Conductive Polymer Thin Films for Energy Storage and Conversion: Supercapacitors, Batteries, and Solar Cells
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
40942264
PubMed Central
PMC12431518
DOI
10.3390/polym17172346
PII: polym17172346
Knihovny.cz E-resources
- Keywords
- PEDOT:PSS, batteries, conductive polymers, electrochemical devices, energy conversion, energy storage, film fabrication techniques, flexible electronics, nanocomposites, polyaniline (PANI), polymer synthesis, polypyrrole (PPy), solar cells, supercapacitors, thin films,
- Publication type
- Journal Article MeSH
- Review MeSH
Conductive polymer thin films have emerged as a versatile class of materials with immense potential in energy storage and conversion technologies due to their unique combination of electrical conductivity, mechanical flexibility, and tunable physicochemical properties. This review comprehensively explores the role of conductive polymer thin films in three critical energy applications: supercapacitors, batteries, and solar cells. The paper examines key polymers such as polyaniline (PANI), polypyrrole (PPy), and poly(3,4-ethylenedioxythiophene) (PEDOT), focusing on their synthesis techniques, structural modifications, and integration strategies to enhance device performance. Recent advances in film fabrication methods, including solution processing, electrochemical deposition, and layer-by-layer assembly, are discussed with regard to achieving optimized morphology, conductivity, and electrochemical stability. Furthermore, the review highlights current challenges such as scalability, long-term durability, and interfacial compatibility, while outlining future directions for the development of high-performance, sustainable energy systems based on conductive polymer thin films.
See more in PubMed
Oladele I.O., Adelani S.O., Taiwo A.S., Akinbamiyorin I.M., Olanrewaju O.F., Orisawayi A.O. Polymer-Based Nanocomposites for Supercapacitor Applications: A Review on Principles, Production and Products. RSC Adv. 2025;15:7509–7534. doi: 10.1039/d4ra08601e. PubMed DOI PMC
Molaiyan P., Bhattacharyya S., dos Reis G.S., Sliz R., Paolella A., Lassi U. Towards greener batteries: Sustainable components and materials for next-generation batteries. Green Chem. 2024;26:7508–7531. doi: 10.1039/D3GC05027K. DOI
Meena J., Sivasubramaniam S.S., David E., K S. Green Supercapacitors: Review and Perspectives on Sustainable Template-Free Synthesis of Metal and Metal Oxide Nanoparticles. RSC Sustain. 2024;2:1224–1245. doi: 10.1039/D4SU00009A. DOI
Shahid M.A., Rahman M.M., Hossain M.T., Hossain I., Sheikh M.S., Rahman M.S., Uddin N., Donne S.W., Hoque M.I.U. Advances in Conductive Polymer-Based Flexible Electronics for Multifunctional Applications. J. Compos. Sci. 2025;9:42. doi: 10.3390/jcs9010042. DOI
Perry E.E., Chiu C.-Y., Moudgil K., Schlitz R.A., Takacs C.J., O’Hara K.A., Labram J.G., Glaudell A.M., Sherman J.B., Barlow S., et al. High Conductivity in a Nonplanar N-Doped Ambipolar Semiconducting Polymer. Chem. Mater. 2017;29:9742–9750. doi: 10.1021/acs.chemmater.7b03516. DOI
Roohi Z., Mighri F., Zhang Z. Conductive Polymer-Based Electrodes and Supercapacitors: Materials, Electrolytes, and Characterizations. Materials. 2024;17:4126. doi: 10.3390/ma17164126. PubMed DOI PMC
Mulzer C.R., Shen L., Bisbey R.P., McKone J.R., Zhang N., Abruña H.D., Dichtel W.R. Superior Charge Storage and Power Density of a Conducting Polymer-Modified Covalent Organic Framework. ACS Cent. Sci. 2016;2:667–673. doi: 10.1021/acscentsci.6b00220. PubMed DOI PMC
Stejskal J., Jurča M., Trchová M., Prokeš J. Electrical Properties of Semiconductor/Conductor Composites: Polypyrrole-Coated Tungsten Microparticles. J. Compos. Sci. 2025;9:98. doi: 10.3390/jcs9030098. DOI
Bryan A.M., Santino L.M., Lu Y., Acharya S., D’Arcy J.M. Conducting Polymers for Pseudocapacitive Energy Storage. Chem. Mater. 2016;28:5989–5998. doi: 10.1021/acs.chemmater.6b01762. DOI
Ibanez J.G., Rincón M.E., Gutierrez-Granados S., Chahma M., Jaramillo-Quintero O.A., Frontana-Uribe B.A. Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical–Chiral Sensors. Chem. Rev. 2018;118:4731–4816. doi: 10.1021/acs.chemrev.7b00482. PubMed DOI
Dong R., Yang M., Zuo Y., Liang L., Xing H., Duan X., Chen S. Conducting Polymers-Based Gas Sensors: Principles, Materials, and Applications. Sensors. 2025;25:2724. doi: 10.3390/s25092724. PubMed DOI PMC
Wang Y., Liu A., Han Y., Li T. Sensors Based on Conductive Polymers and Their Composites: A Review. Polym. Int. 2020;69:7–17. doi: 10.1002/pi.5907. DOI
Wustoni S., Nikiforidis G., Inal S., Indartono Y.S., Suendo V., Yuliarto B. Hydroxymethyl PEDOT Microstructure-Based Electrodes for High-Performance Supercapacitors. APL Mater. 2022;10:061101. doi: 10.1063/5.0088452. DOI
Jiao X., Kirianova A.V., Xu X., Kapitanova O.O., Krivchenko V.A., Napolskiy F.S., Volkov V.S., Gallyamov M.O., Liu Y. Conductive Additives for Improving the Rate Capability of Cathode Materials in Secondary Lithium Batteries. ACS Appl. Energy Mater. 2023;6:2855–2862. doi: 10.1021/acsaem.2c03772. DOI
Zhao Y., Su H., Liu Q., Zhang L., Lv M., Jiao C., Cheng P., Liu D., He D. Improvement of the Optoelectrical Properties of a Transparent Conductive Polymer via a Simple Mechanical Pressure Treatment. ACS Omega. 2020;5:7545–7554. doi: 10.1021/acsomega.0c00355. PubMed DOI PMC
Fan X., Nie W., Tsai H., Wang N., Huang H., Cheng Y., Wen R., Ma L., Yan F., Xia Y. PEDOT:PSS for Flexible and Stretchable Electronics: Modifications, Strategies, and Applications. Adv. Sci. 2019;6:1900813. doi: 10.1002/advs.201900813. PubMed DOI PMC
Ding H., Hussein A.M., Ahmad I., Latef R., Abbas J.K., Ali A.T.A., Saeed S.M., Abdulwahid A.S., Ramadan M.F., Rasool H.A., et al. Conducting Polymers in Industry: A Comprehensive Review on the Characterization, Synthesis and Application. Alex. Eng. J. 2024;88:253–267. doi: 10.1016/j.aej.2024.01.029. DOI
Xu Z., Zhang Z., Yin H., Hou S., Lin H., Zhou J., Zhuo S. Investigation on the Role of Different Conductive Polymers in Supercapacitors Based on a Zinc Sulfide/Reduced Graphene Oxide/Conductive Polymer Ternary Composite Electrode. RSC Adv. 2020;10:3122–3129. doi: 10.1039/C9RA07842H. PubMed DOI PMC
Li J., Lu W., Yan Y., Chou T.W. High Performance Solid-State Flexible Supercapacitor Based on Fe3O4/Carbon Nanotube/Polyaniline Ternary Films. J. Mater. Chem. A. 2017;5:11271–11277. doi: 10.1039/C7TA02008B. DOI
Patil P.H., Kulkarni V.V., Jadhav S.A. An Overview of Recent Advancements in Conducting Polymer–Metal Oxide Nanocomposites for Supercapacitor Application. J. Compos. Sci. 2022;6:363. doi: 10.3390/jcs6120363. DOI
Cheng T., Zhang Y.Z., Zhang J.D., Lai W.Y., Huang W. High-Performance Free-Standing PEDOT:PSS Electrodes for Flexible and Transparent All-Solid-State Supercapacitors. J. Mater. Chem. A. 2016;4:10493–10499. doi: 10.1039/C6TA03537J. DOI
Guan X., Pan L., Fan Z. Flexible, Transparent and Highly Conductive Polymer Film Electrodes for All-Solid-State Transparent Supercapacitor Applications. Membranes. 2021;11:788. doi: 10.3390/membranes11100788. PubMed DOI PMC
Wang W., Cao J., Yu J., Tian F., Luo X., Hao Y., Huang J., Wang F., Zhou W., Xu J., et al. Flexible Supercapacitors Based on Stretchable Conducting Polymer Electrodes. Polymers. 2023;15:1856. doi: 10.3390/polym15081856. PubMed DOI PMC
Taj M., Bhat V.S., Sriram G., Kurkuri M., Manohara S.R., Padova P.D., Hegde G. PEDOT-Doped Mesoporous Nanocarbon Electrodes for High Capacitive Aqueous Symmetric Supercapacitors. Nanomaterials. 2024;14:1222. doi: 10.3390/nano14141222. PubMed DOI PMC
Rahman M.M., Alam I., Hossen M.R., Azim F., Anjum N., Faruk M.O., Rahman M.M., Okoli O.I. Facile Synthesis of Conductive Copolymers and Its Supercapacitor Application. J. Compos. Sci. 2025;9:253. doi: 10.3390/jcs9050253. DOI
Nguyen V.A., Kuss C. Review-Conducting Polymer-Based Binders for Lithium-Ion Batteries and Beyond. J. Electrochem. Soc. 2020;167:065501. doi: 10.1149/1945-7111/ab856b. DOI
Zheng H., Yang R., Liu G., Song X., Battaglia V.S. Cooperation between Active Material, Polymeric Binder and Conductive Carbon Additive in Lithium Ion Battery Cathode. J. Phys. Chem. C. 2012;116:4875–4882. doi: 10.1021/jp208428w. DOI
