Novel Cu(II)-based metal-organic framework STAM-1 as a sulfur host for Li-S batteries
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
APVV-20-0138
Agentúra na Podporu Výskumu a Vývoja
2022-2193
VVGS VUaVP35 UPJS
2022-2123
VVGS VUaVP35 UPJS
313012BUN5
IPCEI
FEKT-S-23-8286
FEKT
313011W442
RIS3 SK
EF16_027/0008464
OP VVV
1/0104/23
Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
PubMed
38649384
PubMed Central
PMC11035644
DOI
10.1038/s41598-024-59600-8
PII: 10.1038/s41598-024-59600-8
Knihovny.cz E-zdroje
- Klíčová slova
- Cathode materials, Energy storage, Lithium–sulfur battery, Metal–organic framework,
- Publikační typ
- časopisecké články MeSH
Due to the increasing demand for energy storage devices, the development of high-energy density batteries is very necessary. Lithium-sulfur (Li-S) batteries have gained wide interest due to their particularly high-energy density. However, even this type of battery still needs to be improved. Novel Cu(II)-based metal-organic framework STAM-1 was synthesized and applied as a composite cathode material as a sulfur host in the lithium-sulfur battery with the aim of regulating the redox kinetics of sulfur cathodes. Prepared STAM-1 was characterized by infrared spectroscopy at ambient temperature and after in-situ heating, elemental analysis, X-ray photoelectron spectroscopy and textural properties by nitrogen and carbon dioxide adsorption at - 196 and 0 °C, respectively. Results of the SEM showed that crystals of STAM-1 created a flake-like structure, the surface was uniform and porous enough for electrolyte and sulfur infiltration. Subsequently, STAM-1 was used as a sulfur carrier in the cathode construction of a Li-S battery. The charge/discharge measurements of the novel S/STAM-1/Super P/PVDF cathode demonstrated the initial discharge capacity of 452 mAh g-1 at 0.5 C and after 100 cycles of 430 mAh g-1, with Coulombic efficiency of 97% during the whole cycling procedure at 0.5 C. It was confirmed that novel Cu-based STAM-1 flakes could accelerate the conversion of sulfur species in the cathode material.
Zobrazit více v PubMed
Deng D. Li-ion batteries: Basics, progress, and challenges. Energy Sci. Eng. 2015;3(5):385–418. doi: 10.1002/ese3.95. DOI
Fu Y, Manthiram A. Core-shell structured sulfur-polypyrrole composite cathodes for lithium-sulfur batteries. RSC Adv. 2012;2(14):5927–5929. doi: 10.1039/c2ra20393f. DOI
Manthiram A, Fu Y, Su YS. Challenges and prospects of lithium-sulfur batteries. Acc. Chem. Res. 2013;46(5):1125–1134. doi: 10.1021/ar300179v. PubMed DOI
Lopez CV, Maladeniya CP, Smith RC. Lithium–sulfur batteries: Advances and trends. Electrochem. 2020;1(3):226–259. doi: 10.3390/electrochem1030016. DOI
Wang J, He YS, Yang J. Sulfur-based composite cathode materials for high-energy rechargeable lithium batteries. Adv. Mater. 2015;27(3):569–575. doi: 10.1002/adma.201402569. PubMed DOI
Abdul-Razzaq A, et al. High-performance lithium sulfur batteries enabled by a synergy between sulfur and carbon nanotubes. Energy Storage Mater. 2019;16(May 2018):194–202. doi: 10.1016/j.ensm.2018.05.006. DOI
Zhang XQ, Liu C, Gao Y, Zhang JM, Wang YQ. Research progress of sulfur/carbon composite cathode materials and the corresponding safe electrolytes for advanced Li–S batteries. Nano. 2020;15(5):1–13. doi: 10.1142/S1793292020300029. DOI
