Novel Cu(II)-based metal-organic framework STAM-1 as a sulfur host for Li-S batteries

. 2024 Apr 22 ; 14 (1) : 9232. [epub] 20240422

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38649384

Grantová podpora
APVV-20-0138 Agentúra na Podporu Výskumu a Vývoja
2022-2193 VVGS VUaVP35 UPJS
2022-2123 VVGS VUaVP35 UPJS
313012BUN5 IPCEI
FEKT-S-23-8286 FEKT
313011W442 RIS3 SK
EF16_027/0008464 OP VVV
1/0104/23 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV

Odkazy

PubMed 38649384
PubMed Central PMC11035644
DOI 10.1038/s41598-024-59600-8
PII: 10.1038/s41598-024-59600-8
Knihovny.cz E-zdroje

Due to the increasing demand for energy storage devices, the development of high-energy density batteries is very necessary. Lithium-sulfur (Li-S) batteries have gained wide interest due to their particularly high-energy density. However, even this type of battery still needs to be improved. Novel Cu(II)-based metal-organic framework STAM-1 was synthesized and applied as a composite cathode material as a sulfur host in the lithium-sulfur battery with the aim of regulating the redox kinetics of sulfur cathodes. Prepared STAM-1 was characterized by infrared spectroscopy at ambient temperature and after in-situ heating, elemental analysis, X-ray photoelectron spectroscopy and textural properties by nitrogen and carbon dioxide adsorption at - 196 and 0 °C, respectively. Results of the SEM showed that crystals of STAM-1 created a flake-like structure, the surface was uniform and porous enough for electrolyte and sulfur infiltration. Subsequently, STAM-1 was used as a sulfur carrier in the cathode construction of a Li-S battery. The charge/discharge measurements of the novel S/STAM-1/Super P/PVDF cathode demonstrated the initial discharge capacity of 452 mAh g-1 at 0.5 C and after 100 cycles of 430 mAh g-1, with Coulombic efficiency of 97% during the whole cycling procedure at 0.5 C. It was confirmed that novel Cu-based STAM-1 flakes could accelerate the conversion of sulfur species in the cathode material.

Zobrazit více v PubMed

Deng D. Li-ion batteries: Basics, progress, and challenges. Energy Sci. Eng. 2015;3(5):385–418. doi: 10.1002/ese3.95. DOI

Fu Y, Manthiram A. Core-shell structured sulfur-polypyrrole composite cathodes for lithium-sulfur batteries. RSC Adv. 2012;2(14):5927–5929. doi: 10.1039/c2ra20393f. DOI

Manthiram A, Fu Y, Su YS. Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 2013;46(5):1125–1134. doi: 10.1021/ar300179v. PubMed DOI

Lopez CV, Maladeniya CP, Smith RC. Lithium–sulfur batteries: Advances and trends. Electrochem. 2020;1(3):226–259. doi: 10.3390/electrochem1030016. DOI

Wang J, He YS, Yang J. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries. Adv. Mater. 2015;27(3):569–575. doi: 10.1002/adma.201402569. PubMed DOI

Abdul-Razzaq A, et al. High-performance lithium sulfur batteries enabled by a synergy between sulfur and carbon nanotubes. Energy Storage Mater. 2019;16(May 2018):194–202. doi: 10.1016/j.ensm.2018.05.006. DOI

Zhang XQ, Liu C, Gao Y, Zhang JM, Wang YQ. Research progress of sulfur/carbon composite cathode materials and the corresponding safe electrolytes for advanced Li–S batteries. Nano. 2020;15(5):1–13. doi: 10.1142/S1793292020300029. DOI

Yuan G, Wang H. Facile synthesis and performance of polypyrrole-coated sulfur nanocomposite as cathode materials for lithium/sulfur batteries. J. Energy Chem. 2014;23(5):657–661. doi: 10.1016/S2095-4956(14)60197-2. DOI