Molina A., Patil N., Ventosa E., Liras M., Palma J., Marcilla R. Electrode Engineering of Redox-Active Conjugated Microporous Polymers for Ultra-High Areal Capacity Organic Batteries. ACS Energy Lett. 2020;5:2945–2953. doi: 10.1021/acsenergylett.0c01577. DOI
Zhang H., Wang X., Ma H., Xue M. Recent Progresses on Applications of Conducting Polymers for Modifying Electrode of Rechargeable Batteries. Adv. Energy Sustain. Res. 2021;2:2100088. doi: 10.1002/aesr.202100088. DOI
Scott S., Hartley J.M., Abbott A.P., Ryder K.S. Improving the Conductivity of Graphite-Based Lithium-Ion Battery Anodes Using Polyaniline-Alginate Blends. J. Phys. Chem. C. 2024;128:2634–2644. doi: 10.1021/acs.jpcc.3c07222. DOI
Sun K., Li P., Xia Y., Chang J., Ouyang J. Transparent Conductive Oxide-Free Perovskite Solar Cells with PEDOT:PSS as Transparent Electrode. ACS Appl. Mater. Interfaces. 2015;7:15314–15320. doi: 10.1021/acsami.5b03171. PubMed DOI
Alhashmi Alamer F., Althagafy K., Alsalmi O., Aldeih A., Alotaiby H., Althebaiti M., Alghamdi H., Alotibi N., Saeedi A., Zabarmawi Y., et al. Review on PEDOT:PSS-Based Conductive Fabric. ACS Omega. 2022;7:35371–35386. doi: 10.1021/acsomega.2c01834. PubMed DOI PMC
Nie S., Qin F., Liu Y., Qiu C., Jin Y., Wang H., Liu L., Hu L., Su Z., Song J., et al. High Conductivity, Semiconducting, and Metallic PEDOT:PSS Electrode for All-Plastic Solar Cells. Molecules. 2023;28:2836. doi: 10.3390/molecules28062836. PubMed DOI PMC
Hu L., Song J., Yin X., Su Z., Li Z. Research Progress on Polymer Solar Cells Based on PEDOT:PSS Electrodes. Polymers. 2020;12:145. doi: 10.3390/polym12010145. PubMed DOI PMC
Wen R., Huang H., Wan J., Wen S., Wang J., Fan X. High-Efficiency Stable Flexible Organic Solar Cells with PEDOT:PSS Electrodes via Superacid Fumigation Treatment. Energy Technol. 2021;9:2100595. doi: 10.1002/ente.202100595. DOI
Huang Z., Lyu M., Meng N., Cao J., Xiong C., Lian F. Electrically Conductive Functional Polymers and Application Progress in Lithium Batteries. Polymers. 2025;17:778. doi: 10.3390/polym17060778. PubMed DOI PMC
Liu T., Finn L., Yu M., Wang H., Zhai T., Lu X., Tong Y., Li Y. Polyaniline and Polypyrrole Pseudocapacitor Electrodes with Excellent Cycling Stability. Nano Lett. 2014;14:2522–2527. doi: 10.1021/nl500255v. PubMed DOI
Jones D., An Y., Hidalgo J., Evans C., Vagott J.N., Correa-Baena J.P. Polymers and Interfacial Modifiers for Durable Perovskite Solar Cells: A Review. J. Mater. Chem. C. 2021;9:12509–12522. doi: 10.1039/D1TC01243F. DOI
Chang B.P., Mohanty A.K., Misra M. Studies on Durability of Sustainable Biobased Composites: A Review. RSC Adv. 2020;10:17955–17999. doi: 10.1039/C9RA09554C. PubMed DOI PMC
Chacko A.P., Jin Y., Shi Y., Bunha A., Chen Q., Lessner P. Advances in Reliability of Conducting Polymers and Conducting Polymer Based Capacitors in High Humidity Environment. ECS Meet. Abstr. 2018;MA2018-01:144. doi: 10.1149/MA2018-01/1/144. DOI
Wu X., Fu W., Chen H. Conductive Polymers for Flexible and Stretchable Organic Optoelectronic Applications. ACS Appl. Polym. Mater. 2022;4:4609–4623. doi: 10.1021/acsapm.2c00519. DOI
Yang M., Guo M., Xu E., Ren W., Wang D., Li S., Zhang S., Nan C.W., Shen Y. Polymer Nanocomposite Dielectrics for Capacitive Energy Storage. Nat. Nanotechnol. 2024;19:588–603. doi: 10.1038/s41565-023-01541-w. PubMed DOI
Blattmann C.O., Sotiriou G.A., Pratsinis S.E. Rapid Synthesis of Flexible Conductive Polymer Nanocomposite Films. Nanotechnology. 2015;26:125601. doi: 10.1088/0957-4484/26/12/125601. PubMed DOI
Heeger A.J. Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture) Rev. Mod. Phys. 2001;73:681–700. doi: 10.1103/RevModPhys.73.681. PubMed DOI
Peng J., Lin Q., Földes T., Jeong H.H., Xiong Y., Pitsalidis C., Malliaras G.G., Rosta E., Baumberg J.J. In Situ Spectro-Electrochemistry of Conductive Polymers Using Plasmonics to Reveal Doping Mechanisms. ACS Nano. 2022;16:15144–15155. doi: 10.1021/acsnano.2c09081. PubMed DOI PMC
Namsheer K., Rout C.S. Conducting Polymers: A Comprehensive Review on Recent Advances in Synthesis, Properties and Applications. RSC Adv. 2021;11:5659–5697. doi: 10.1039/d0ra07800j. PubMed DOI PMC
Sasso C., Beneventi D., Zeno E., Chaussy D., Petit-Conil M., Belgacem N. Polypyrrole and Polypyrrole/Wood-Derived Materials Conducting Composites: A Review. BioResources. 2011;6:3585–3620. doi: 10.15376/biores.6.3.3585-3620. DOI
Fan X., Yang Z., He N. Hierarchical Nanostructured Polypyrrole/Graphene Composites as Supercapacitor Electrode. RSC Adv. 2015;5:21366–21372. doi: 10.1039/C4RA15258A. DOI
Aphale A., Maisuria K., Mahapatra M.K., Santiago A., Singh P., Patra P. Hybrid Electrodes by In-Situ Integration of Graphene and Carbon-Nanotubes in Polypyrrole for Supercapacitors. Sci. Rep. 2015;5:14445. doi: 10.1038/srep14445. PubMed DOI PMC
Dimov I.B., Moser M., Malliaras G.G., McCulloch I. Semiconducting Polymers for Neural Applications. Chem. Rev. 2022;122:4356–4396. doi: 10.1021/acs.chemrev.1c00685. PubMed DOI PMC
Zhang S., Kumar P., Nouas A.S., Fontaine L., Tang H., Cicoira F. Solvent-Induced Changes in PEDOT:PSS Films for Organic Electrochemical Transistors. APL Mater. 2015;3:014911. doi: 10.1063/1.4905154. DOI
Huang W.-S., MacDiarmid A.G., Epstein A.J. Polyaniline: Non-Oxidative Doping of the Emeraldine Base Form to the Metallic Regime. J. Chem. Soc. Chem. Commun. 1987:1784–1786. doi: 10.1039/c39870001784. DOI
Chou T.-R., Chen S.-H., Chiang Y.-T., Lin Y.-T., Chao C.-Y. Highly Conductive PEDOT:PSS Films by Post-Treatment with Dimethyl Sulfoxide for ITO-Free Liquid Crystal Display. J. Mater. Chem. C. 2015;3:3760–3766. doi: 10.1039/C5TC00276A. DOI
Shahrim N.A., Ahmad Z., Wong Azman A., Fachmi Buys Y., Sarifuddin N. Mechanisms for Doped PEDOT:PSS Electrical Conductivity Improvement. Mater. Adv. 2021;2:7118–7138. doi: 10.1039/D1MA00290B. DOI
Lawal A.T., Wallace G.G. Vapour Phase Polymerisation of Conducting and Non-Conducting Polymers: A Review. Talanta. 2014;119:133–143. doi: 10.1016/j.talanta.2013.10.023. PubMed DOI
Hyder M.N., Lee S.W., Cebeci F.Ç., Schmidt D.J., Shao-Horn Y., Hammond P.T. Layer-by-Layer Assembled Polyaniline Nanofiber/Multiwall Carbon Nanotube Thin Film Electrodes for High-Power and High-Energy Storage Applications. ACS Nano. 2011;5:8552–8561. doi: 10.1021/nn2029617. PubMed DOI
Kulandaivalu S., Suhaimi N., Sulaiman Y. Unveiling High Specific Energy Supercapacitor from Layer-by-Layer Assembled Polypyrrole/Graphene Oxide|Polypyrrole/Manganese Oxide Electrode Material. Sci. Rep. 2019;9:4972. doi: 10.1038/s41598-019-41203-3. PubMed DOI PMC
Beygisangchin M., Abdul Rashid S., Shafie S., Sadrolhosseini A.R., Lim H.N. Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films-A Review. Polymers. 2021;13:2003. doi: 10.3390/polym13122003. PubMed DOI PMC
Agobi A.U., Louis H., Magu T.O., Dass P.M. A Review on Conducting Polymers-Based Composites for Energy Storage Application. J. Chem. Rev. 2019;1:19–34. doi: 10.33945/sami/jcr.2019.1.1934. DOI
Lv H., Pan Q., Song Y., Liu X.X., Liu T. A Review on Nano-/Microstructured Materials Constructed by Electrochemical Technologies for Supercapacitors. Nano-Micro Lett. 2020;12:118. doi: 10.1007/s40820-020-00451-z. PubMed DOI PMC
Dianatdar A., Bose R.K. Oxidative Chemical Vapor Deposition for Synthesis and Processing of Conjugated Polymers: A Critical Review. J. Mater. Chem. C. 2023;11:11776–11802. doi: 10.1039/D3TC01614E. DOI
Xue Y., Chen S., Yu J., Bunes B.R., Xue Z., Xu J., Lu B., Zang L. Nanostructured Conducting Polymers and Their Composites: Synthesis Methodologies, Morphologies and Applications. J. Mater. Chem. C. 2020;8:10136–10159. doi: 10.1039/D0TC02152K. DOI
Rahman Khan M.M., Chakraborty N. Conducting Polymer-Based Gel Materials: Synthesis, Morphology, Thermal Properties, and Applications in Supercapacitors. Gels. 2024;10:553. doi: 10.3390/gels10090553. PubMed DOI PMC
del Valle M.A., Gacitúa M.A., Hernández F., Luengo M., Hernández L.A. Nanostructured Conducting Polymers and Their Applications in Energy Storage Devices. Polymers. 2023;15:1450. doi: 10.3390/polym15061450. PubMed DOI PMC
