Adsorption and Release Properties of Drug Delivery System Naproxen-SBA-15: Effect of Surface Polarity, Sodium/Acid Drug Form and pH

. 2022 Dec 05 ; 13 (4) : . [epub] 20221205

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36547535

Grantová podpora
ITMS 2014+:313011AUW7 European Regional Development Fund

Mesoporous silica SBA-15 was prepared via sol-gel synthesis and functionalized with different types of organosilanes containing various organic functional groups: (3-aminopropyl)triethoxysilane (SBA-15-NH2), (3-mercaptopropyl)triethoxysilane (SBA-15-SH), triethoxymethylsilane (SBA-15-CH3), triethoxyphenylsilane (SBA-15-Ph), and (3-isocynatopropyl)triethoxysilane (SBA-15-NCO). The prepared materials were investigated as drug delivery systems for naproxen. As model drugs, naproxen acid (HNAP) and its sodium salt (NaNAP) were used. Mentioned medicaments belong to the group of non-steroidal anti-inflammatory drugs (NSAIDs). The prepared materials were characterized by different analytical methods such as transmission electron microscopy (TEM), infrared spectroscopy (IR), nitrogen adsorption/desorption analysis (N2), thermogravimetric analysis (TG), 1H, 13C and 23Na solid-state nuclear magnetic resonance spectroscopy (1H, 13C and 23Na ss-NMR). The abovementioned analytical techniques confirmed the successful grafting of functional groups to the SBA-15 surface and the adsorption of drugs after the impregnation process. The BET area values decreased from 927 m2 g-1 for SBA-15 to 408 m2 g-1 for SBA-15-NCO. After drug encapsulation, a more significant decrease in surface area was observed due to the filling of pores with drug molecules, while the most significant decrease was observed for the SBA-15-NH2 material (115 m2 g-1 for NaNAP and 101 m2 g-1 for HNAP). By combining TG and nitrogen adsorption results, the occurrence of functional groups and the affinity of drugs to the carriers' surface were calculated. The dominant factor was the volume of functional groups and intermolecular interactions. The highest drug affinity values were observed for phenyl and amine-modified materials (SBA-15-Ph = 1.379 μmol m-2 mmol-1 for NaNAP, 1.761 μmol m-2 mmol-1 for HNAP and SBA-15-NH2 = 1.343 μmol m-2 mmol-1 for NaNAP, 1.302 μmol m-2 mmol-1 for HNAP) due to the formation of hydrogen bonds and π-π interactions, respectively. Drug release properties and kinetic studies were performed at t = 37 °C (normal human body temperature) in different media with pH = 2 as simulated human gastric fluid and pH = 7.4, which simulated a physiological environment. Determination of drug release quantity was performed with UV-VIS spectroscopy. The surface polarity, pH and naproxen form influenced the total released amount of drug. In general, naproxen sodium salt has a higher solubility than its acid form, thus significantly affecting drug release from surface-modified SBA-15 materials. Different pH conditions involved surface protonation and formation/disruption of intermolecular interactions, influencing both the release rate and the total released amount of naproxen. Different kinetic models, zero-order, first-order, Higuchi and Hixson-Crowell models, were used to fit the drug release data. According to the obtained experimental results, the drug release rates and mechanisms were determined.

Zobrazit více v PubMed

Verma M., Karandikar P., Furin J., Langer R., Traverso G. Nanotechnology Approaches for Global Infectious Diseases. Nat. Nanotechnol. 2021;16:369–384. doi: 10.1038/s41565-021-00866-8. PubMed DOI

Almáši M. A Review on State of Art and Perspectives of Metal-Organic Frameworks (MOFs) in the Fight against Coronavirus SARS-CoV-2. J. Coord. Chem. 2021;74:2111–2127. doi: 10.1080/00958972.2021.1965130. DOI

Bergman M.M. The World after COVID. World. 2020;1:5. doi: 10.3390/world1010005. DOI

Lechner K., Waldeyer C., Shapiro M.D., Koenig W. Inflammation and Cardiovascular Disease: The Future. Eur. Cardiol. Rev. 2021;16:e20. doi: 10.15420/ecr.2020.50. PubMed DOI PMC

