Post-synthetically modified metal-porphyrin framework GaTCPP for carbon dioxide adsorption and energy storage in Li-S batteries
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36093251
PubMed Central
PMC9400624
DOI
10.1039/d2ra03301a
PII: d2ra03301a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Lithium-sulphur batteries attract increasing interest due to their high theoretical specific capacity, advantageous economy, and "eco-friendliness". In this study, a metal-organic framework (MOF) GaTCPP containing a porphyrinic base ligand was used as a conductive additive for sulphur. GaTCPP was synthesized, characterized, and post-synthetically modified by the transition metal ions (Co2+/Ni2+). The doping of GaTCPP ensured an increase in the carbon dioxide adsorption capacities, which were measured under different conditions. Post-synthetic modification of GaTCPP with Co2+/Ni2+ ions has been shown to increase carbon dioxide storage capacity from 22.8 wt% for unmodified material to 23.1 wt% and 26.5 wt% at 0 °C and 1 bar for Co2+ and Ni2+-doped analogues, respectively. As a conductive part of cathode material, MOFs displayed successful sulphur capture and encapsulation proven by stable charge/discharge cycle performances, high-capacity retention, and coulombic efficiency. The electrodes with pristine GaTCPP showed a discharge capacity of 699 mA h g-1 at 0.2C in the fiftieth cycle. However, the doping of GaTCPP by Ni2+ has a positive impact on the electrochemical properties, the capacity increased to 778 mA h g-1 in the fiftieth cycle at 0.2C.
Zobrazit více v PubMed
Furukawa H. Ko N. Go Y. B. Aratani N. Choi S. B. Choi E. Yazaydin A. Ö. Snurr R. Q. O'Keeffe M. Kim J. Yaghi O. M. Science. 2010;329:424–428. doi: 10.1126/science.1192160. PubMed DOI
Shet S. P. Shanmuga Priya S. Sudhakar K. Tahir M. Int. J. Hydrogen Energy. 2021;46:11782–11803. doi: 10.1016/j.ijhydene.2021.01.020. DOI
Fakhraei Ghazvini M. Vahedi M. Najafi Nobar S. Sabouri F. J. Environ. Chem. Eng. 2021;9:104790. doi: 10.1016/j.jece.2020.104790. DOI
Almáši M. Király N. Zeleňák V. Vilková M. Bourrelly S. RSC Adv. 2021;11:20137–20150. doi: 10.1039/D1RA02938J. PubMed DOI PMC
Zeleňák V. Saldan I. Nanomaterials. 2021;11:1638. doi: 10.3390/nano11071638. PubMed DOI PMC
Almáši M. Zeleňák V. Gyepes R. Zauška Ľ. Bourrelly S. RSC Adv. 2020;10:32323–32334. doi: 10.1039/D0RA05145D. PubMed DOI PMC
Liu J. Chen L. Cui H. Zhang J. Zhang L. Su C.-Y. Chem. Soc. Rev. 2014;43:6011–6061. doi: 10.1039/C4CS00094C. PubMed DOI
Goetjen T. A. Liu J. Wu Y. Sui J. Zhang X. Hupp J. T. Farha O. K. Chem. Commun. 2020;56:10409–10418. doi: 10.1039/D0CC03790G. PubMed DOI