Samtham M., Singh D., Hareesh K., Devan R.S. Perspectives of Conducting Polymer Nanostructures for High-Performance Electrochemical Capacitors. J. Energy Storage. 2022;51:104418. doi: 10.1016/j.est.2022.104418. DOI
Nie S., Li Z., Yao Y., Jin Y. Progress in Synthesis of Conductive Polymer Poly(3,4-Ethylenedioxythiophene) Front. Chem. 2021;9:803509. doi: 10.3389/fchem.2021.803509. PubMed DOI PMC
Cho S., Lee J.S. Recent Development of Morphology Controlled Conducting Polymer Nanomaterial-Based Biosensor. Appl. Sci. 2020;10:5889. doi: 10.3390/app10175889. DOI
Fidanovski K., Gu M., Travaglini L., Lauto A., Mawad D. Self-Doping and Self-Acid-Doping of Conjugated Polymer Bioelectronics: The Case for Accuracy in Nomenclature. Adv. Healthc. Mater. 2024;13:2302354. doi: 10.1002/adhm.202302354. PubMed DOI
Abel S.B., Frontera E., Acevedo D., Barbero C.A. Functionalization of Conductive Polymers through Covalent Postmodification. Polymers. 2023;15:205. doi: 10.3390/polym15010205. PubMed DOI PMC
Pérez Mendoza A.E., Andronescu C., Olean-Oliveira A. Design of Conducting Polymer/Metal-Based Nanocomposites as Electrocatalysts for Electrochemical Energy Conversion. Synth. Met. 2024;307:117662. doi: 10.1016/j.synthmet.2024.117662. DOI
Kuss C., Mai A.N.T., Nguyen V.A., Odetallah M., Lobato de Faria M. (Invited) Improving Our Understanding of Conducting Polymer Binders. ECS Meet. Abstr. 2023;MA2023-02:901. doi: 10.1149/MA2023-026901mtgabs. DOI
Zhang Q., Huang Q., Hao S.M., Deng S., He Q., Lin Z., Yang Y. Polymers in Lithium–Sulfur Batteries. Adv. Sci. 2022;9:e2103798. doi: 10.1002/advs.202103798. PubMed DOI PMC
Wei W., Wang H., Hu Y.H. A Review on PEDOT-Based Counter Electrodes for Dye-Sensitized Solar Cells. Int. J. Energy Res. 2014;38:1099–1111. doi: 10.1002/er.3178. DOI
Sun K., Zhang S., Li P., Xia Y., Zhang X., Du D., Isikgor F.H., Ouyang J. Review on Application of PEDOTs and PEDOT:PSS in Energy Conversion and Storage Devices. J. Mater. Sci. Mater. Electron. 2015;26:4438–4462. doi: 10.1007/s10854-015-2895-5. DOI
Korent A., Soderžnik K.Ž., Rožman K.Ž. In-Situ Spectroelectrochemical Study of Conductive Polyaniline Forms for Sensor Applications. Proceedings. 2020;56:32. doi: 10.3390/proceedings2020056032. DOI
Tran V.V., Lee S., Lee D., Le T.-H. Recent Developments and Implementations of Conductive Polymer-Based Flexible Devices in Sensing Applications. Polymers. 2022;14:3730. doi: 10.3390/polym14183730. PubMed DOI PMC
Cardoso M.J.R., Lima M.F.S., Lenz D.M. Polyaniline Synthesized with Functionalized Sulfonic Acids for Blends Manufacture. Mater. Res. 2007;10:425–429. doi: 10.1590/S1516-14392007000400017. DOI
Badry R., Elhaes H., Ibrahim A., Refaat A., Ibrahim M.A. Investigating the electronic properties and reactivity of polyaniline emeraldine base functionalized with metal oxides. Sci. Rep. 2024;14:27024. doi: 10.1038/s41598-024-72435-7. PubMed DOI PMC
Santos N.A.V., Pulido M.T.R., Tumacder D.v.C., Taaca K.L.M. Effect of Polyaniline on the Structural, Conductivity, and Dielectric Properties of Chitosan. Carbohydr. Polym. Technol. Appl. 2021;2:100129. doi: 10.1016/j.carpta.2021.100129. DOI
Ansari R., Keivani M.B. Polyaniline Conducting Electroactive Polymers Thermal and Environmental Stability Studies. J. Chem. 2006;3:202–217. doi: 10.1155/2006/395391. DOI
Li Z., Gong L. Research Progress on Applications of Polyaniline (PANI) for Electrochemical Energy Storage and Conversion. Materials. 2020;13:548. doi: 10.3390/ma13030548. PubMed DOI PMC
Oriňáková R., Fedorková A., Oriňák A. Effect of PPy/PEG Conducting Polymer Film on Electrochemical Performance of LiFePO4 Cathode Material for Li-Ion Batteries. Chem. Pap. 2013;67:860–875. doi: 10.2478/s11696-013-0350-8. DOI
Park S.H., Roy A., Beaupré S., Cho S., Coates N., Moon J.S., Moses D., Leclerc M., Lee K., Heeger A.J. Bulk Heterojunction Solar Cells with Internal Quantum Efficiency Approaching 100% Nat. Photonics. 2009;3:297–302. doi: 10.1038/nphoton.2009.69. DOI
Benesperi I., Michaels H., Freitag M. The Researcher’s Guide to Solid-State Dye-Sensitized Solar Cells. J. Mater. Chem. C. 2018;6:11903–11942. doi: 10.1039/C8TC03542C. DOI
Liu J., Zhou M., Fan L.Z., Li P., Qu X. Porous Polyaniline Exhibits Highly Enhanced Electrochemical Capacitance Performance. Electrochim. Acta. 2010;55:5819–5822. doi: 10.1016/j.electacta.2010.05.030. DOI
Singh S.K., Shukla R.K., Dixit C.K. Synthesis of Polypyrrole and Their Application. J. Appl. Phys. 2016;8:84–87.
Chougule M.A., Pawar S.G., Godse P.R., Mulik R.N., Sen S., Patil V.B. Synthesis and Characterization of Polypyrrole (PPy) Thin Films. Soft Nanosci. Lett. 2011;1:6–10. doi: 10.4236/snl.2011.11002. DOI
Alcaraz-Espinoza J.J., De Melo C.P., De Oliveira H.P. Fabrication of Highly Flexible Hierarchical Polypyrrole/Carbon Nanotube on Eggshell Membranes for Supercapacitors. ACS Omega. 2017;2:2866–2877. doi: 10.1021/acsomega.7b00329. PubMed DOI PMC
Kopecký D., Varga M., Prokeš J., Vrňata M., Trchová M., Kopecká J., Václavík M. Optimization Routes for High Electrical Conductivity of Polypyrrole Nanotubes Prepared in Presence of Methyl Orange. Synth. Met. 2017;230:89–96. doi: 10.1016/j.synthmet.2017.06.004. DOI
Rahman Khan M.M., Rumon M.M.H. Recent Progress on the Synthesis, Morphological Topography, and Battery Applications of Polypyrrole-Based Nanocomposites. Polymers. 2024;16:3277. doi: 10.3390/polym16233277. PubMed DOI PMC
Gribkova O.L., Kabanova V.A., Iakobson O.D., Nekrasov A.A. Spectroelectrochemical Investigation of Electrodeposited Polypyrrole Complexes with Sulfonated Polyelectrolytes. Electrochim. Acta. 2021;382:138307. doi: 10.1016/j.electacta.2021.138307. DOI
Chatterjee M.J., Chakraborty P., Banerjee D. Charge Transport Through Polypyrrole and Single-Walled Carbon Nanotube Composite: A Thermoelectric Material. J. Electron. Mater. 2022;51:5956–5964. doi: 10.1007/s11664-022-09812-3. DOI
Attar A., Alharthy R.D., Zwawi M., Algarni M., Albatati F., Bassyouni M., Abdel-Aziz M.H., Zoromba M.S., Al-Hossainy A.F. Fabrication and Characterization of Polypyrrole/Multi-Walled Carbon Nanotubes Thin Films Using Thermal Evaporation. Polymers. 2021;13:4045. doi: 10.3390/polym13224045. PubMed DOI PMC
Nurazizah E.S., Aprilia A., Risdiana R., Safriani L. Different Roles between PEDOT:PSS as Counter Electrode and PEDOT:Carrageenan as Electrolyte in Dye-Sensitized Solar Cell Applications: A Systematic Literature Review. Polymers. 2023;15:2725. doi: 10.3390/polym15122725. PubMed DOI PMC
Yoon H., Ha H., Choi C., Yun T.G., Hwang B. Mini Review on PEDOT:PSS as a Conducting Material in Energy Harvesting and Storage Devices Applications. J. Polym. Mater. 2023;40:1–17. doi: 10.32381/JPM.2023.40.1-2.1. DOI
Li L., Han L., Hu H., Zhang R. A Review on Polymers and Their Composites for Flexible Electronics. Mater. Adv. 2022;4:726–746. doi: 10.1039/D2MA00940D. DOI
Liu F., Gao L., Duan J., Li F., Li J., Ge H., Cai Z., Li H., Wang M., Lv R., et al. A Novel and Green Method for Preparing Highly Conductive PEDOT:PSS Films for Thermoelectric Energy Harvesting. Polymers. 2024;16:266. doi: 10.3390/polym16020266. PubMed DOI PMC
Zhang T., Chen Z., Zhang W., Wang L., Yu G. Recent Progress of Fluorinated Conjugated Polymers. Adv. Mater. 2024;36:e2403961. doi: 10.1002/adma.202403961. PubMed DOI
Zhang S., Qin Y., Uddin M.A., Jang B., Zhao W., Liu D., Woo H.Y., Hou J. A Fluorinated Polythiophene Derivative with Stabilized Backbone Conformation for Highly Efficient Fullerene and Non-Fullerene Polymer Solar Cells. Macromolecules. 2016;49:2993–3000. doi: 10.1021/acs.macromol.6b00248. DOI
Kayishaer A., Duc C., Magnenet C., Lakard B., Ben Halima H., Redon N., Lakard S. Fluorinated Polyaniline-Based Sensors with Enhanced NH3 Sensitivity. Synth. Met. 2024;307:117695. doi: 10.1016/j.synthmet.2024.117695. DOI
Guo R. Collaborative Research: Beyond fluorine: Molecular-level understanding of the effect of bromination and chlorination on polymer membrane transport property and long-term stability. University of Notre Dame. September 2024. [(accessed on 15 August 2025)]. Available online: https://ui.adsabs.harvard.edu/abs/2024nsf….2424357G/abstract.