Zhang Y., Zhong Y., Ye Y., Hu X., Gu L., Xiong X. Inflammation-Mediated Angiogenesis in Ischemic Stroke. Front. Cell. Neurosci. 2021;15:652647. doi: 10.3389/fncel.2021.652647. PubMed DOI PMC

Sagris M., Oikonomou E., Antonopoulos A.S., Siasos G., Tsioufis C., Tousoulis D. Inflammatory Mechanisms Contributing to Endothelial Dysfunction. Biomedicines. 2021;9:781. doi: 10.3390/biomedicines9070781. PubMed DOI PMC

Bekeschus S., Weltmann K.D., von Woedtke T., Wende K. Non-steroidal Anti-inflammatory Drugs: Recent Advances in the Use of Synthetic COX-2 Inhibitors. RSC Med. Chem. 2022;13:471–496. doi: 10.1039/d1md00280e. PubMed DOI PMC

Paek S.M. Recent Advances in the Synthesis of Ibuprofen and Naproxen. Molecules. 2021;26:4792. doi: 10.3390/molecules26164792. PubMed DOI PMC

Almáši M., Zeleňák V., Palotai P., Beňová E., Zeleňáková A. Metal-Organic Framework MIL-101(Fe)-NH2 Functionalized with Different Long-Chain Polyamines as Drug Delivery System. Inorg. Chem. Commun. 2018;93:115–120. doi: 10.1016/j.inoche.2018.05.007. DOI

Liang T., Zhang R., Ding Q., Wu S., Li C., Lin Y., Ye Y., Zhong Z., Zhou M. Iron-Based Metal–Organic Frameworks in Drug Delivery and Biomedicine. ACS Appl. Mater. Interfaces. 2021;13:9643–9655. doi: 10.1021/acsami.0c21486. PubMed DOI

He S., Wu L., Li X., Sun H., Xiong T., Liu J., Huang C., Xu H., Sun H., Chen W., et al. Metal-Organic Frameworks for Advanced Drug Delivery. Acta Pharm. Sin. B. 2021;11:2362–2395. doi: 10.1016/j.apsb.2021.03.019. PubMed DOI PMC

Almáši M., Matiašová A.A., Šuleková M., Beňová E., Ševc J., Váhovská L., Lisnichuk M., Girman V., Zeleňáková A., Hudák A., et al. In Vivo Study of Light-Driven Naproxen Release from Gated Mesoporous Silica Drug Delivery System. Sci. Rep. 2021;11:20191. doi: 10.1038/s41598-021-99678-y. PubMed DOI PMC

Manzano M., Vallet-Regí M. Mesoporous Silica Nanoparticles for Drug Delivery. Adv. Funct. Mater. 2020;30:1902634. doi: 10.1002/adfm.201902634. DOI

García-Fernández A., Sancenón F., Martínez-Máñez R. Mesoporous Silica Nanoparticles for Pulmonary Drug Delivery. Adv. Drug Deliv. Rev. 2021;177:113953. doi: 10.1016/j.addr.2021.113953. PubMed DOI

Large D.E., Abdelmessih R.G., Fink E.A., Auguste D.T. Liposome Composition in Drug Delivery Design, Synthesis, Characterization, and Clinical Application. Adv. Drug Deliv. Rev. 2021;176:113851. doi: 10.1016/j.addr.2021.113851. PubMed DOI

Mondal S., Das S., Nandi A.K. A Review on Recent Advances in Polymer and Peptide Hydrogels. Soft Matter. 2020;16:1404–1454. doi: 10.1039/C9SM02127B. PubMed DOI

Guimarães D., Cavaco-Paulo A., Nogueira E. Design of Liposomes as Drug Delivery System for Therapeutic Applications. Int. J. Pharm. 2021;601:120571. doi: 10.1016/j.ijpharm.2021.120571. PubMed DOI

Zhou Y., Sun Q., Zhou C., Hu S., Lenahan C., Xu W., Deng Y., Li G., Tao S. Update on Nanoparticle-Based Drug Delivery System for Anti-inflammatory Treatment. Front. Bioeng. Biotechnol. 2021;9:630352. doi: 10.3389/fbioe.2021.630352. PubMed DOI PMC

