Investigation of polypyrrole based composite material for lithium sulfur batteries

. 2024 Oct 02 ; 14 (1) : 22928. [epub] 20241002

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39358464

Grantová podpora
APVV-20-0138 Agentúra na Podporu Výskumu a Vývoja
1/0095/21 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
002UPJS-4/2024 Kultúrna a Edukacná Grantová Agentúra MŠVVaŠ SR

Odkazy

PubMed 39358464
PubMed Central PMC11446934
DOI 10.1038/s41598-024-74119-8
PII: 10.1038/s41598-024-74119-8
Knihovny.cz E-zdroje

With the rising demand for electricity storage devices, the performance requirements for such equipment have become increasingly stringent. Lithium-sulfur (Li-S) batteries are poised to be among the next generation of energy storage systems. However, before they can be commercially viable, several challenges must be addressed, including low sulfur conductivity and the shuttle effect. Herein, polypyrrole based sulfur composite was prepared by simple method in hydrothermal teflon lined autoclave for Li-S battery. The S/SP/ppy/PVDF electrode exhibited the initial discharge capacity of 662 mAh g- 1 at 0.5 C and 637 mAh g- 1 after 100 cycles. The Coulombic efficiency was 96% all along charge/discharge cycling. Moreover, Li-S coin cells were assembled and tested to demonstrate the potential application and scale-up of the polypyrrole-sulfur composite.

Zobrazit více v PubMed

Manthiram, A., Chung, S. H. & Zu, C. Lithium-sulfur batteries: Progress and prospects. PubMed DOI

Chen, X. et al. Conducting polymers meet Lithium–sulfur batteries: Progress, challenges, and perspectives. DOI

Fu, Y., Su, Y. S. & Manthiram, A. Sulfur-polypyrrole composite cathodes for Lithium-sulfur batteries.

Wild, M. et al. Lithium sulfur batteries, a mechanistic review. DOI

Li, L. et al. Sulfur–Carbon Electrode with PEO-LiFSI-PVDF composite coating for high-rate and long-life Lithium–sulfur batteries. DOI

Li, Z. et al. Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium–sulfur batteries. DOI

Ren, R. et al. Efficient sulfur host based on Sn doping to construct Fe2O3 nanospheres with high active interface structure for lithium-sulfur batteries,

Niščáková, V. et al. Novel cu(II)-based metal–organic framework STAM-1 as a sulfur host for Li–S batteries. PubMed DOI PMC

Yi, Y. et al. A novel sulfurized polypyrrole composite for high-performance lithium-sulfur batteries based on solid-phase conversion. DOI

Raza, H. et al. Li-S batteries: challenges, achievements and opportunities.

Duan, J. et al. A flexible and free-standing Cl–-doped PPy/rGO film as cathode material for ultrahigh capacity and long-cycling sodium based dual-ion batteries. DOI

Pang, A. L., Arsad, A. & Ahmadipour, M. Synthesis and factor affecting on the conductivity of polypyrrole: a short review. DOI

Chen, Y. & Wang, C. Designing High Performance Organic batteries. PubMed DOI

Chavan, U. D., Prajith, P. & Kandasubramanian, B. Polypyrrole based cathode material for battery application. DOI

Sun, T., Sun, Q. Q., Yu, Y. & Zhang, X. B. Polypyrrole as an ultrafast organic cathode for dual-ion batteries,

Dutta Pathak, D., Mandal, B. P. & Tyagi, A. K. A new strategic approach to modify electrode and electrolyte for high performance Li–S battery. DOI

Luna-Lama, F., Caballero, A. & Morales, J. Synergistic effect between PPy:PSS copolymers and biomass-derived activated carbons: a simple strategy for designing sustainable high- performance Li–S batteries. DOI

Li, F. et al. Uniform polypyrrole layer-coated Sulfur/Graphene aerogel via the Vapor-Phase Deposition Technique as the Cathode Material for Li-S batteries. PubMed DOI

Wei, W. et al. Hierarchically porous SnO2 nanoparticle-anchored polypyrrole nanotubes as a high-efficient Sulfur/Polysulfide trap for high-performance Lithium-sulfur batteries. PubMed DOI

Zauška, Ľ. et al. Adsorption and Release properties of Drug Delivery System Naproxen-SBA-15: Effect of Surface Polarity, Sodium/Acid Drug Form and pH. PubMed PMC

Liang, X. et al. Split-half-tubular polypyrrole@sulfur@polypyrrole composite with a novel three-layer-3D structure as cathode for lithium/sulfur batteries. DOI

Capková, D. et al. Influence of metal-organic framework MOF-76(gd) activation/carbonization on the cycle performance stability in Li-S battery.

Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry 10.1002/9780470405840 (2008).

Pevná, V. et al. Redistribution of hydrophobic hypericin from nanoporous particles of SBA-15 silica in vitro, in cells and in vivo. PubMed

Yang, J. et al. September., Preparation of polyaniline-coated cobalt nitride nanoflowers as sulfur host for advanced lithium–sulfur battery,

Noh, H., Song, J., Park, J. K. & Kim, H. T. A new insight on capacity fading of lithium-sulfur batteries: the effect of Li2S phase structure. DOI

Geng, P. et al. Polypyrrole coated hollow metal-organic framework composites for lithium-sulfur batteries. DOI

Wang, L., Wang, Y. & Xia, Y. A high performance lithium-ion sulfur battery based on a Li2S cathode using a dual-phase electrolyte. DOI

Deng, Z. et al. Electrochemical Impedance Spectroscopy Study of a Lithium/Sulfur battery: modeling and analysis of Capacity Fading. DOI

Majumder, S., Shao, M., Deng, Y. & Chen, G. Two dimensional WS 2 /C nanosheets as a Polysulfides immobilizer for high performance Lithium–sulfur batteries. DOI

Wang, G. et al. Improved electrochemical behavior of Li–S battery with functional WS2@PB–PPy–modified separator. DOI

Wang, L., Zhao, J., He, X. & Wan, C. Kinetic investigation of sulfurized polyacrylonitrile cathode material by electrochemical impedance spectroscopy. DOI

Lama, F. L., Marangon, V., Caballero, Á., Morales, J. & Hassoun, J. Diffusional features of a Lithium-sulfur battery exploiting highly Microporous activated Carbon. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...