Yu Z., Xia Y., Du D., Ouyang J. PEDOT:PSS Films with Metallic Conductivity through a Treatment with Common Organic Solutions of Organic Salts and Their Application as a Transparent Electrode of Polymer Solar Cells. ACS Appl. Mater. Interfaces. 2016;8:11629–11638. doi: 10.1021/acsami.6b00317. PubMed DOI
Montazerian H., Davoodi E., Wang C., Lorestani F., Li J., Haghniaz R., Sampath R.R., Mohaghegh N., Khosravi S., Zehtabi F., et al. Boosting hydrogel conductivity via water-dispersible conducting polymers for injectable bioelectronics. Nat. Commun. 2025;16:3755. doi: 10.1038/s41467-025-59045-1. PubMed DOI PMC
Li H., Cao J., Wan R., Feig V.R., Tringides C.M., Xu J., Yuk H., Lu B. PEDOTs-Based Conductive Hydrogels: Design, Fabrications, and Applications. Adv. Mater. 2025;37:2415151. doi: 10.1002/adma.202415151. PubMed DOI
Tahir M.S., Kainat I., Ghazanfar H., Seo Y.S. Flexible Electrodes for High-Performance Energy Storage: Materials, Conductivity Optimization, and Scalable Fabrication. Nanoscale. 2025;17:18016–18048. doi: 10.1039/D5NR01647A. PubMed DOI
Martusciello M., Hervieu C., Di Fonzo D., Lanfranchi A., Lova P., Comoretto D. Dip-Coating Fabrication of All-Polymer Multilayer Photonic Crystals through 3D Printer Conversion. ACS Appl. Polym. Mater. 2025;7:4779–4786. doi: 10.1021/acsapm.4c04077. PubMed DOI PMC
Kwon E.H., Jang Y.J., Kim G.W., Kim M., Park Y.D. Highly Crystalline and Uniform Conjugated Polymer Thin Films by a Water-Based Biphasic Dip-Coating Technique Minimizing the Use of Halogenated Solvents for Transistor Applications. RSC Adv. 2019;9:6356–6362. doi: 10.1039/C8RA09231A. PubMed DOI PMC
Mukherjee A., Dianatdar A., Gładysz M.Z., Hemmatpour H., Hendriksen M., Rudolf P., Włodarczyk-Biegun M.K., Kamperman M., Prakash Kottapalli A.G., Bose R.K. Electrically Conductive and Highly Stretchable Piezoresistive Polymer Nanocomposites via Oxidative Chemical Vapor Deposition. ACS Appl. Mater. Interfaces. 2023;15:31899–31916. doi: 10.1021/acsami.3c06015. PubMed DOI PMC
Kim S., Jang L.K., Park H.S., Lee J.Y. Electrochemical Deposition of Conductive and Adhesive Polypyrrole-Dopamine Films. Sci. Rep. 2016;6:30475. doi: 10.1038/srep30475. PubMed DOI PMC
Gao L., Liu F., Wei Q., Cai Z., Duan J., Li F., Li H., Lv R., Wang M., Li J., et al. Fabrication of Highly Conductive Porous Fe3O4@RGO/PEDOT:PSS Composite Films via Acid Post-Treatment and Their Applications as Electrochemical Supercapacitor and Thermoelectric Material. Polymers. 2023;15:3453. doi: 10.3390/polym15163453. PubMed DOI PMC
Guzmán E., Ortega F., Rubio R.G. Layer-by-Layer Materials for the Fabrication of Devices with Electrochemical Applications. Energies. 2022;15:3399. doi: 10.3390/en15093399. DOI
Heydari Gharahcheshmeh M., Chowdhury K. Fabrication Methods, Pseudocapacitance Characteristics, and Integration of Conjugated Conducting Polymers in Electrochemical Energy Storage Devices. Energy Adv. 2024;3:2668–2703. doi: 10.1039/D4YA00504J. DOI
Mücke B.E.D., Rossignatti B.C., Abegão L.M.G., Barbosa M.S., Mello H.J.N.P.D. Optimized Drop-Casted Polyaniline Thin Films for High-Sensitivity Electrochemical and Optical pH Sensors. Polymers. 2024;16:2789. doi: 10.3390/polym16192789. PubMed DOI PMC
Jiang Y., Minett M., Hazen E., Wang W., Alvarez C., Griffin J., Jiang N., Chen W. New Insights into Spin Coating of Polymer Thin Films in Both Wetting and Nonwetting Regimes. Langmuir. 2022;38:12702–12710. doi: 10.1021/acs.langmuir.2c02206. PubMed DOI
Strawhecker K.E., Kumar S.K., Douglas J.F., Karim A. The Critical Role of Solvent Evaporation on the Roughness of Spin-Cast Polymer Films. Macromolecules. 2001;34:4669–4672. doi: 10.1021/ma001440d. DOI
Huang Y.J., Yeh J.W., Chang-Mou Yang A. “High-Entropy Polymers”: A New Route of Polymer Mixing with Suppressed Phase Separation. Materialia. 2021;15:100978. doi: 10.1016/j.mtla.2020.100978. DOI
Palma-Cando A., Rendón-Enríquez I., Tausch M., Scherf U. Thin Functional Polymer Films by Electropolymerization. Nanomaterials. 2019;9:1125. doi: 10.3390/nano9081125. PubMed DOI PMC
Piña-Beltrán D.U., Hernández-Tenorio C., Escobedo C.A.C., Villanueva-Castañeda M., Moreno-Saavedra H. Electrodeposition and characterization of polypyrrole films on T304 stainless steel. MRS Adv. 2022;7:69–72. doi: 10.1557/s43580-021-00200-3. DOI
Inzelt G. Conducting Polymers. Springer; Berlin/Heidelberg, Germany: 2012. Chemical and Electrochemical Syntheses of Conducting Polymers. Monographs in Electrochemistry. DOI
Cysewska K., Karczewski J., Jasiński P. Influence of Electropolymerization Conditions on the Morphological and Electrical Properties of PEDOT Film. Electrochim. Acta. 2015;176:156–161. doi: 10.1016/j.electacta.2015.07.006. DOI
Hao L., Dong C., Yu D. Polypyrrole Derivatives: Preparation, Properties and Application. Polymers. 2024;16:2233. doi: 10.3390/polym16162233. PubMed DOI PMC
Sharma A., Andersson G., Rivnay J., Alvino J.F., Metha G.F., Andersson M.R., Zuber K., Fabretto M. Insights into the Oxidant/Polymer Interfacial Growth of Vapor Phase Polymerized PEDOT Thin Films. Adv. Mater. Interfaces. 2018;5:1800594. doi: 10.1002/admi.201800594. DOI
Bhattacharyya D., Howden R.M., Borrelli D.C., Gleason K.K. Vapor Phase Oxidative Synthesis of Conjugated Polymers and Applications. J. Polym. Sci. Part B Polym. Phys. 2012;50:1329–1351. doi: 10.1002/polb.23138. DOI
Kaviani S., Mohammadi Ghaleni M., Tavakoli E., Nejati S. Electroactive and Conformal Coatings of Oxidative Chemical Vapor Deposition Polymers for Oxygen Electroreduction. ACS Appl. Polym. Mater. 2019;1:552–560. doi: 10.1021/acsapm.8b00240. DOI
Dianatdar A., Miola M., De Luca O., Rudolf P., Picchioni F., Bose R.K. All-Dry, One-Step Synthesis, Doping and Film Formation of Conductive Polypyrrole. J. Mater. Chem. C. 2022;10:557–570. doi: 10.1039/D1TC05082F. DOI