Huang L, et al. Electrode design for lithium–sulfur batteries: Problems and solutions. Adv. Funct. Mater. 2020;30(22):1–30. doi: 10.1002/adfm.201910375. DOI

Gu X, Hencz L, Zhang S. Recent development of carbonaceous materials for lithium–sulphur batteries. Batteries. 2016;2(4):1–35. doi: 10.3390/batteries2040033. DOI

Li Z, Huang Y, Yuan L, Hao Z, Huang Y. Status and prospects in sulfur-carbon composites as cathode materials for rechargeable lithium-sulfur batteries. Carbon N. Y. 2015;92:41–63. doi: 10.1016/j.carbon.2015.03.008. DOI

Choudhury S. Hybrid cathode materials for lithium-sulfur batteries. Curr. Opin. Electrochem. 2020;21:303–310. doi: 10.1016/j.coelec.2020.03.013. DOI

Wang H, et al. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011;11(7):2644–2647. doi: 10.1021/nl200658a. PubMed DOI

Yu M, Yuan W, Li C, Hong JD, Shi G. Performance enhancement of a graphene-sulfur composite as a lithium-sulfur battery electrode by coating with an ultrathin Al2O3 film via atomic layer deposition. J. Mater. Chem. A. 2014;2(20):7360–7366. doi: 10.1039/c4ta00234b. DOI

Zhou W, et al. Amylopectin wrapped graphene oxide/sulfur for improved cyclability of Lithium-Sulfur battery. ACS Nano. 2013;7(10):8801–8808. doi: 10.1021/nn403237b. PubMed DOI

Shastri M, et al. Reduced graphene oxide wrapped sulfur nanocomposite as cathode material for lithium sulfur battery. Ceram. Int. 2021;47(10):14790–14797. doi: 10.1016/j.ceramint.2020.10.215. DOI

Tao Z, Xiao J, Wang H, Zhang F. Novel cathode structure based on spiral carbon nanotubes for lithium–sulfur batteries. J. Electroanal. Chem. 2019;851(September):113477. doi: 10.1016/j.jelechem.2019.113477. DOI

Zhang L, Senthil RA, Pan J, Khan A, Jin X, Sun Y. A novel carbon nanotubes@porous carbon/sulfur composite as efficient electrode material for high-performance lithium-sulfur battery. Ionics (Kiel) 2019;25(10):4761–4773. doi: 10.1007/s11581-019-03049-7. DOI

Phung J, Zhang X, Deng W, Li G. An overview of MOF-based separators for lithium-sulfur batteries. Sustain. Mater. Technol. 2021;31(December):2022. doi: 10.1016/j.susmat.2021.e00374. DOI

Yuan N, Sun W, Yang J, Gong X, Liu R. Multifunctional MOF-based separator materials for advanced lithium–sulfur batteries. Adv. Mater. Interfaces. 2021;8(9):1–25. doi: 10.1002/admi.202001941. DOI

Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science (80-.) 2013;341(6149):1230444. doi: 10.1126/science.1230444. PubMed DOI

Li X, Yang X, Xue H, Pang H, Xu Q. Metal–organic frameworks as a platform for clean energy applications. EnergyChem. 2020;2(2):100027. doi: 10.1016/j.enchem.2020.100027. DOI

Zhou C, Li Z, Xu X, Mai L. Metal-organic frameworks enable broad strategies for lithium-sulfur batteries. Natl. Sci. Rev. 2021 doi: 10.1093/nsr/nwab055. PubMed DOI PMC

Király N, et al. Sr(II) and Ba(II) alkaline earth metal-organic frameworks (AE-MOFs) for selective gas adsorption, energy storage, and environmental application. Nanomaterials. 2023;13(2):234. doi: 10.3390/nano13020234. PubMed DOI PMC

Kuppler RJ, et al. Potential applications of metal-organic frameworks. Coord. Chem. Rev. 2009;253(23–24):3042–3066. doi: 10.1016/j.ccr.2009.05.019. DOI