Almáši M. Zeleňák V. Opanasenko M. V. Čejka J. Catal. Lett. 2018;148:2263–2273. doi: 10.1007/s10562-018-2471-8. DOI
Cao J. Li X. Tian H. Curr. Med. Chem. 2020;27:5949–5969. doi: 10.2174/0929867326666190618152518. PubMed DOI
Wang Y. Yan J. Wen N. Xiong H. Cai S. He Q. Hu Y. Peng D. Liu Z. Liu Y. Biomaterials. 2020;230:119619. doi: 10.1016/j.biomaterials.2019.119619. PubMed DOI
Almáši M. J. Coord. Chem. 2021;74:2111–2127. doi: 10.1080/00958972.2021.1965130. DOI
Enakieva Y. Y. Zhigileva E. A. Fitch A. N. Chernyshev V. V. Stenina I. A. Yaroslavtsev A. B. Sinelshchikova A. A. Kovalenko K. A. Gorbunova Y. G. Tsivadze A. Y. Dalton Trans. 2021;50:6549–6560. doi: 10.1039/D1DT00612F. PubMed DOI
Cao J. Ma W. Lyu K. Zhuang L. Cong H. Deng H. Chem. Sci. 2020;11:3978–3985. doi: 10.1039/C9SC06500H. PubMed DOI PMC
Chen X. Li G. Inorg. Chem. Front. 2020;7:3765–3784. doi: 10.1039/D0QI00883D. DOI
Lee K. Park J. Song I. Yoon S. M. Bull. Korean Chem. Soc. 2021;42:1170–1183. doi: 10.1002/bkcs.12362. DOI
Thorarinsdottir A. E. Harris T. D. Chem. Rev. 2020;120:8716–8789. doi: 10.1021/acs.chemrev.9b00666. PubMed DOI
Király N. Zeleňák V. Zeleňáková A. Berkutova A. Almáši M. Gyepes R. Čižmár E. Acta Phys. Pol., A. 2020;137:770–772. doi: 10.12693/APhysPolA.137.770. DOI
Király N. Zeleňák V. Lenártová N. Zeleňáková A. Čižmár E. Almáši M. Meynen V. Hovan A. Gyepes R. ACS Omega. 2021;6:24637–24649. doi: 10.1021/acsomega.1c03327. PubMed DOI PMC
Gao W.-Y. Chrzanowski M. Ma S. Chem. Soc. Rev. 2014;43:5841–5866. doi: 10.1039/C4CS00001C. PubMed DOI
Huh S. Kim S.-J. Kim Y. CrystEngComm. 2016;18:345–368. doi: 10.1039/C5CE02106E. DOI
Das M. C. Xiang S. Zhang Z. Chen B. Angew. Chem., Int. Ed. 2011;50:10510–10520. doi: 10.1002/anie.201101534. PubMed DOI
Evans J. D. Sumby C. J. Doonan C. J. Chem. Soc. Rev. 2014;43:5933–5951. doi: 10.1039/C4CS00076E. PubMed DOI
Deria P. Mondloch J. E. Karagiaridi O. Bury W. Hupp J. T. Farha O. K. Chem. Soc. Rev. 2014;43:5896–5912. doi: 10.1039/C4CS00067F. PubMed DOI
Wang X. S. Chrzanowski M. Wojtas L. Chen Y. S. Ma S. Chem.–Eur. J. 2013;19:3297–3301. doi: 10.1002/chem.201204358. PubMed DOI
Brozek C. K. Dincă M. Chem. Soc. Rev. 2014;43:5456–5467. doi: 10.1039/C4CS00002A. PubMed DOI
Botas J. A. Calleja G. Sánchez-Sánchez M. Orcajo M. G. Langmuir. 2010;26:5300–5303. doi: 10.1021/la100423a. PubMed DOI
Yue H. Shi Z. Wang Q. Cao Z. Dong H. Qiao Y. Yin Y. Yang S. ACS Appl. Mater. Interfaces. 2014;6:17067–17074. doi: 10.1021/am5046873. PubMed DOI
Almáši M., in Current development in MOFs for hydrogen storage: a mechanistic investigation in metal-organic framework-based nanomaterials for energy conversion and storage, Elsevier, 2022, pp. 1–31
Ghanbari T. Abnisa F. Wan Daud W. M. Sci. Total Environ. 2020;707:135090. doi: 10.1016/j.scitotenv.2019.135090. PubMed DOI