Gonzalez G., Sagarzazu A., Cordova A., Gomes M.E., Salas J., Contreras L., Noris-Suarez K., Lascano L. Comparative Study of Two Silica Mesoporous Materials (SBA-16 and SBA-15) Modified with a Hydroxyapatite Layer for Clindamycin Controlled Delivery. Microporous Mesoporous Mater. 2018;256:251–265. doi: 10.1016/j.micromeso.2017.07.021. DOI

Prokopowicz M., Żeglinski J., Szewczyk A., Skwira A., Walker G. Surface-Activated Fibre-Like SBA-15 as Drug Carriers for Bone Diseases. AAPS PharmSciTech. 2018;20:17. doi: 10.1208/s12249-018-1243-5. PubMed DOI

Gomte S.S., Prathyusha E.A.P., Agrawal M., Alexander A. Biomedical Applications of Mesoporous Silica Nanoparticles as a Drug Delivery Carrier. J. Drug Deliv. Sci. Technol. 2022;76:103729. doi: 10.1016/j.jddst.2022.103729. DOI

Balakrishnan R.M. Adsorption of Pharmaceuticals Pollutants, Ibuprofen, Acetaminophen, and Streptomycin from the Aqueous Phase Using Amine Functionalized Superparamagnetic Silica Nanocomposite. J. Clean. Prod. 2021;294:126155. doi: 10.1016/j.jclepro.2021.126155. DOI

Al Nuaim M., Fairclough G., Khalife R., Al Hakawati N. Amine-modified Silica for Removing Aspirin from Water. Int. J. Environ. Sci. Technol. 2021;19:4143–4152. doi: 10.1007/s13762-021-03417-9. DOI

Tao X., Yang Y.J., Liu S., Zheng Y.Z., Fu J., Chen J.F. Poly(Amidoamine) Dendrimer-Grafted Porous Hollow Silica Nanoparticles for Enhanced Intracellular Photodynamic Therapy. Acta Biomater. 2013;9:6431–6438. doi: 10.1016/j.actbio.2013.01.028. PubMed DOI

Zhang Y., Wang Z., Zhou W., Min G., Lang M. Cationic Poly(ɛ-Caprolactone) Surface Functionalized Mesoporous Silica Nanoparticles and Their Application in Drug Delivery. Appl. Surf. Sci. 2013;276:769–775. doi: 10.1016/j.apsusc.2013.03.168. DOI

Zauska L., Bova S., Benova E., Bednarcik J., Balaz M., Zelenak V., Hornebecq V., Almasi M. Thermosensitive Drug Delivery System SBA-15-PEI for Controlled Release of Nonsteroidal Anti-Inflammatory Drug Diclofenac Sodium Salt: A Comparative Study. Materials. 2021;14:1880. doi: 10.3390/ma14081880. PubMed DOI PMC

Zeleňák V., Beňová E., Almáši M., Halamová D., Hornebecq V., Hronský V. Photo-Switchable Nanoporous Silica Supports for Controlled Drug Delivery. N. J. Chem. 2018;42:13263–13271. doi: 10.1039/C8NJ00267C. DOI

Beňová E., Zeleňák V., Halamová D., Almáši M., Petrul’ová V., Psotka M., Zeleňáková A., Bačkor M., Hornebecq V. A Drug Delivery System Based on Switchable Photo-Controlled p-Coumaric Acid Derivatives Anchored on Mesoporous Silica. J. Mater. Chem. B. 2017;5:817–825. doi: 10.1039/C6TB02040B. PubMed DOI

Beňová E., Hornebecq V., Zeleňák V., Huntošová V., Almáši M., Máčajová M., Bergé-Lefranc D. pH-Responsive Mesoporous Silica Drug Delivery System, Its Biocompatibility and Co-Adsorption/Co-Release of 5-Fluorouracil and Naproxen. Appl. Surf. Sci. 2021;561:150011. doi: 10.1016/j.apsusc.2021.150011. DOI