Yuan G, Wang H. Facile synthesis and performance of polypyrrole-coated sulfur nanocomposite as cathode materials for lithium/sulfur batteries. J. Energy Chem. 2014;23(5):657–661. doi: 10.1016/S2095-4956(14)60197-2. DOI
Huang L, et al. Electrode design for lithium–sulfur batteries: Problems and solutions. Adv. Funct. Mater. 2020;30(22):1–30. doi: 10.1002/adfm.201910375. DOI
Gu X, Hencz L, Zhang S. Recent development of carbonaceous materials for lithium–sulphur batteries. Batteries. 2016;2(4):1–35. doi: 10.3390/batteries2040033. DOI
Li Z, Huang Y, Yuan L, Hao Z, Huang Y. Status and prospects in sulfur-carbon composites as cathode materials for rechargeable lithium-sulfur batteries. Carbon N. Y. 2015;92:41–63. doi: 10.1016/j.carbon.2015.03.008. DOI
Choudhury S. Hybrid cathode materials for lithium-sulfur batteries. Curr. Opin. Electrochem. 2020;21:303–310. doi: 10.1016/j.coelec.2020.03.013. DOI
Wang H, et al. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett. 2011;11(7):2644–2647. doi: 10.1021/nl200658a. PubMed DOI
Yu M, Yuan W, Li C, Hong JD, Shi G. Performance enhancement of a graphene-sulfur composite as a lithium-sulfur battery electrode by coating with an ultrathin Al2O3 film via atomic layer deposition. J. Mater. Chem. A. 2014;2(20):7360–7366. doi: 10.1039/c4ta00234b. DOI
Zhou W, et al. Amylopectin wrapped graphene oxide/sulfur for improved cyclability of Lithium-Sulfur battery. ACS Nano. 2013;7(10):8801–8808. doi: 10.1021/nn403237b. PubMed DOI
Shastri M, et al. Reduced graphene oxide wrapped sulfur nanocomposite as cathode material for lithium sulfur battery. Ceram. Int. 2021;47(10):14790–14797. doi: 10.1016/j.ceramint.2020.10.215. DOI
Tao Z, Xiao J, Wang H, Zhang F. Novel cathode structure based on spiral carbon nanotubes for lithium–sulfur batteries. J. Electroanal. Chem. 2019;851(September):113477. doi: 10.1016/j.jelechem.2019.113477. DOI
Zhang L, Senthil RA, Pan J, Khan A, Jin X, Sun Y. A novel carbon nanotubes@porous carbon/sulfur composite as efficient electrode material for high-performance lithium-sulfur battery. Ionics (Kiel) 2019;25(10):4761–4773. doi: 10.1007/s11581-019-03049-7. DOI
Phung J, Zhang X, Deng W, Li G. An overview of MOF-based separators for lithium-sulfur batteries. Sustain. Mater. Technol. 2021;31(December):2022. doi: 10.1016/j.susmat.2021.e00374. DOI
Yuan N, Sun W, Yang J, Gong X, Liu R. Multifunctional MOF-based separator materials for advanced lithium–sulfur batteries. Adv. Mater. Interfaces. 2021;8(9):1–25. doi: 10.1002/admi.202001941. DOI
Furukawa H, Cordova KE, O’Keeffe M, Yaghi OM. The chemistry and applications of metal-organic frameworks. Science (80-.) 2013;341(6149):1230444. doi: 10.1126/science.1230444. PubMed DOI
Li X, Yang X, Xue H, Pang H, Xu Q. Metal–organic frameworks as a platform for clean energy applications. EnergyChem. 2020;2(2):100027. doi: 10.1016/j.enchem.2020.100027. DOI
Zhou C, Li Z, Xu X, Mai L. Metal-organic frameworks enable broad strategies for lithium-sulfur batteries. Natl. Sci. Rev. 2021 doi: 10.1093/nsr/nwab055. PubMed DOI PMC
Király N, et al. Sr(II) and Ba(II) alkaline earth metal-organic frameworks (AE-MOFs) for selective gas adsorption, energy storage, and environmental application. Nanomaterials. 2023;13(2):234. doi: 10.3390/nano13020234. PubMed DOI PMC