Zhu QL, Xu Q. Metal-organic framework composites. Chem. Soc. Rev. 2014;43(16):5468–5512. doi: 10.1039/c3cs60472a. PubMed DOI

He T, et al. Zirconium-porphyrin-based metal-organic framework hollow nanotubes for immobilization of noble-metal single atoms. Angew. Chemie. 2018;130(13):3551–3556. doi: 10.1002/ange.201800817. PubMed DOI

Hou CC, Xu Q. Metal–organic frameworks for energy. Adv. Energy Mater. 2019;9(23):1–18. doi: 10.1002/aenm.201801307. DOI

Meng J, et al. Advances in metal-organic framework coatings: Versatile synthesis and broad applications. Chem. Soc. Rev. 2020;49(10):3142–3186. doi: 10.1039/c9cs00806c. PubMed DOI

Chai L, Pan J, Hu Y, Qian J, Hong M. Rational design and growth of MOF-on-MOF heterostructures. Small. 2021;17(36):e2100607. doi: 10.1002/smll.202100607. PubMed DOI

Fonseca J, Gong T. Fabrication of metal-organic framework architectures with macroscopic size: A review. Coord. Chem. Rev. 2022;462:214520. doi: 10.1016/j.ccr.2022.214520. DOI

Liu J, Li Y, Lou Z. Recent advancements in MOF/biomass and Bio-MOF multifunctional materials: A review. Sustainability. 2022;14(10):1–17. doi: 10.3390/su14105768. DOI

Wang D, Li T. Toward MOF@Polymer core-shell particles: Design principles and potential applications. Acc. Chem. Res. 2023;56(4):462–474. doi: 10.1021/acs.accounts.2c00695. PubMed DOI

Zhang M, Shan Y, Kong Q, Pang H. Applications of metal–organic framework–graphene composite materials in electrochemical energy storage. FlatChem. 2022;32(December 2021):100332. doi: 10.1016/j.flatc.2021.100332. DOI

Du Y, et al. Metal-organic frameworks with different dimensionalities: An ideal host platform for enzyme@MOF composites. Coord. Chem. Rev. 2022;454:214327. doi: 10.1016/j.ccr.2021.214327. DOI

Mukherjee D, Van der Bruggen B, Mandal B. Advancements in visible light responsive MOF composites for photocatalytic decontamination of textile wastewater: A review. Chemosphere. 2022;295(February):133835. doi: 10.1016/j.chemosphere.2022.133835. PubMed DOI

Peng Y, et al. Metal-organic framework (MOF) composites as promising materials for energy storage applications. Adv. Colloid Interface Sci. 2022;307(July):102732. doi: 10.1016/j.cis.2022.102732. PubMed DOI

Capková D, et al. Influence of metal-organic framework MOF-76(Gd) activation/carbonization on the cycle performance stability in Li-S battery. J. Energy Storage. 2022;51(March):104419. doi: 10.1016/j.est.2022.104419. DOI

Ke FS, Wu YS, Deng H. Metal-organic frameworks for lithium ion batteries and supercapacitors. J. Solid State Chem. 2015;223:109–121. doi: 10.1016/j.jssc.2014.07.008. DOI

Almáši M, Király N, Zeleňák V, Vilková M, Bourrelly S. Zinc(ii) and cadmium(ii) amorphous metal-organic frameworks (aMOFs): Study of activation process and high-pressure adsorption of greenhouse gases. RSC Adv. 2021;11(33):20137–20150. doi: 10.1039/d1ra02938j. PubMed DOI PMC

Zelenka T, et al. Carbon dioxide and hydrogen adsorption study on surface-modified HKUST-1 with diamine/triamine. Sci. Rep. 2022;12(1):1–11. doi: 10.1038/s41598-022-22273-2. PubMed DOI PMC

Kang D-Y, Suk Lee J. Challenges in developing MOF-based membranes for gas separation. Langmuir. 2023;39(8):2871–2880. doi: 10.1021/acs.langmuir.2c03458. PubMed DOI