Beňová E., Bergé-Lefranc D., Zeleňák V., Almáši M., Huntošová V., Hornebecq V. Adsorption Properties, the pH-Sensitive Release of 5-Fluorouracil and Cytotoxicity Studies of Mesoporous Silica Drug Delivery Matrix. Appl. Surf. Sci. 2019;504:144028. doi: 10.1016/j.apsusc.2019.144028. DOI

Zhang K., Gao J., Li S., Ma T., Deng L., Kong Y. Construction of a pH-Responsive Drug Delivery Platform Based on the Hybrid of Mesoporous Silica and Chitosan. J. Saudi Chem. Soc. 2020;25:101174. doi: 10.1016/j.jscs.2020.11.007. DOI

Jin R., Wang J., Gao M., Zhang X. Pollen-like Silica Nanoparticles as a Nanocarrier for Tumor Targeted and pH-Responsive Drug Delivery. Talanta. 2021;231:122402. doi: 10.1016/j.talanta.2021.122402. PubMed DOI

Porrang S., Rahemi N., Davaran S., Mahdavi M., Hassanzadeh B. Synthesis of Temperature/pH Dual-Responsive Mesoporous Silica Nanoparticles by Surface Modification and Radical Polymerization for Anti-Cancer Drug Delivery. Colloids Surf. A Physicochem. Eng. Asp. 2021;623:126719. doi: 10.1016/j.colsurfa.2021.126719. DOI

Brus J. Heating of Samples Induced by Fast Magic-Angle Spinning. Solid State Nucl. Magn. Reson. 2000;16:151–160. doi: 10.1016/S0926-2040(00)00061-8. PubMed DOI

Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report) Pure Appl. Chem. 2015;87:1051–1069. doi: 10.1515/pac-2014-1117. DOI

Almáši M., Beňová E., Zeleňák V., Madaj B., Huntošová V., Brus J., Urbanová M., Bednarčík J., Hornebecq V. Cytotoxicity Study and Influence of SBA-15 Surface Polarity and pH on Adsorption and Release Properties of Anticancer Agent Pemetrexed. Mater. Sci. Eng. C. 2019;109:110552. doi: 10.1016/j.msec.2019.110552. PubMed DOI

Mora C.P., Martínez F. Solubility of Naproxen in Several Organic Solvents at Different Temperatures. Fluid Phase Equilibria. 2007;255:70–77. doi: 10.1016/j.fluid.2007.03.029. DOI

Policianova O., Brus J., Hruby M., Urbanova M., Zhigunov A., Kredatusova J., Kobera L. Structural Diversity of Solid Dispersions of Acetylsalicylic Acid as Seen by Solid-State NMR. Mol. Pharm. 2014;11:516–530. doi: 10.1021/mp400495h. PubMed DOI

Brus J., Albrecht W., Lehmann F., Geier J., Czernek J., Urbanova M., Kobera L., Jegorov A. Exploring the Molecular-Level Architecture of the Active Compounds in Liquisolid Drug Delivery Systems Based on Mesoporous Silica Particles: Old Tricks for New Challenges. Mol. Pharm. 2017;14:2070–2078. doi: 10.1021/acs.molpharmaceut.7b00167. PubMed DOI

Hušák M., Jegorov A., Rohlíček J., Fitch A., Czernek J., Kobera L., Brus J. Determining the Crystal Structures of Peptide Analogs of Boronic Acid in the Absence of Single Crystals: Intricate Motifs of Ixazomib Citrate Revealed by XRPD Guided by Ss-NMR. Cryst. Growth Des. 2018;18:3616–3625. doi: 10.1021/acs.cgd.8b00402. DOI

Brus J., Czernek J., Hruby M., Svec P., Kobera L., Abbrent S., Urbanova M. Efficient Strategy for Determining the Atomic-Resolution Structure of Micro- and Nanocrystalline Solids within Polymeric Microbeads: Domain-Edited NMR Crystallography. Macromolecules. 2018;51:5364–5374. doi: 10.1021/acs.macromol.8b00392. DOI

Czernek J. On the Solid-State NMR Spectra of Naproxen. Chem. Phys. Lett. 2015;619:230–235. doi: 10.1016/j.cplett.2014.11.031. DOI