Kuppler RJ, et al. Potential applications of metal-organic frameworks. Coord. Chem. Rev. 2009;253(23–24):3042–3066. doi: 10.1016/j.ccr.2009.05.019. DOI
Zhu QL, Xu Q. Metal-organic framework composites. Chem. Soc. Rev. 2014;43(16):5468–5512. doi: 10.1039/c3cs60472a. PubMed DOI
He T, et al. Zirconium-porphyrin-based metal-organic framework hollow nanotubes for immobilization of noble-metal single atoms. Angew. Chemie. 2018;130(13):3551–3556. doi: 10.1002/ange.201800817. PubMed DOI
Hou CC, Xu Q. Metal–organic frameworks for energy. Adv. Energy Mater. 2019;9(23):1–18. doi: 10.1002/aenm.201801307. DOI
Meng J, et al. Advances in metal-organic framework coatings: Versatile synthesis and broad applications. Chem. Soc. Rev. 2020;49(10):3142–3186. doi: 10.1039/c9cs00806c. PubMed DOI
Chai L, Pan J, Hu Y, Qian J, Hong M. Rational design and growth of MOF-on-MOF heterostructures. Small. 2021;17(36):e2100607. doi: 10.1002/smll.202100607. PubMed DOI
Fonseca J, Gong T. Fabrication of metal-organic framework architectures with macroscopic size: A review. Coord. Chem. Rev. 2022;462:214520. doi: 10.1016/j.ccr.2022.214520. DOI
Liu J, Li Y, Lou Z. Recent advancements in MOF/biomass and Bio-MOF multifunctional materials: A review. Sustainability. 2022;14(10):1–17. doi: 10.3390/su14105768. DOI
Wang D, Li T. Toward MOF@Polymer core-shell particles: Design principles and potential applications. Acc. Chem. Res. 2023;56(4):462–474. doi: 10.1021/acs.accounts.2c00695. PubMed DOI
Zhang M, Shan Y, Kong Q, Pang H. Applications of metal–organic framework–graphene composite materials in electrochemical energy storage. FlatChem. 2022;32(December 2021):100332. doi: 10.1016/j.flatc.2021.100332. DOI
Du Y, et al. Metal-organic frameworks with different dimensionalities: An ideal host platform for enzyme@MOF composites. Coord. Chem. Rev. 2022;454:214327. doi: 10.1016/j.ccr.2021.214327. DOI
Mukherjee D, Van der Bruggen B, Mandal B. Advancements in visible light responsive MOF composites for photocatalytic decontamination of textile wastewater: A review. Chemosphere. 2022;295(February):133835. doi: 10.1016/j.chemosphere.2022.133835. PubMed DOI
Peng Y, et al. Metal-organic framework (MOF) composites as promising materials for energy storage applications. Adv. Colloid Interface Sci. 2022;307(July):102732. doi: 10.1016/j.cis.2022.102732. PubMed DOI
Capková D, et al. Influence of metal-organic framework MOF-76(Gd) activation/carbonization on the cycle performance stability in Li-S battery. J. Energy Storage. 2022;51(March):104419. doi: 10.1016/j.est.2022.104419. DOI
Ke FS, Wu YS, Deng H. Metal-organic frameworks for lithium ion batteries and supercapacitors. J. Solid State Chem. 2015;223:109–121. doi: 10.1016/j.jssc.2014.07.008. DOI
Almáši M, Király N, Zeleňák V, Vilková M, Bourrelly S. Zinc(ii) and cadmium(ii) amorphous metal-organic frameworks (aMOFs): Study of activation process and high-pressure adsorption of greenhouse gases. RSC Adv. 2021;11(33):20137–20150. doi: 10.1039/d1ra02938j. PubMed DOI PMC
Zelenka T, et al. Carbon dioxide and hydrogen adsorption study on surface-modified HKUST-1 with diamine/triamine. Sci. Rep. 2022;12(1):1–11. doi: 10.1038/s41598-022-22273-2. PubMed DOI PMC