Almáši M, et al. Microporous lead-organic framework for selective CO2 adsorption and heterogeneous catalysis. Inorg. Chem. 2018;57(4):1774–1786. doi: 10.1021/acs.inorgchem.7b02491. PubMed DOI

Almáši M, Zeleňák V, Opanasenko MV, Čejka J. Efficient and reusable Pb ( II ) metal-organic framework for knoevenagel condensation. Catal. Lett. 2018;148(8):2263–2273. doi: 10.1007/s10562-018-2471-8. DOI

Sadakiyo M. Support effects of metal-organic frameworks in heterogeneous catalysis. Nanoscale. 2022;14(9):3398–3406. doi: 10.1039/d1nr07659k. PubMed DOI

Mallakpour S, Nikkhoo E, Mustansar C. Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coord. Chem. Rev. 2022;451:214262. doi: 10.1016/j.ccr.2021.214262. DOI

Almáši M. A review on state of art and perspectives of Metal- Organic frameworks (MOFs) in the fight against coronavirus SARS-CoV-2. J. Coord. Chem. 2021;74(13):2111–2127. doi: 10.1080/00958972.2021.1965130. DOI

Garg A, et al. Gd(III) metal-organic framework as an effective humidity sensor and its hydrogen adsorption properties. Chemosphere. 2022;305(June):135467. doi: 10.1016/j.chemosphere.2022.135467. PubMed DOI

Durini S, Ilić N, Ramazanova K, Grell T, Lönnecke P, Hey-Hawkins E. Methanol sensing by a luminescent Zinc(II)-based metal−organic framework. Chempluschem. 2019;84(3):307–313. doi: 10.1002/cplu.201900109. PubMed DOI

Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012;112(2):1105–1125. doi: 10.1021/cr200324t. PubMed DOI

Kazda T, Capková D, Jaššo K, Straková Fedorková A, Shembel E, Markevich A, Sedlaříková M. Carrageenan as an ecological alternative of polyvinylidene difluoride binder for li-s batteries. Materials. 2021;14(19):5578. doi: 10.3390/ma14195578. PubMed DOI PMC

Thorarinsdottir AE, Harris TD. Metal-organic framework magnets. Chem. Rev. 2020;120(16):8716–8789. doi: 10.1021/acs.chemrev.9b00666. PubMed DOI

Capková D, et al. Metal-organic framework MIL-101(Fe)–NH2 as an efficient host for sulphur storage in long-cycle Li–S batteries. Electrochim. Acta. 2020;354:136640. doi: 10.1016/j.electacta.2020.136640. DOI

Zhao X, et al. Protecting group and switchable pore-discriminating adsorption properties of a hydrophilic–hydrophobic metal–organic framework. Nat. Chem. 2011;3(APRIL):304–310. doi: 10.1038/nchem.1003. PubMed DOI

Zfit - File Exchange - MATLAB Central. Accessed: Apr. 27, 2023. [Online]. https://www.mathworks.com/matlabcentral/fileexchange/19460-zfit

Stawowy M, Jagódka P, Matus K, Samojeden B, Silvestre-Albero J, Trawczyński J, Łamacz A. HKUST-1-supported cerium catalysts for CO oxidation. Catalysts. 2020;10(1):108. doi: 10.3390/catal10010108. DOI

Domán A, Nagy B, Nichele LP, Srankó D, Madarász J, László K. Pressure resistance of copper benzene-1,3,5-tricarboxylate – carbon aerogel composites. Appl. Surf. Sci. 2018;434:1300–1310. doi: 10.1016/j.apsusc.2017.11.251. DOI

Almáši M, Zeleňák V, Zeleňáková A, Vargová Z, Císařová I. Characterization and magnetic properties of two novel copper (II) coordination polymers prepared by different synthetic techniques. Inorganic Chem. Commun. 2016;74:66–71. doi: 10.1016/j.inoche.2016.10.027. DOI

