., Zeleňák V., Almáši M., Huntošová V., Hornebecq V. Adsorption Properties, the pH-Sensitive Release of 5-Fluorouracil and Cytotoxicity Studies of Mesoporous Silica Drug Delivery Matrix. Appl. Surf. Sci. 2019;504:144028. doi: 10.1016/j.apsusc.2019.144028. DOI
Zhang K., Gao J., Li S., Ma T., Deng L., Kong Y. Construction of a pH-Responsive Drug Delivery Platform Based on the Hybrid of Mesoporous Silica and Chitosan. J. Saudi Chem. Soc. 2020;25:101174. doi: 10.1016/j.jscs.2020.11.007. DOI
Jin R., Wang J., Gao M., Zhang X. Pollen-like Silica Nanoparticles as a Nanocarrier for Tumor Targeted and pH-Responsive Drug Delivery. Talanta. 2021;231:122402. doi: 10.1016/j.talanta.2021.122402. PubMed DOI
Porrang S., Rahemi N., Davaran S., Mahdavi M., Hassanzadeh B. Synthesis of Temperature/pH Dual-Responsive Mesoporous Silica Nanoparticles by Surface Modification and Radical Polymerization for Anti-Cancer Drug Delivery. Colloids Surf. A Physicochem. Eng. Asp. 2021;623:126719. doi: 10.1016/j.colsurfa.2021.126719. DOI
Brus J. Heating of Samples Induced by Fast Magic-Angle Spinning. Solid State Nucl. Magn. Reson. 2000;16:151–160. doi: 10.1016/S0926-2040(00)00061-8. PubMed DOI
Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report) Pure Appl. Chem. 2015;87:1051–1069. doi: 10.1515/pac-2014-1117. DOI
Almáši M., Beňová E., Zeleňák V., Madaj B., Huntošová V., Brus J., Urbanová M., Bednarčík J., Hornebecq V. Cytotoxicity Study and Influence of SBA-15 Surface Polarity and pH on Adsorption and Release Properties of Anticancer Agent Pemetrexed. Mater. Sci. Eng. C. 2019;109:110552. doi: 10.1016/j.msec.2019.110552. PubMed DOI
Mora C.P., Martínez F. Solubility of Naproxen in Several Organic Solvents at Different Temperatures. Fluid Phase Equilibria. 2007;255:70–77. doi: 10.1016/j.fluid.2007.03.029. DOI
Policianova O., Brus J., Hruby M., Urbanova M., Zhigunov A., Kredatusova J., Kobera L. Structural Diversity of Solid Dispersions of Acetylsalicylic Acid as Seen by Solid-State NMR. Mol. Pharm. 2014;11:516–530. doi: 10.1021/mp400495h. PubMed DOI
Brus J., Albrecht W., Lehmann F., Geier J., Czernek J., Urbanova M., Kobera L., Jegorov A. Exploring the Molecular-Level Architecture of the Active Compounds in Liquisolid Drug Delivery Systems Based on Mesoporous Silica Particles: Old Tricks for New Challenges. Mol. Pharm. 2017;14:2070–2078. doi: 10.1021/acs.molpharmaceut.7b00167. PubMed DOI
Hušák M., Jegorov A., Rohlíček J., Fitch A., Czernek J., Kobera L., Brus J. Determining the Crystal Structures of Peptide Analogs of Boronic Acid in the Absence of Single Crystals: Intricate Motifs of Ixazomib Citrate Revealed by XRPD Guided by Ss-NMR. Cryst. Growth Des. 2018;18:3616–3625. doi: 10.1021/acs.cgd.8b00402. DOI
Brus J., Czernek J., Hruby M., Svec P., Kobera L., Abbrent S., Urbanova M. Efficient Strategy for Determining the Atomic-Resolution Structure of Micro- and Nanocrystalline Solids within Polymeric Microbeads: Domain-Edited NMR Crystallography. Macromolecules. 2018;51:5364–5374. doi: 10.1021/acs.macromol.8b00392. DOI