Lee S.W., Kim B.S., Chen S., Shao-Horn Y., Hammond P.T. Layer-by-Layer Assembly of All Carbon Nanotube Ultrathin Films for Electrochemical Applications. J. Am. Chem. Soc. 2009;131:671–679. doi: 10.1021/ja807059k. PubMed DOI
Jin M., Shi P., Sun Z., Zhao N., Shi M., Wu M., Ye C., Lin C.-T., Fu L. Advancements in Polymer-Assisted Layer-by-Layer Fabrication of Wearable Sensors for Health Monitoring. Sensors. 2024;24:2903. doi: 10.3390/s24092903. PubMed DOI PMC
Pavel I.-A., Lakard S., Lakard B. Flexible Sensors Based on Conductive Polymers. Chemosensors. 2022;10:97. doi: 10.3390/chemosensors10030097. DOI
Morais P.V., Silva A.C.A., Dantas N.O., Schöning M.J., Siqueira J.R. Hybrid Layer-by-Layer Film of Polyelectrolytes-Embedded Catalytic CoFe2O4 Nanocrystals as Sensing Units in Capacitive Electrolyte-Insulator-Semiconductor Devices. Phys. Status Solidi Appl. Mater. Sci. 2019;216:1900044. doi: 10.1002/pssa.201900044. DOI
Kulandaivalu S., Sulaiman Y. Recent Advances in Layer-by-Layer Assembled Conducting Polymer Based Composites for Supercapacitors. Energies. 2019;12:2107. doi: 10.3390/en12112107. DOI
Chee W.K., Lim H.N., Huang N.M., Harrison I. Nanocomposites of Graphene/Polymers: A Review. RSC Adv. 2015;5:68014–68051. doi: 10.1039/C5RA07989F. DOI
Schmidt A., Husmann S., Presser V., Zarbin A.J.G. Transparent Polyaniline/MXene Thin Films Supercapacitors. Electrochim. Acta. 2025;525:146184. doi: 10.1016/j.electacta.2025.146184. DOI
Chang X., Yang Z., Huang A., Katsuyama Y., Lin C.W., El-Kady M.F., Wang C., Kaner R.B. Understanding the Degradation Mechanisms of Conducting Polymer Supercapacitors. Macromol. Rapid Commun. 2024;45:e2300237. doi: 10.1002/marc.202300237. PubMed DOI
Liu L., Jiang Y., Jiang J., Zhou J., Xu Z., Li Y. Flexible and Transparent Silver Nanowires Integrated with a Graphene Layer-Doping PEDOT:PSS Film for Detection of Hydrogen Sulfide. ACS Appl. Electron. Mater. 2021;3:4579–4586. doi: 10.1021/acsaelm.1c00716. DOI
Lin Y.J., Lee J.Y., Chen S.M. Changing Electrical Properties of PEDOT:PSS by Incorporating with Dimethyl Sulfoxide. Chem. Phys. Lett. 2016;664:213–218. doi: 10.1016/j.cplett.2016.10.038. DOI
Li J., Liu J.C., Gao C.J. On the Mechanism of Conductivity Enhancement in PEDOT/PSS Film Doped with Multi-Walled Carbon Nanotubes. J. Polym. Res. 2010;17:713–718. doi: 10.1007/s10965-009-9360-1. DOI
Tybrandt K., Zozoulenko I.V., Berggren M. Chemical potential–electric double layer coupling in conjugated polymer–polyelectrolyte blends. Sci. Adv. 2017;3:eaao3659. doi: 10.1126/sciadv.aao3659. PubMed DOI PMC
Schötz T., Kurniawan M., Stich M., Peipmann R., Efimov I., Ispas A., Bund A., Ponce de León C., Ueda M. Understanding the Charge-Storage Mechanism of Conductive Polymers as Hybrid Battery–Capacitor Materials in Ionic Liquids by In Situ AFM and EQCM Studies. J. Mater. Chem. A. 2018;6:17787–17799. doi: 10.1039/C8TA06757K. DOI
Li L., Ai Z., Wu J., Lin Z., Huang M., Gao Y., Bai H. A robust polyaniline hydrogel electrode enables superior rate capability at ultrahigh mass loadings. Nat. Commun. 2024;15:6591. doi: 10.1038/s41467-024-50831-x. PubMed DOI PMC
Namsheer M., Kenz K.T., Lakshmy S., Sharma C.S., Jeong S.M., Rout C.S. Carbon Nanotube Interconnected Polypyrrole@E-MXene Organic-Inorganic Hybrids for Interdigitated In-Plane Supercapacitor Applications. Adv. Mater. Technol. 2025;10:2401838. doi: 10.1002/admt.202401838. DOI
Patel A., Patel S.K., Singh R.S., Patel R.P. Review on Recent Advancements in the Role of Electrolytes and Electrode Materials on Supercapacitor Performances. Discov. Nano. 2024;19:191. doi: 10.1186/s11671-024-04053-1. PubMed DOI PMC
Ahmed S., Ahmed A., Basha D.B., Hussain S., Uddin I., Gondal M.A. Critical Review on Recent Developments in Conducting Polymer Nanocomposites for Supercapacitors. Synth. Met. 2023;295:117326. doi: 10.1016/j.synthmet.2023.117326. DOI
Tundwal A., Kumar H., Binoj B.J., Sharma R., Kumar G., Kumari R., Dhayal A., Yadav A., Singh D., Kumar P. Developments in Conducting Polymer-, Metal Oxide-, and Carbon Nanotube-Based Composite Electrode Materials for Supercapacitors: A Review. RSC Adv. 2024;14:9406–9439. doi: 10.1039/D3RA08312H. PubMed DOI PMC
Fahim M., Shah A.u.H.A., Bilal S. Highly Stable and Efficient Performance of Binder-Free Symmetric Supercapacitor Fabricated with Electroactive Polymer Synthesized via Interfacial Polymerization. Materials. 2019;12:1626. doi: 10.3390/ma12101626. PubMed DOI PMC
Jeon J.W., Kwon S.R., Li F., Lutkenhaus J.L. Spray-On Polyaniline/Poly(Acrylic Acid) Electrodes with Enhanced Electrochemical Stability. ACS Appl. Mater. Interfaces. 2015;7:24150–24158. doi: 10.1021/acsami.5b07459. PubMed DOI
Tan W., Stallard J.C., Jo C., De Volder M.F.L., Fleck N.A. The Mechanical and Electrochemical Properties of Polyaniline-Coated Carbon Nanotube Mat. J. Energy Storage. 2021;41:102757. doi: 10.1016/j.est.2021.102757. DOI
Vinodh R., Babu R.S., Sambasivam S., Muralee Gopi C.V.V., Alzahmi S., Kim H.J., de Barros A.L.F., Obaidat I.M. Recent Advancements of Polyaniline/Metal Organic Framework (PANI/MOF) Composite Electrodes for Supercapacitor Applications: A Critical Review. Nanomaterials. 2022;12:1511. doi: 10.3390/nano12091511. PubMed DOI PMC
Okafor O.B., Popoola A.P.I., Popoola O.M., Uyor U.O., Ogbonna V.E. Review of Advances in Improving Thermal, Mechanical and Electrochemical Properties of Polyaniline Composite for Supercapacitor Application. Polym. Bull. 2024;81:189–246. doi: 10.1007/s00289-023-04710-y. DOI
Yeszhan Y., Duisenbekov S., Kurmangaliyeva D., Kazhigitova D., Askar P., Tileuberdi Y., Konarov A., Adilov S., Nuraje N. Enhanced Electrochemical Performance of a Polyaniline-Based Supercapacitor by a Bicontinuous Microemulsion Nanoreactor Approach. RSC Adv. 2025;15:1205–1211. doi: 10.1039/D4RA07348G. PubMed DOI PMC
Terryn H., Hubin A. Next Nanotechnology The Role of PEDOT: PSS in (Super) Capacitors: A Review. Next Nanotechnol. 2023;2:100015.