Kang D-Y, Suk Lee J. Challenges in developing MOF-based membranes for gas separation. Langmuir. 2023;39(8):2871–2880. doi: 10.1021/acs.langmuir.2c03458. PubMed DOI
Almáši M, et al. Microporous lead-organic framework for selective CO2 adsorption and heterogeneous catalysis. Inorg. Chem. 2018;57(4):1774–1786. doi: 10.1021/acs.inorgchem.7b02491. PubMed DOI
Almáši M, Zeleňák V, Opanasenko MV, Čejka J. Efficient and reusable Pb ( II ) metal-organic framework for knoevenagel condensation. Catal. Lett. 2018;148(8):2263–2273. doi: 10.1007/s10562-018-2471-8. DOI
Sadakiyo M. Support effects of metal-organic frameworks in heterogeneous catalysis. Nanoscale. 2022;14(9):3398–3406. doi: 10.1039/d1nr07659k. PubMed DOI
Mallakpour S, Nikkhoo E, Mustansar C. Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coord. Chem. Rev. 2022;451:214262. doi: 10.1016/j.ccr.2021.214262. DOI
Almáši M. A review on state of art and perspectives of Metal- Organic frameworks (MOFs) in the fight against coronavirus SARS-CoV-2. J. Coord. Chem. 2021;74(13):2111–2127. doi: 10.1080/00958972.2021.1965130. DOI
Garg A, et al. Gd(III) metal-organic framework as an effective humidity sensor and its hydrogen adsorption properties. Chemosphere. 2022;305(June):135467. doi: 10.1016/j.chemosphere.2022.135467. PubMed DOI
Durini S, Ilić N, Ramazanova K, Grell T, Lönnecke P, Hey-Hawkins E. Methanol sensing by a luminescent Zinc(II)-based metal−organic framework. Chempluschem. 2019;84(3):307–313. doi: 10.1002/cplu.201900109. PubMed DOI
Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012;112(2):1105–1125. doi: 10.1021/cr200324t. PubMed DOI
Kazda T, Capková D, Jaššo K, Straková Fedorková A, Shembel E, Markevich A, Sedlaříková M. Carrageenan as an ecological alternative of polyvinylidene difluoride binder for li-s batteries. Materials. 2021;14(19):5578. doi: 10.3390/ma14195578. PubMed DOI PMC
Thorarinsdottir AE, Harris TD. Metal-organic framework magnets. Chem. Rev. 2020;120(16):8716–8789. doi: 10.1021/acs.chemrev.9b00666. PubMed DOI
Capková D, et al. Metal-organic framework MIL-101(Fe)–NH2 as an efficient host for sulphur storage in long-cycle Li–S batteries. Electrochim. Acta. 2020;354:136640. doi: 10.1016/j.electacta.2020.136640. DOI
Zhao X, et al. Protecting group and switchable pore-discriminating adsorption properties of a hydrophilic–hydrophobic metal–organic framework. Nat. Chem. 2011;3(APRIL):304–310. doi: 10.1038/nchem.1003. PubMed DOI
Zfit - File Exchange - MATLAB Central. Accessed: Apr. 27, 2023. [Online]. https://www.mathworks.com/matlabcentral/fileexchange/19460-zfit
Stawowy M, Jagódka P, Matus K, Samojeden B, Silvestre-Albero J, Trawczyński J, Łamacz A. HKUST-1-supported cerium catalysts for CO oxidation. Catalysts. 2020;10(1):108. doi: 10.3390/catal10010108. DOI
Domán A, Nagy B, Nichele LP, Srankó D, Madarász J, László K. Pressure resistance of copper benzene-1,3,5-tricarboxylate – carbon aerogel composites. Appl. Surf. Sci. 2018;434:1300–1310. doi: 10.1016/j.apsusc.2017.11.251. DOI
Almáši M, Zeleňák V, Zeleňáková A, Vargová Z, Císařová I. Characterization and magnetic properties of two novel copper (II) coordination polymers prepared by different synthetic techniques. Inorganic Chem. Commun. 2016;74:66–71. doi: 10.1016/j.inoche.2016.10.027. DOI