Czernek J. On the Solid-State NMR Spectra of Naproxen. Chem. Phys. Lett. 2015;619:230–235. doi: 10.1016/j.cplett.2014.11.031. DOI
Skorupska E., Jeziorna A., Potrzebowski M.J. Thermal Solvent-Free Method of Loading of Pharmaceutical Cocrystals into the Pores of Silica Particles: A Case of Naproxen/Picolinamide Cocrystal. J. Phys. Chem. C. 2016;120:13169–13180. doi: 10.1021/acs.jpcc.6b05302. DOI
Burgess K.M., Perras F.A., Lebrun A., Messner-Henning E., Korobkov I., Bryce D.L. Sodium-23 Solid-State Nuclear Magnetic Resonance of Commercial Sodium Naproxen and Its Solvates. J. Pharm. Sci. 2012;101:2930–2940. doi: 10.1002/jps.23196. PubMed DOI
Carignani E., Borsacchi S., Bradley J.P., Brown S.P., Geppi M. Strong Intermolecular Ring Current Influence on 1H Chemical Shifts in Two Crystalline Forms of Naproxen: A Combined Solid-State NMR and DFT Study. J. Phys. Chem. C. 2013;117:17731–17740. doi: 10.1021/jp4044946. DOI
Sasidharan M., Zenibana H., Nandi M., Bhaumik A., Nakashima K. Synthesis of Mesoporous Hollow Silica Nanospheres Using Polymeric Micelles as Template and Their Application as a Drug-Delivery Carrier. Dalton Trans. 2013;42:13381–13389. doi: 10.1039/c3dt51267c. PubMed DOI
Song Y., Li Y., Xu Q., Liu Z. Mesoporous Silica Nanoparticles for Stimuli-Responsive Controlled Drug Delivery: Advances, Challenges, and Outlook. Int. J. Nanomed. 2016;12:87–110. doi: 10.2147/IJN.S117495. PubMed DOI PMC
Ghosh S., Kundu M., Dutta S., Mahalanobish S., Ghosh N., Das J., Sil P.C. Enhancement of Anti-Neoplastic Effects of Cuminaldehyde against Breast Cancer via Mesoporous Silica Nanoparticle Based Targeted Drug Delivery System. Life Sci. 2022;298:120525. doi: 10.1016/j.lfs.2022.120525. PubMed DOI
Al-Ali M., Selvakannan P.R., Parthasarathy R. Influences of Novel Microwave Drying on Dissolution of New Formulated Naproxen Sodium. RSC Adv. 2018;8:16214–16222. doi: 10.1039/C8RA02106F. PubMed DOI PMC
Mora C.P., Martínez F. Thermodynamic Quantities Relative to Solution Processes of Naproxen in Aqueous Media at pH 1.2 and 7.4. Phys. Chem. Liq. 2006;44:585–596. doi: 10.1080/00319100600889715. DOI
Kumar L., Suhas B.S., Girish Pai K., Verma R. Determination of Saturated Solubility of Naproxen Using UV Visible Spectrophotometer. Res. J. Pharm. Technol. 2015;8:825. doi: 10.5958/0974-360X.2015.00134.1. DOI
Zeleňák V., Halamová D., Almáši M., Žid L., Zeleňáková A., Kapusta O. Ordered Cubic Nanoporous Silica Support MCM-48 for Delivery of Poorly Soluble Drug Indomethacin. Appl. Surf. Sci. 2018;443:525–534. doi: 10.1016/j.apsusc.2018.02.260. DOI
Giasafaki D., Andriotis E.G., Bouropoulos N., Theodoroula N.F., Vizirianakis I.S., Steriotis T., Charalambopoulou G., Fatouros D.G. Oral Drug Delivery Systems Based on Ordered Mesoporous Silica Nanoparticles for Modulating the Release of Aprepitant. Int. J. Mol. Sci. 2021;22:1896. doi: 10.3390/ijms22041896. PubMed DOI PMC
Pang S., Wang D. In-depth Insights into Mathematical Characteristics, Selection Criteria and Common Mistakes of Adsorption Kinetic Models: A Critical Review. Sep. Purif. Rev. 2021;51:281–299. doi: 10.1080/15422119.2021.1922444. DOI