Lin Y., Ding Y., Zhang Y., Jiang H., Su M., Ma Z., Wu Q., Tao K., Xie E., Zhang Y., et al. Achieving Superior Electrochemical Performance of Polypyrrole-Based Micro-Supercapacitors via Redox ZnI2 and Water-In-Salt ZnCl2 Electrolytes. Adv. Funct. Mater. 2025;35:2421597. doi: 10.1002/adfm.202421597. DOI
Barazandeh M., Kazemi S.H. High-performance freestanding supercapacitor electrode based on polypyrrole coated nickel cobalt sulfide nanostructures. Sci. Rep. 2022;12:4628. doi: 10.1038/s41598-022-08691-2. PubMed DOI PMC
Tong L., Gao M., Jiang C., Cai K. Ultra-high Performance and Flexible Polypyrrole-Coated Carbon Nanotube Paper Electrodes for All-Solid-State Supercapacitors. J. Mater. Chem. A. 2019;7:10751–10760. doi: 10.1039/C9TA01856E. DOI
Qin T., Liu B., Wen Y., Wang Z., Jiang X., He D. Freestanding Flexible Graphene Foams@Polypyrrole@MnO2 Electrodes for High-Performance Supercapacitors. J. Mater. Chem. A. 2016;4:9196–9203. doi: 10.1039/C6TA02835G. DOI
Hik F., Taatizadeh E., Takalloo S.E., Madden J.D.W. Fast Electrochemical Response of PEDOT:PSS Electrodes through Large Combined Increases to Ionic and Electronic Conductivities. Electrochim. Acta. 2023;468:143136. doi: 10.1016/j.electacta.2023.143136. DOI
Li Y., Pang Y., Wang L., Li Q., Liu B., Li J., Liu S., Zhao Q. Boosting the Performance of PEDOT:PSS Based Electronics Via Ionic Liquids. Adv. Mater. 2024;36:e2310973. doi: 10.1002/adma.202310973. PubMed DOI
Su Z., Jin Y., Wang H., Li Z., Huang L., Wang H. PEDOT:PSS and Its Composites for Flexible Supercapacitors. ACS Appl. Energy Mater. 2022;5:11915–11932. doi: 10.1021/acsaem.2c01524. DOI
Tang P., Han L., Zhang L. Facile Synthesis of Graphite/PEDOT/MnO2 Composites on Commercial Supercapacitor Separator Membranes as Flexible and High-Performance Supercapacitor Electrodes. ACS Appl. Mater. Interfaces. 2014;6:10506–10515. doi: 10.1021/am5021028. PubMed DOI
Chandran A.C.S., Schneider J., Nair R., Bill B., Gadegaard N., Hogg R., Kumar S., Manjakkal L. Enhancing Supercapacitor Electrochemical Performance with 3D Printed Cellular PEEK/MWCNT Electrodes Coated with PEDOT: PSS. ACS Omega. 2024;9:33998–34007. doi: 10.1021/acsomega.4c04576. PubMed DOI PMC
Calabia Gascón N., Wouters B., Terryn H., Hubin A. Effect of Impregnation of PEDOT:PSS in Etched Aluminium Electrodes on the Performance of Solid State Electrolytic Capacitors. Inorganics. 2024;12:185. doi: 10.3390/inorganics12070185. DOI
Wang W., Xu D., Huang A., Yuan H., Xie J., Chen X., He Y., Zhang T., Shen H. Controllable Vapor Phase Polymerization of PEDOT Films Using Imidazole as an Inhibitor and Their Electrical and Electrochromic Properties. Synth. Met. 2020;269:116523. doi: 10.1016/j.synthmet.2020.116523. DOI
Li B., Lopez-Beltran H., Siu C., Skorenko K.H., Zhou H., Bernier W.E., Whittingham M.S., Jones W.E. Vaper Phase Polymerized PEDOT/Cellulose Paper Composite for Flexible Solid-State Supercapacitor. ACS Appl. Energy Mater. 2020;3:1559–1568. doi: 10.1021/acsaem.9b02044. DOI
Skorupa M., Karoń K., Marchini E., Caramori S., Pluczyk-Małek S., Krukiewicz K., Carli S. PEDOT:Nafion for Highly Efficient Supercapacitors. ACS Appl. Mater. Interfaces. 2024;16:23253–23264. doi: 10.1021/acsami.4c01085. PubMed DOI PMC
Simon S., James N., Rajeevan S., George S.C., Sreeja P.B. Sandwich Structured Pedot-TiO2/GO/PEDOT-TiO2 Electrodes for Supercapacitor. Results Chem. 2023;6:101144. doi: 10.1016/j.rechem.2023.101144. DOI
Ma F., Choi S., II, Lee D., Jeon S.B., Park S., Cho S.P., Boo J.H., Kim S. Directed Crystallization of a Poly(3,4-Ethylenedioxythiophene) Film by an Iron(III) Dodecyl Sulfate Lamellar Superstructure. Nat. Commun. 2024;15:7871. doi: 10.1038/s41467-024-51621-1. PubMed DOI PMC
Pan L., Yu G., Zhai D., Lee H.R., Zhao W., Liu N., Wang H., Tee B.C.K., Shi Y., Cui Y., et al. Hierarchical Nanostructured Conducting Polymer Hydrogel with High Electrochemical Activity. Proc. Natl. Acad. Sci. USA. 2012;109:9287–9292. doi: 10.1073/pnas.1202636109. PubMed DOI PMC
Daubert J.S., Lewis N.P., Gotsch H.N., Mundy J.Z., Monroe D.N., Dickey E.C., Losego M.D., Parsons G.N. Effect of Meso- and Micro-Porosity in Carbon Electrodes on Atomic Layer Deposition of Pseudocapacitive V2O5 for High-Performance Supercapacitors. Chem. Mater. 2015;27:6524–6534. doi: 10.1021/acs.chemmater.5b01602. DOI
Sikdar A., Héraly F., Zhang H., Hall S., Pang K., Zhang M., Yuan J. Hierarchically Porous 3D Freestanding Holey-MXene Framework via Mild Oxidation of Self-Assembled MXene Hydrogel for Ultrafast Pseudocapacitive Energy Storage. ACS Nano. 2024;18:3707–3719. doi: 10.1021/acsnano.3c11551. PubMed DOI PMC
Ouyang J., Xu Q., Chu C.-W., Yang Y., Li G., Shinar J. On the Mechanism of Conductivity Enhancement in Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) Film through Solvent Treatment. Polymer. 2004;45:8443–8450. doi: 10.1016/j.polymer.2004.10.001. DOI
Xia Y., Ouyang J. PEDOT:PSS Films with Significantly Enhanced Conductivities Induced by Preferential Solvation with Cosolvents and Their Application in Polymer Photovoltaic Cells. J. Mater. Chem. 2011;21:4927–4936. doi: 10.1039/c0jm04177g. DOI
Lee I., Kim G.W., Yang M., Kim T.S. Simultaneously Enhancing the Cohesion and Electrical Conductivity of PEDOT:PSS Conductive Polymer Films Using DMSO Additives. ACS Appl. Mater. Interfaces. 2016;8:302–310. doi: 10.1021/acsami.5b08753. PubMed DOI
Liu D., Wang X., Deng J., Zhou C., Guo J., Liu P. Crosslinked Carbon Nanotubes/Polyaniline Composites as a Pseudocapacitive Material with High Cycling Stability. Nanomaterials. 2015;5:1034–1047. doi: 10.3390/nano5021034. PubMed DOI PMC
Ghobad Behzadi Pour G., Nazarpour Fard H., Fekri Aval L. A Comparison of the Electrical Properties of Gel Polymer Electrolyte-Based Supercapacitors: A Review of Advances in Electrolyte Materials. Gels. 2024;10:803. doi: 10.3390/gels10120803. PubMed DOI PMC
Chen X., Zhang X., Holze R. Polymer Electrolytes for Supercapacitors. Polymers. 2024;16:3164. doi: 10.3390/polym16223164. PubMed DOI PMC
Hong X., Liu Y., Li Y., Wang X., Fu J., Wang X. Application Progress of Polyaniline, Polypyrrole and Polythiophene in Lithium-Sulfur Batteries. Polymers. 2020;12:331. doi: 10.3390/polym12020331. PubMed DOI PMC
Yelshibay A., Bukari S.D., Baptayev B., Balanay M.P. Conducting Polymers in Solar Cells: Insights, Innovations, and Challenges. Organics. 2024;5:640–669. doi: 10.3390/org5040034. DOI
Kesküla A., Heinmaa I., Tamm T., Aydemir N., Travas-Sejdic J., Peikolainen A.-L., Kiefer R. Improving the Electrochemical Performance and Stability of Polypyrrole by Polymerizing Ionic Liquids. Polymers. 2020;12:136. doi: 10.3390/polym12010136. PubMed DOI PMC
Stakem K.G., Leslie F.J., Gregory G.L. Polymer Design for Solid-State Batteries and Wearable Electronics. Chem. Sci. 2024;15:10281–10307. doi: 10.1039/D4SC02501F. PubMed DOI PMC
Xie Y., Zhang K., Monteiro M.J., Jia Z. Conjugated Nitroxide Radical Polymers: Synthesis and Application in Flexible Energy Storage Devices. ACS Appl. Mater. Interfaces. 2019;11:7096–7103. doi: 10.1021/acsami.8b21073. PubMed DOI
Uke S.J., Mardikar S.P., Kumar A., Kumar Y., Gupta M., Kumar Y. A Review of π-Conjugated Polymer-Based Nanocomposites for Metal-Ion Batteries and Supercapacitors. R. Soc. Open Sci. 2021;8:210567. doi: 10.1098/rsos.210567. PubMed DOI PMC
Srivastava M., R. A.K.M., Zaghib K. Binders for Li-Ion Battery Technologies and Beyond: A Comprehensive Review. Batteries. 2024;10:268. doi: 10.3390/batteries10080268. DOI
Hu X., Zhu X., Ran Z., Liu S., Zhang Y., Wang H., Wei W. Conductive Polymer-Based Interlayers in Restraining the Polysulfide Shuttle of Lithium–Sulfur Batteries. Molecules. 2024;29:1164. doi: 10.3390/molecules29051164. PubMed DOI PMC
Pavithra Siddu N.K., Jeong S.M., Rout C.S. MXene-Carbon Based Hybrid Materials for Supercapacitor Applications. Energy Adv. 2024;3:341–365. doi: 10.1039/d3ya00502j. DOI
Astrova E.V., Sapurina I.Y., Parfeneva A.V., Li G.V., Nashchekin A.V., Lozhkina D.A., Rumyantsev A.M. Nanocomposites for Lithium-Ion Battery Anodes Made of Silicon and Polyaniline Doped with Phytic Acid. Energy Technol. 2024;12:2401156. doi: 10.1002/ente.202401156. DOI