Skorupska E., Jeziorna A., Potrzebowski M.J. Thermal Solvent-Free Method of Loading of Pharmaceutical Cocrystals into the Pores of Silica Particles: A Case of Naproxen/Picolinamide Cocrystal. J. Phys. Chem. C. 2016;120:13169–13180. doi: 10.1021/acs.jpcc.6b05302. DOI

Burgess K.M., Perras F.A., Lebrun A., Messner-Henning E., Korobkov I., Bryce D.L. Sodium-23 Solid-State Nuclear Magnetic Resonance of Commercial Sodium Naproxen and Its Solvates. J. Pharm. Sci. 2012;101:2930–2940. doi: 10.1002/jps.23196. PubMed DOI

Carignani E., Borsacchi S., Bradley J.P., Brown S.P., Geppi M. Strong Intermolecular Ring Current Influence on 1H Chemical Shifts in Two Crystalline Forms of Naproxen: A Combined Solid-State NMR and DFT Study. J. Phys. Chem. C. 2013;117:17731–17740. doi: 10.1021/jp4044946. DOI

Sasidharan M., Zenibana H., Nandi M., Bhaumik A., Nakashima K. Synthesis of Mesoporous Hollow Silica Nanospheres Using Polymeric Micelles as Template and Their Application as a Drug-Delivery Carrier. Dalton Trans. 2013;42:13381–13389. doi: 10.1039/c3dt51267c. PubMed DOI

Song Y., Li Y., Xu Q., Liu Z. Mesoporous Silica Nanoparticles for Stimuli-Responsive Controlled Drug Delivery: Advances, Challenges, and Outlook. Int. J. Nanomed. 2016;12:87–110. doi: 10.2147/IJN.S117495. PubMed DOI PMC

Ghosh S., Kundu M., Dutta S., Mahalanobish S., Ghosh N., Das J., Sil P.C. Enhancement of Anti-Neoplastic Effects of Cuminaldehyde against Breast Cancer via Mesoporous Silica Nanoparticle Based Targeted Drug Delivery System. Life Sci. 2022;298:120525. doi: 10.1016/j.lfs.2022.120525. PubMed DOI

Al-Ali M., Selvakannan P.R., Parthasarathy R. Influences of Novel Microwave Drying on Dissolution of New Formulated Naproxen Sodium. RSC Adv. 2018;8:16214–16222. doi: 10.1039/C8RA02106F. PubMed DOI PMC

Mora C.P., Martínez F. Thermodynamic Quantities Relative to Solution Processes of Naproxen in Aqueous Media at pH 1.2 and 7.4. Phys. Chem. Liq. 2006;44:585–596. doi: 10.1080/00319100600889715. DOI

Kumar L., Suhas B.S., Girish Pai K., Verma R. Determination of Saturated Solubility of Naproxen Using UV Visible Spectrophotometer. Res. J. Pharm. Technol. 2015;8:825. doi: 10.5958/0974-360X.2015.00134.1. DOI

Zeleňák V., Halamová D., Almáši M., Žid L., Zeleňáková A., Kapusta O. Ordered Cubic Nanoporous Silica Support MCM-48 for Delivery of Poorly Soluble Drug Indomethacin. Appl. Surf. Sci. 2018;443:525–534. doi: 10.1016/j.apsusc.2018.02.260. DOI

Giasafaki D., Andriotis E.G., Bouropoulos N., Theodoroula N.F., Vizirianakis I.S., Steriotis T., Charalambopoulou G., Fatouros D.G. Oral Drug Delivery Systems Based on Ordered Mesoporous Silica Nanoparticles for Modulating the Release of Aprepitant. Int. J. Mol. Sci. 2021;22:1896. doi: 10.3390/ijms22041896. PubMed DOI PMC

Pang S., Wang D. In-depth Insights into Mathematical Characteristics, Selection Criteria and Common Mistakes of Adsorption Kinetic Models: A Critical Review. Sep. Purif. Rev. 2021;51:281–299. doi: 10.1080/15422119.2021.1922444. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...