Elango M, Deepa M, Subramanian R, Mohamed Musthafa A. Synthesis, characterization, and antibacterial activity of polyindole/Ag–Cuo nanocomposites by reflux condensation method. Polym. Plast. Technol. Eng. 2018;57(14):1440–1451. doi: 10.1080/03602559.2017.1410832. DOI
Zhao L, et al. Significantly stable organic cathode for lithium-ion battery based on nanoconfined poly(anthraquinonyl sulfide)@MOF-derived microporous carbon. Electrochim. Acta. 2020;335:135681. doi: 10.1016/j.electacta.2020.135681. DOI
Szczęśniak B, Choma J, Jaroniec M. Effect of graphene oxide on the adsorption properties of ordered mesoporous carbons toward H2, C6H6, CH4 and CO2. Microporous Mesoporous Mater. 2018;261(August 2017):105–110. doi: 10.1016/j.micromeso.2017.10.054. DOI
Zhang X, Ou-Yang W, Zhu G, Lu T, Pan L. Shuttle-like carbon-coated FeP derived from metal-organic frameworks for lithium-ion batteries with superior rate capability and long-life cycling performance. Carbon N. Y. 2019;143:116–124. doi: 10.1016/j.carbon.2018.11.005. DOI
Zhu Y, Zhang F, Wang D, Pei XF, Zhang W, Jin J. A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency. J. Mater. Chem. A. 2013;1(18):5758–5765. doi: 10.1039/c3ta01598j. DOI
Gelius U, Basilier E, Svensson S, Bergmark T, Siegbahn K. A high resolution ESCA instrument with X-ray monochromator for gases and solids. J. Electron Spectros. Relat. Phenomena. 1973;2(4):405–434. doi: 10.1016/0368-2048(73)80032-5. DOI
Capkova D, Knap V, Fedorkova AS, Stroe DI. Analysis of 3.4 Ah lithium-sulfur pouch cells by electrochemical impedance spectroscopy. J. Energy Chem. 2022;72:318–325. doi: 10.1016/j.jechem.2022.05.026. DOI
Capkova D, Knap V, Fedorkova AS, Stroe DI. Investigation of the temperature and DOD effect on the performance-degradation behavior of lithium–sulfur pouch cells during calendar aging. Appl. Energy. 2023;332(October 2022):120543. doi: 10.1016/j.apenergy.2022.120543. DOI
Király N, et al. Post-synthetically modified metal-porphyrin framework GaTCPP for carbon dioxide adsorption and energy storage in Li-S batteries. RSC Adv. 2022;12(37):23989–24002. doi: 10.1039/d2ra03301a. PubMed DOI PMC
Li C, Li Z, Li Q, Zhang Z, Dong S, Yin L. MOFs derived hierarchically porous TiO2 as effective chemical and physical immobilizer for sulfur species as cathodes for high-performance lithium--sulfur batteries. Electrochim. Acta. 2016;215:689–698. doi: 10.1016/j.electacta.2016.08.044. DOI
Wang Z, et al. A metal-organic framework with open metal sites for enhanced confinement of sulfur and lithium-sulfur battery of long cycling life. Cryst. Growth Des. 2013;13(11):5116–5120. doi: 10.1021/cg401304x. DOI
Wang Z, Dou Z, Cui Y, Yang Y, Wang Z, Qian G. Sulfur encapsulated ZIF-8 as cathode material for lithium-sulfur battery with improved cyclability. Microporous Mesoporous Mater. 2014;185:92–96. doi: 10.1016/j.micromeso.2013.11.011. DOI
Xu G, Ding B, Shen L, Nie P, Han J, Zhang X. Sulfur embedded in metal organic framework-derived hierarchically porous carbon nanoplates for high performance lithium-sulfur battery. J. Mater. Chem. A. 2013;1(14):4490–4496. doi: 10.1039/c3ta00004d. DOI
Wang Z, et al. Mixed-metal-organic framework with effective lewis acidic sites for sulfur confinement in high-performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces. 2015;7(37):20999–21004. doi: 10.1021/acsami.5b07024. PubMed DOI