Chen S., Liang L., Zhang Y., Lin K., Yang M., Zhu L., Yang X., Zang L., Lu B. PEDOT:PSS-Based Electronic Materials: Preparation, Performance Tuning, Processing, Applications, and Future Prospect. Prog. Polym. Sci. 2025;166:101990. doi: 10.1016/j.progpolymsci.2025.101990. DOI
Wu H., Yu G., Pan L., Liu N., McDowell M.T., Bao Z., Cui Y. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 2013;4:1943. doi: 10.1038/ncomms2941. PubMed DOI
Feng M., Tian J., Xie H., Kang Y., Shan Z. Nano-silicon/polyaniline composites with an enhanced reversible capacity as anode materials for lithium-ion batteries. J. Solid State Electrochem. 2015;19:1773–1781. doi: 10.1007/s10008-015-2807-x. DOI
He X., Han R., Jiang P., Chen Y., Liu W. Molecularly engineered conductive polymer binder enables stable lithium storage of Si. Ind. Eng. Chem. Res. 2020;59:2680–2688. doi: 10.1021/acs.iecr.9b05838. DOI
Niščáková V., Gubóová A., Petruš O., Fei H., Almáši M., Fedorková A.S. Investigation of Polypyrrole Based Composite Material for Lithium Sulfur Batteries. Sci. Rep. 2024;14:22928. doi: 10.1038/s41598-024-74119-8. PubMed DOI PMC
Chauque S., Souza B.L., Sintaku H.M., Ando R.A., Torresi R.M. Unveiling the Polysulfide-PPY Interaction for Enhanced Lithium–Sulfur Battery Performance. Electrochim. Acta. 2024;475:143539. doi: 10.1016/j.electacta.2023.143539. DOI
Dent M., Grabe S., Ayere O., Babar S., Masteghin M.G., Cox D.C., Howlin B.J., Baker M.A., Lekakou C. Investigating PEDOT:PSS Binder as an Energy Extender in Sulfur Cathodes for Li-S Batteries. ACS Appl. Energy Mater. 2024;7:7349–7361. doi: 10.1021/acsaem.4c01553. PubMed DOI PMC
Ritter T.G., Il Kim Y., Bezerra De Souza B., Wang X., Pan Y., Yurkiv V., Yarin A.L., Shahbazian-Yassar R. Composite PEDOT:PSS-PEO Layers for Improving Lithium Batteries. ChemElectroChem. 2024;11:2400458. doi: 10.1002/celc.202400458. DOI
Wen W., Liu Y., Tamirat A.G. Self-Assembled-Monolayer-Induced Polyaniline-Grafted Silicon Nanoparticles for Highly Stable Lithium-Ion Battery Anodes. ACS Omega. 2025;10:21030–21039. doi: 10.1021/acsomega.4c07644. PubMed DOI PMC
Fu K., Lv R., Na B., Zou S., Zeng R., Wang B., Liu H. Mixed Ion–Electron Conducting PEO/PEDOT:PSS Miscible Blends with Intense Electrochromic Response. Polymer. 2019;184:121900. doi: 10.1016/j.polymer.2019.121900. DOI
McDonald M.B., Hammond P.T. Efficient Transport Networks in a Dual Electron/Lithium-Conducting Polymeric Composite for Electrochemical Applications. ACS Appl. Mater. Interfaces. 2018;10:15681–15690. doi: 10.1021/acsami.8b01519. PubMed DOI
Zhao L., Dong Q., Yi R., Shao H., Shen Y., Chen L. Organic Mixed Ionic–Electronic Conductors for Solid-State Batteries. CCS Chemistry. 2025;7:22–43. doi: 10.31635/ccschem.024.202404284. DOI
Girish K.H., Vishnumurthy K.A., Roopa T.S. Role of Conducting Polymers in Enhancing the Stability and Performance of Perovskite Solar Cells: A Brief Review. Mater. Today Sustain. 2022;17:100090. doi: 10.1016/j.mtsust.2021.100090. DOI
Shahat M.A., Ghitas A., Almutairi F.N., Alresheedi N.M. Oxygen Enriched PAni-Based Counter Electrode Network toward Efficient Dye-Sensitized Solar Cells (DSSCs). Sci. Rep. 2024;14:25977. doi: 10.1038/s41598-024-67055-0. PubMed DOI PMC
Park S.H., Lim J., Song I.Y., Lee J.R., Park T. Physically Stable Polymer-Membrane Electrolytes for Highly Efficient Solid-State Dye-Sensitized Solar Cells with Long-Term Stability. Adv. Energy Mater. 2014;4:1300489. doi: 10.1002/aenm.201300489. DOI
Gatti T., Casaluci S., Prato M., Salerno M., Di Stasio F., Ansaldo A., Menna E., Di Carlo A., Bonaccorso F. Boosting perovskite solar cells performance and stability through doping a poly-3(hexylthiophene) hole transporting material with organic functionalized carbon nanostructures. Adv. Funct. Mater. 2016;26:7443–7453. doi: 10.1002/adfm.201602803. DOI
Liu H., Li X., Zhang L., Hong Q., Tang J., Zhang A., Ma C.Q. Influence of the Surface Treatment of PEDOT:PSS Layer with High Boiling Point Solvent on the Performance of Inverted Planar Perovskite Solar Cells. Org. Electron. 2017;47:220–227. doi: 10.1016/j.orgel.2017.05.025. DOI
Zhu T., Yang Y., Yao X., Huang Z., Liu L., Hu W., Gong X. Solution-Processed Polymeric Thin Film as the Transparent Electrode for Flexible Perovskite Solar Cells. ACS Appl. Mater. Interfaces. 2020;12:15456–15463. doi: 10.1021/acsami.9b22891. PubMed DOI
Yao N., Xia Y., Liu Y., Chen S., Jonsson M.P., Zhang F. Solution-Processed Highly Efficient Semitransparent Organic Solar Cells with Low Donor Contents. ACS Appl. Energy Mater. 2021;4:14335–14341. doi: 10.1021/acsaem.1c03017. DOI
Saha A., Ohori D., Sasaki T., Itoh K., Oshima R., Samukawa S. Effect of Film Morphology on Electrical Conductivity of PEDOT:PSS. Nanomaterials. 2024;14:95. doi: 10.3390/nano14010095. PubMed DOI PMC
Mäkinen P., Fasulo F., Liu M., Grandhi G.K., Conelli D., Al-Anesi B., Ali-Löytty H., Lahtonen K., Toikkonen S., Suranna G.P., et al. Less Is More: Simplified Fluorene-Based Dopant-Free Hole Transport Materials Promote the Long-Term Ambient Stability of Perovskite Solar Cells. Chem. Mater. 2023;35:2975–2987. doi: 10.1021/acs.chemmater.3c00145. DOI
Zhang B.C., Lan S.W., Tsai C.H., Chiang C.H., Wu C.G. Organic Salt-Doped Polymer Alloy: A New Prototype Hole Transporter for High-Photovoltaic-Performance Perovskite Solar Cells. ACS Appl. Mater. Interfaces. 2025;17:10674–10685. doi: 10.1021/acsami.4c19907. PubMed DOI PMC
Sun X., Deng X., Li Z., Xiong B., Zhong C., Zhu Z., Li Z., Jen A.K.Y. Dopant-Free Crossconjugated Hole-Transporting Polymers for Highly Efficient Perovskite Solar Cells. Adv. Sci. 2020;7:1903331. doi: 10.1002/advs.201903331. PubMed DOI PMC
Wang W., Cui Y., Zhang T., Bi P., Wang J., Yang S., Wang J., Zhang S., Hou J. High-Performance Organic Photovoltaic Cells under Indoor Lighting Enabled by Suppressing Energetic Disorders. Joule. 2023;7:1067–1079. doi: 10.1016/j.joule.2023.04.003. DOI
Lee J.H., Khasbaatar A., Jones A.L., Hwang C., Kim M., Strzalka J., Gann E., Lee M.L., Reynolds J.R., Diao Y. Recycling the Energy of Indoor Light: Highly Efficient Organic Photovoltaics via a Ternary Strategy. ACS Appl. Polym. Mater. 2023;5:4199–4209. doi: 10.1021/acsapm.3c00408. DOI
Savagatrup S., Printz A.D., O’Connor T.F., Zaretski A.V., Rodriquez D., Sawyer E.J., Rajan K.M., Acosta R.I., Root S.E., Lipomi D.J. Mechanical Degradation and Stability of Organic Solar Cells: Molecular and Microstructural Determinants. Energy Environ. Sci. 2015;8:55–80. doi: 10.1039/C4EE02657H. DOI
Yu J., Li S., Shi M., Zhu H., Chen H. Recent Advances in Thermo- and Photostabilities of Organic Solar Cells: Material Design and Morphology Control. Polym. Sci. Technol. 2025;1:25–45. doi: 10.1021/polymscitech.4c00054. DOI
Zhang Y., Samuel I.D.W., Wang T., Lidzey D.G. Current Status of Outdoor Lifetime Testing of Organic Photovoltaics. Adv. Sci. 2018;5:1800434. doi: 10.1002/advs.201800434. PubMed DOI PMC
Worfolk B.J., Andrews S.C., Park S., Reinspach J., Liu N., Toney M.F., Mannsfeld S.C.B., Bao Z. Ultrahigh Electrical Conductivity in Solution-Sheared Polymeric Transparent Films. Proc. Natl. Acad. Sci. USA. 2015;112:14138–14143. doi: 10.1073/pnas.1509958112. PubMed DOI PMC
Wan J., Xia Y., Fang J., Zhang Z., Xu B., Wang J., Ai L., Song W., Hui K.N., Fan X., et al. Solution-Processed Transparent Conducting Electrodes for Flexible Organic Solar Cells with 16.61% Efficiency. Nano-Micro Lett. 2021;13:44. doi: 10.1007/s40820-020-00566-3. PubMed DOI PMC
Song D., Li H., Xu Y., Yu Q. Amplifying Hole Extraction Characteristics of PEDOT:PSS via Post-Treatment with Aromatic Diammonium Acetates for Tin Perovskite Solar Cells. ACS Energy Lett. 2023;8:3280–3287. doi: 10.1021/acsenergylett.3c00583. DOI
Zhu J., Xu Y., Luo Y., Luo J., He R., Wang C., Wang Y., Wei K., Yi Z., Gao Z., et al. Custom-Tailored Hole Transport Layer Using Oxalic Acid for High-Quality Tin–Lead Perovskites and Efficient All-Perovskite Tandems. Sci. Adv. 2024;10:eadl2063. doi: 10.1126/sciadv.adl2063. PubMed DOI PMC