Elango M, Deepa M, Subramanian R, Mohamed Musthafa A. Synthesis, characterization, and antibacterial activity of polyindole/Ag–Cuo nanocomposites by reflux condensation method. Polym. Plast. Technol. Eng. 2018;57(14):1440–1451. doi: 10.1080/03602559.2017.1410832. DOI

Zhao L, et al. Significantly stable organic cathode for lithium-ion battery based on nanoconfined poly(anthraquinonyl sulfide)@MOF-derived microporous carbon. Electrochim. Acta. 2020;335:135681. doi: 10.1016/j.electacta.2020.135681. DOI

Szczęśniak B, Choma J, Jaroniec M. Effect of graphene oxide on the adsorption properties of ordered mesoporous carbons toward H2, C6H6, CH4 and CO2. Microporous Mesoporous Mater. 2018;261(August 2017):105–110. doi: 10.1016/j.micromeso.2017.10.054. DOI

Zhang X, Ou-Yang W, Zhu G, Lu T, Pan L. Shuttle-like carbon-coated FeP derived from metal-organic frameworks for lithium-ion batteries with superior rate capability and long-life cycling performance. Carbon N. Y. 2019;143:116–124. doi: 10.1016/j.carbon.2018.11.005. DOI

Zhu Y, Zhang F, Wang D, Pei XF, Zhang W, Jin J. A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency. J. Mater. Chem. A. 2013;1(18):5758–5765. doi: 10.1039/c3ta01598j. DOI

Gelius U, Basilier E, Svensson S, Bergmark T, Siegbahn K. A high resolution ESCA instrument with X-ray monochromator for gases and solids. J. Electron Spectros. Relat. Phenomena. 1973;2(4):405–434. doi: 10.1016/0368-2048(73)80032-5. DOI

Capkova D, Knap V, Fedorkova AS, Stroe DI. Analysis of 3.4 Ah lithium-sulfur pouch cells by electrochemical impedance spectroscopy. J. Energy Chem. 2022;72:318–325. doi: 10.1016/j.jechem.2022.05.026. DOI

Capkova D, Knap V, Fedorkova AS, Stroe DI. Investigation of the temperature and DOD effect on the performance-degradation behavior of lithium–sulfur pouch cells during calendar aging. Appl. Energy. 2023;332(October 2022):120543. doi: 10.1016/j.apenergy.2022.120543. DOI

Király N, et al. Post-synthetically modified metal-porphyrin framework GaTCPP for carbon dioxide adsorption and energy storage in Li-S batteries. RSC Adv. 2022;12(37):23989–24002. doi: 10.1039/d2ra03301a. PubMed DOI PMC

Li C, Li Z, Li Q, Zhang Z, Dong S, Yin L. MOFs derived hierarchically porous TiO2 as effective chemical and physical immobilizer for sulfur species as cathodes for high-performance lithium--sulfur batteries. Electrochim. Acta. 2016;215:689–698. doi: 10.1016/j.electacta.2016.08.044. DOI

Wang Z, et al. A metal-organic framework with open metal sites for enhanced confinement of sulfur and lithium-sulfur battery of long cycling life. Cryst. Growth Des. 2013;13(11):5116–5120. doi: 10.1021/cg401304x. DOI

Wang Z, Dou Z, Cui Y, Yang Y, Wang Z, Qian G. Sulfur encapsulated ZIF-8 as cathode material for lithium-sulfur battery with improved cyclability. Microporous Mesoporous Mater. 2014;185:92–96. doi: 10.1016/j.micromeso.2013.11.011. DOI

Xu G, Ding B, Shen L, Nie P, Han J, Zhang X. Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium-sulfur battery. J. Mater. Chem. A. 2013;1(14):4490–4496. doi: 10.1039/c3ta00004d. DOI

Wang Z, et al. Mixed-metal-organic framework with effective lewis acidic sites for sulfur confinement in high-performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces. 2015;7(37):20999–21004. doi: 10.1021/acsami.5b07024. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...