• This record comes from PubMed

Investigation of polypyrrole based composite material for lithium sulfur batteries

. 2024 Oct 02 ; 14 (1) : 22928. [epub] 20241002

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article

Grant support
APVV-20-0138 Agentúra na Podporu Výskumu a Vývoja
1/0095/21 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
002UPJS-4/2024 Kultúrna a Edukacná Grantová Agentúra MŠVVaŠ SR

Links

PubMed 39358464
PubMed Central PMC11446934
DOI 10.1038/s41598-024-74119-8
PII: 10.1038/s41598-024-74119-8
Knihovny.cz E-resources

With the rising demand for electricity storage devices, the performance requirements for such equipment have become increasingly stringent. Lithium-sulfur (Li-S) batteries are poised to be among the next generation of energy storage systems. However, before they can be commercially viable, several challenges must be addressed, including low sulfur conductivity and the shuttle effect. Herein, polypyrrole based sulfur composite was prepared by simple method in hydrothermal teflon lined autoclave for Li-S battery. The S/SP/ppy/PVDF electrode exhibited the initial discharge capacity of 662 mAh g- 1 at 0.5 C and 637 mAh g- 1 after 100 cycles. The Coulombic efficiency was 96% all along charge/discharge cycling. Moreover, Li-S coin cells were assembled and tested to demonstrate the potential application and scale-up of the polypyrrole-sulfur composite.

See more in PubMed

Manthiram, A., Chung, S. H. & Zu, C. Lithium-sulfur batteries: Progress and prospects. Adv. Mater.27 (12), 1980–2006. 10.1002/adma.201405115 (2015). PubMed

Chen, X. et al. Conducting polymers meet Lithium–sulfur batteries: Progress, challenges, and perspectives. Energy Environ. Mater.6 (5), 1–24. 10.1002/eem2.12483 (2023).

Fu, Y., Su, Y. S. & Manthiram, A. Sulfur-polypyrrole composite cathodes for Lithium-sulfur batteries. J. Electrochem. Soc.10.1149/2.027209jes (2012). 9, pp. A1420–A1424.

Wild, M. et al. Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci.8 (12), 3477–3494. 10.1039/c5ee01388g (2015).

Li, L. et al. Sulfur–Carbon Electrode with PEO-LiFSI-PVDF composite coating for high-rate and long-life Lithium–sulfur batteries. Adv. Energy Mater.13 (36), 1–13. 10.1002/aenm.202302139 (2023).

Li, Z. et al. Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium–sulfur batteries. Nat. Energy. 8 (1), 84–93. 10.1038/s41560-022-01175-7 (2023).

Ren, R. et al. Efficient sulfur host based on Sn doping to construct Fe2O3 nanospheres with high active interface structure for lithium-sulfur batteries, Appl. Surf. Sci. 613, 156003 10.1016/j.apsusc.2022.156003 (2022).

Niščáková, V. et al. Novel cu(II)-based metal–organic framework STAM-1 as a sulfur host for Li–S batteries. Sci. Rep.14 (1), 1–16. 10.1038/s41598-024-59600-8 (2024). PubMed PMC

Yi, Y. et al. A novel sulfurized polypyrrole composite for high-performance lithium-sulfur batteries based on solid-phase conversion. Chem. Eng. J.466, 143303. 10.1016/j.cej.2023.143303 (2023).

Raza, H. et al. Li-S batteries: challenges, achievements and opportunities. Springer Nat. Singap.10.1007/s41918-023-00188-4 (2023).

Duan, J. et al. A flexible and free-standing Cl–-doped PPy/rGO film as cathode material for ultrahigh capacity and long-cycling sodium based dual-ion batteries. Carbon N .Y.. 184, 836–845. 10.1016/j.carbon.2021.09.006 (2021).

Pang, A. L., Arsad, A. & Ahmadipour, M. Synthesis and factor affecting on the conductivity of polypyrrole: a short review. Polym. Adv. Technol.32 (4), 1428–1454. 10.1002/pat.5201 (2021).

Chen, Y. & Wang, C. Designing High Performance Organic batteries. Acc. Chem. Res.53 (11), 2636–2647. 10.1021/acs.accounts.0c00465 (2020). PubMed

Chavan, U. D., Prajith, P. & Kandasubramanian, B. Polypyrrole based cathode material for battery application. Chem. Eng. J. Adv.12, 100416. 10.1016/j.ceja.2022.100416 (2022).

Sun, T., Sun, Q. Q., Yu, Y. & Zhang, X. B. Polypyrrole as an ultrafast organic cathode for dual-ion batteries, eScience, 1, 186–193. 10.1016/j.esci.2021.11.003 (2021).