Chin Y.-C., Daboczi M., Henderson C., Luke J., Kim J.-S. Suppressing PEDOT:PSS Doping-Induced Interfacial Recombination Loss in Perovskite Solar Cells. ACS Energy Lett. 2022;7:560–568. doi: 10.1021/acsenergylett.1c02577. PubMed DOI PMC
Shi S., Hou Y., Yang T., Huang C., Yao S., Zhao C., Liu Y., Zhang Z., Liu T., Zou B. Simple Solvent Treatment Enabled Improved PEDOT:PSS Performance toward Highly Efficient Binary Organic Solar Cells. ACS Omega. 2022;7:41789–41795. doi: 10.1021/acsomega.2c06181. PubMed DOI PMC
Qian X., Qiu J., Hu B., Yao J., Zuo M., Wu Z., Shan G., Song Y., Zheng Q., Peng B., et al. Metal-Like Conductivity in Acid-Treated PEDOT:PSS Films: Surpassing 15,000 S·cm−1. ACS Appl. Mater. Interfaces. 2025;17:17164–17178. doi: 10.1021/acsami.4c19958. PubMed DOI
Karagiorgis X., Shakthivel D., Khandelwal G., Ginesi R., Skabara P.J., Dahiya R. Highly Conductive PEDOT:PSS: Ag Nanowire-Based Nanofibers for Transparent Flexible Electronics. ACS Appl. Mater. Interfaces. 2024;16:19551–19562. doi: 10.1021/acsami.4c00682. PubMed DOI PMC
Elsokary A., Soliman M., Abulfotuh F., Ebrahim S., Sadat-Shafai T., Karim M. Fabrication of Composite Transparent Conductive Electrodes Based on Silver Nanowires. Sci. Rep. 2024;14:3045. doi: 10.1038/s41598-024-53286-8. PubMed DOI PMC
Fischer R., Gregori A., Sahakalkan S., Hartmann D., Büchele P., Tedde S.F., Schmidt O. Stable and Highly Conductive Carbon Nanotube-Enhanced PEDOT:PSS as Transparent Electrode for Flexible Electronics. Org. Electron. 2018;62:351–356. doi: 10.1016/j.orgel.2018.07.022. DOI
Bi C., Wang Q., Shao Y., Yuan Y., Xiao Z., Huang J. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 2015;6:7747. doi: 10.1038/ncomms8747. PubMed DOI PMC
Huang D., Goh T., Kong J., Zheng Y., Zhao S., Xu Z., Taylor A.D. Perovskite solar cells with a DMSO-treated PEDOT:PSS hole transport layer exhibit higher photovoltaic performance and enhanced durability. Nanoscale. 2017;9:4236–4243. doi: 10.1039/C6NR08375G. PubMed DOI
Wang Q., Chueh C.-C., Eslamian M., Jen A.K.-Y. Modulation of PEDOT:PSS pH for efficient inverted perovskite solar cells with reduced potential loss and enhanced stability. ACS Appl. Mater. Interfaces. 2016;8:32068–32076. doi: 10.1021/acsami.6b11757. PubMed DOI
Xia Y., Yan G., Lin J. Review on Tailoring PEDOT:PSS Layer for Improved Device Stability of Perovskite Solar Cells. Nanomaterials. 2021;11:3119. doi: 10.3390/nano11113119. PubMed DOI PMC
Cameron J., Skabara P.J. The Damaging Effects of the Acidity in PEDOT:PSS on Semiconductor Device Performance and Solutions Based on Non-Acidic Alternatives. Mater. Horizons. 2020;7:1759–1772. doi: 10.1039/C9MH01978B. DOI
Sun X., Yu X., Li Z. Recent Advances of Dopant-Free Polymer Hole-Transporting Materials for Perovskite Solar Cells. ACS Appl. Energy Mater. 2020;3:10282–10302. doi: 10.1021/acsaem.0c01917. DOI
Guo H., Huang X., Pu B., Yang J., Chen H., Zhou Y., Yang J., Li Y., Wang Z., Niu X. Efficiency Enhancement in Inverted Planar Perovskite Solar Cells by Synergetic Effect of Sulfated Graphene Oxide (SGO) and PEDOT:PSS as Hole Transporting Layer. RSC Adv. 2017;7:50410–50419. doi: 10.1039/C7RA10113A. DOI
Zhang X., Chen X., Li Z., Cheng J., Zhang C., Li J. Interface Modification of Hole Transport Layers in Tin-Based Halide Perovskite Solar Cells. Phys. Chem. Chem. Phys. 2025;27:7215–7224. doi: 10.1039/D5CP00552C. PubMed DOI
Hmaidi G., Derouiche H. PEDOT:PSS as hole-selective layer on hybrid solar cells. Mater. Res. Innov. 2025:1–7. doi: 10.1080/14328917.2025.2525852. DOI
Wang S., Gong X.Y., Li M.X., Li M.H., Hu J.S. Polymers for Perovskite Solar Cells. JACS Au. 2024;4:3400–3412. doi: 10.1021/jacsau.4c00615. PubMed DOI PMC
Sharma V., Arora E.K., Jaison M., Vashist T., Jagtap S., Adhikari A., Kumar P., Kumar Dash K., Patel R. Tuning the Work Function and Properties of the Conducting Polymer PEDOT:PSS for Enhancing Optoelectronic Device Performance of Solar Cells and Organic Light Emitting Diodes. Polym.-Plast. Technol. Mater. 2025;64:1019–1045. doi: 10.1080/25740881.2024.2449006. DOI
Xia Y., Sun K., Ouyang J. Solution-Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices. Adv. Mater. 2012;24:2436–2440. doi: 10.1002/adma.201104795. PubMed DOI
Jeong M.H., Sanger A., Kang S.B., Jung Y.S., Oh I.S., Yoo J.W., Kim G.H., Choi K.J. Increasing the Thermoelectric Power Factor of Solvent-Treated PEDOT:PSS Thin Films on PDMS by Stretching. J. Mater. Chem. A. 2018;6:15621–15629. doi: 10.1039/C8TA03606C. DOI
He H., Chen R., Yue S., Yu S., Wei J., Ouyang J. Salt-Induced Ductilization and Strain-Insensitive Resistance of an Intrinsically Conducting Polymer. Sci. Adv. 2022;8:eabq8160. doi: 10.1126/sciadv.abq8160. PubMed DOI PMC
Palumbiny C.M., Heller C., Schaffer C.J., Körstgens V., Santoro G., Roth S.V., Müller-Buschbaum P. Molecular Reorientation and Structural Changes in Cosolvent-Treated Highly Conductive PEDOT:PSS Electrodes for Flexible Indium Tin Oxide-Free Organic Electronics. J. Phys. Chem. C. 2014;18:13598–13606. doi: 10.1021/jp501540y. DOI
Tai Y.L., Yang Z.G. Flexible, Transparent, Thickness-Controllable SWCNT/PEDOT:PSS Hybrid Films Based on Coffee-Ring Lithography for Functional Noncontact Sensing Device. Langmuir. 2015;31:13257–13264. doi: 10.1021/acs.langmuir.5b03449. PubMed DOI
Li L., Zhang N., Zhang M., Zhang X., Zhang Z. Flexible Ti3C2Tx/PEDOT:PSS Films with Outstanding Volumetric Capacitance for Asymmetric Supercapacitors. Dalton Trans. 2019;48:1747–1756. doi: 10.1039/C8DT04374D. PubMed DOI
Ding D., Lanzetta L., Liang X., Min G., Giza M., Macdonald T.J., Haque S.A. Ultrathin Polymethylmethacrylate Interlayers Boost Performance of Hybrid Tin Halide Perovskite Solar Cells. Chem. Commun. 2021;57:5047–5050. doi: 10.1039/D0CC07418G. PubMed DOI
Shen L., Song P., Jiang K., Zheng L., Qiu J., Li F., Huang Y., Yang J., Tian C., Jen A.K.-Y., et al. Ultrathin polymer membrane for improved hole extraction and ion blocking in perovskite solar cells. Nat. Commun. 2024;15:10908. doi: 10.1038/s41467-024-55329-0. PubMed DOI PMC
Veeramuthu L., Liang F.C., Zhang Z.X., Cho C.J., Ercan E., Chueh C.C., Chen W.C., Borsali R., Kuo C.C. Improving the Performance and Stability of Perovskite Light-Emitting Diodes by a Polymeric Nanothick Interlayer-Assisted Grain Control Process. ACS Omega. 2020;5:8972–8981. doi: 10.1021/acsomega.0c00758. PubMed DOI PMC
Luo H., Lin X., Hou X., Pan L., Huang S., Chen X. Efficient and Air-Stable Planar Perovskite Solar Cells Formed on Graphene-Oxide-Modified PEDOT:PSS Hole Transport Layer. Nano-Micro Lett. 2017;9:39. doi: 10.1007/s40820-017-0140-x. PubMed DOI PMC
Lu D., Li J., Zhang D., Li L., Tong Z., Ji H., Wang J., Chi C., Qu H.-Y. Layer-by-Layer-Assembled Polyaniline/MXene Thin Film and Device for Improved Electrochromic and Energy Storage Capabilities. ACS Appl. Polym. Mater. 2024;6:12492–12502. doi: 10.1021/acsapm.4c01774. PubMed DOI PMC
Cai Y.Z., Fang Y.S., Cao W.Q., He P., Cao M.S. MXene-CNT/PANI Ternary Material with Excellent Supercapacitive Performance Driven by Synergy. J. Alloys Compd. 2021;868:159159. doi: 10.1016/j.jallcom.2021.159159. DOI
Lee Y., Naikwade M., Lee S.-W. Interface Engineering of Styrenic Polymer Grafted Porous Micro-Silicon/Polyaniline Composite for Enhanced Lithium Storage Anode Materials. Polymers. 2024;16:3544. doi: 10.3390/polym16243544. PubMed DOI PMC
Zhang B., Chen C., Huang X., Wang T., Gu C., Joo S.W., Huang J. Polyaniline-Coated Flower-Like Iron Oxide Served as Anode Material for Superior-Performance Lithium-Ion Batteries. J. Electroanal. Chem. 2024;967:118484. doi: 10.1016/j.jelechem.2024.118484. DOI
Wang X., Jiang X., Wang H., Wang Y., Lei C., Dai G., Zhao Y., Xu L.-W., Sheng C., Zhang X. Polyaniline-Induced Prepassivation and Postactivation Strategy to Improve Lithium Ion Storage in Multilayer Silicon-Based Anodes. Energy Fuels. 2025;39:6633. doi: 10.1021/acs.energyfuels.5c00525. DOI
Ling J.K., Cuzzupè D.T., Ud Din M.F., Stepura A., Burgard T., Temitmie Y.A., Majkova E., Omastova M., Jose R., Schmidt-Mende L., et al. MXene-Embedded PEDOT:PSS Hole-Transport Material for Lead-Free Perovskite Solar Cells. ACS Appl. Energy Mater. 2024;7:7152–7158. doi: 10.1021/acsaem.3c02928. PubMed DOI PMC