Dutta Pathak, D., Mandal, B. P. & Tyagi, A. K. A new strategic approach to modify electrode and electrolyte for high performance Li–S battery. J. Power Sources. 488, 229456. 10.1016/j.jpowsour.2021.229456 (2021).

Luna-Lama, F., Caballero, A. & Morales, J. Synergistic effect between PPy:PSS copolymers and biomass-derived activated carbons: a simple strategy for designing sustainable high- performance Li–S batteries. Sustain. Energy Fuels. 6, 1568–1586. 10.1039/D1SE02052H (2022).

Li, F. et al. Uniform polypyrrole layer-coated Sulfur/Graphene aerogel via the Vapor-Phase Deposition Technique as the Cathode Material for Li-S batteries. ACS Appl. Mater. Interfaces. 12 (5), 5958–5967. 10.1021/acsami.9b20426 (2020). PubMed

Wei, W. et al. Hierarchically porous SnO2 nanoparticle-anchored polypyrrole nanotubes as a high-efficient Sulfur/Polysulfide trap for high-performance Lithium-sulfur batteries. ACS Appl. Mater. Interfaces. 12 (5), 6362–6370. 10.1021/acsami.9b18426 (2020). PubMed

Zauška, Ľ. et al. Adsorption and Release properties of Drug Delivery System Naproxen-SBA-15: Effect of Surface Polarity, Sodium/Acid Drug Form and pH. J. Funct. Biomater.13 (4). 10.3390/jfb13040275 (2022). PubMed PMC

Liang, X. et al. Split-half-tubular polypyrrole@sulfur@polypyrrole composite with a novel three-layer-3D structure as cathode for lithium/sulfur batteries. Nano Energy. 11, 587–599. 10.1016/j.nanoen.2014.10.009 (2015).

Capková, D. et al. Influence of metal-organic framework MOF-76(gd) activation/carbonization on the cycle performance stability in Li-S battery. J. Energy Storage. 51, no.10.1016/j.est.2022.104419 (2022).

Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part A: Theory and Applications in Inorganic Chemistry 10.1002/9780470405840 (2008).

Pevná, V. et al. Redistribution of hydrophobic hypericin from nanoporous particles of SBA-15 silica in vitro, in cells and in vivo. Int. J. Pharm.10.1016/j.ijpharm.2023.123288 (2023). PubMed

Yang, J. et al. September., Preparation of polyaniline-coated cobalt nitride nanoflowers as sulfur host for advanced lithium–sulfur battery, J. Alloys Compd. 981,173701 10.1016/j.jallcom.2024.173701 (2023).

Noh, H., Song, J., Park, J. K. & Kim, H. T. A new insight on capacity fading of lithium-sulfur batteries: the effect of Li2S phase structure. J. Power Sources. 293, 329–335. 10.1016/j.jpowsour.2015.05.072 (2015).

Geng, P. et al. Polypyrrole coated hollow metal-organic framework composites for lithium-sulfur batteries. J. Mater. Chem. A. 7, 19465–19470. 10.1039/c9ta05812e (2019).

Wang, L., Wang, Y. & Xia, Y. A high performance lithium-ion sulfur battery based on a Li2S cathode using a dual-phase electrolyte. Energy Environ. Sci.8 (5), 1551–1558. 10.1039/c5ee00058k (2015).

Deng, Z. et al. Electrochemical Impedance Spectroscopy Study of a Lithium/Sulfur battery: modeling and analysis of Capacity Fading. J. Electrochem. Soc.160 (4), A553–A558. 10.1149/2.026304jes (2013).

Majumder, S., Shao, M., Deng, Y. & Chen, G. Two dimensional WS 2 /C nanosheets as a Polysulfides immobilizer for high performance Lithium–sulfur batteries. J. Electrochem. Soc.166 (3), A5386–A5395. 10.1149/2.0501903jes (2019).

Wang, G. et al. Improved electrochemical behavior of Li–S battery with functional WS2@PB–PPy–modified separator. Chem. Eng. J. Adv.8, 100145. 10.1016/j.ceja.2021.100145 (2021).

Wang, L., Zhao, J., He, X. & Wan, C. Kinetic investigation of sulfurized polyacrylonitrile cathode material by electrochemical impedance spectroscopy. Electrochim. Acta. 56, 5252–5256. 10.1016/j.electacta.2011.03.009 (2011).

Lama, F. L., Marangon, V., Caballero, Á., Morales, J. & Hassoun, J. Diffusional features of a Lithium-sulfur battery exploiting highly Microporous activated Carbon. ChemSusChem. 16 (6). 10.1002/cssc.202202095 (2023). PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...