Wang S. Liang Y. Dai T. Liu Y. Sui Z. Tian X. Chen Q. J. Colloid Interface Sci. 2021;591:264–272. doi: 10.1016/j.jcis.2021.02.010. PubMed DOI
Huang L. Li J. Liu B. Li Y. Shen S. Deng S. Lu C. Zhang W. Xia Y. Pan G. Wang X. Xiong Q. Xia X. Tu J. Adv. Funct. Mater. 2020;30:1910375. doi: 10.1002/adfm.201910375. DOI
Hu Y. Chen W. Lei T. Jiao Y. Huang J. Hu A. Gong C. Yan C. Wang X. Xiong J. Adv. Energy Mater. 2020;10:2000082. doi: 10.1002/aenm.202000082. DOI
Zheng Y. Zheng S. Xue H. Pang H. J. Mater. Chem. A. 2019;7:3469–3491. doi: 10.1039/C8TA11075A. DOI
Knap V. Vestergaard L. K. Stroe D.-I. Energies. 2020;13:4097. doi: 10.3390/en13164097. DOI
Knap V. Stroe D.-I. J. Power Sources. 2021;498:229913. doi: 10.1016/j.jpowsour.2021.229913. DOI
Chladil L. Kunický D. Kazda T. Vanýsek P. Čech O. Bača P. Journal of Energy Storage. 2021;41:102907. doi: 10.1016/j.est.2021.102907. DOI
Chladil L. Kunický D. Vanýsek P. Čech O. ECS Trans. 2018;87:107–114. doi: 10.1149/08701.0107ecst. DOI
Ma C. Zheng Z. Jia X. Liu X. Wang J. Qiao W. Ling L. J. Power Sources. 2021;486:229358. doi: 10.1016/j.jpowsour.2020.229358. DOI
Wang Z. Y. Wang L. Liu S. Li G. R. Gao X. P. Adv. Funct. Mater. 2019;29:1901051. doi: 10.1002/adfm.201901051. DOI
Kazda T. Krbal M. Pouzar M. Vondrák J. Straková A. F. Slávik M. Wagner T. Macak J. M. J. Power Sources. 2016;331:293–298. doi: 10.1016/j.jpowsour.2016.09.050. DOI
Kazda T. Capková D. Jaššo K. Fedorková Straková A. Shembel E. Markevich A. Sedlaříková M. Materials. 2021;14:5578. doi: 10.3390/ma14195578. PubMed DOI PMC
Capkova D. Kazda T. Čudek P. Strakova Fedorkova A. ECS Trans. 2020;99:161–167. doi: 10.1149/09901.0161ecst. DOI
Aguilera-Sigalat J. Bradshaw D. Coord. Chem. Rev. 2016;307:267–291. doi: 10.1016/j.ccr.2015.08.004. DOI
Vellingiri K. Deep A. Kim K.-H. ACS Appl. Mater. Interfaces. 2016;8:29835–29857. doi: 10.1021/acsami.6b10482. PubMed DOI
Jana M. Xu R. Cheng X.-B. Yeon J. S. Park J. M. Huang J.-Q. Zhang Q. Park H. S. Energy Environ. Sci. 2020;13:1049–1075. doi: 10.1039/C9EE02049G. DOI
Hu Y. Chen W. Lei T. Jiao Y. Huang J. Hu A. Gong C. Yan C. Wang X. Xiong J. Adv. Energy Mater. 2020;10:2000082. doi: 10.1002/aenm.202000082. DOI
Dörfler S. Althues H. Härtel P. Abendroth T. Schumm B. Kaskel S. Joule. 2020;4:539–554. doi: 10.1016/j.joule.2020.02.006. DOI
Wang Z. Wang Z. Yang L. Wang H. Song Y. Han L. Yang K. Hu J. Chen H. Pan F. Nano Energy. 2018;49:580–587. doi: 10.1016/j.nanoen.2018.04.076. DOI
Ji X. Lee K. T. Nazar L. F. Nat. Mater. 2009;8:500–506. doi: 10.1038/nmat2460. PubMed DOI
Kazda T. Čudek P. Vondrák J. Sedlaříková M. Tichý J. Slávik M. Fafilek G. Čech O. J. Solid State Electrochem. 2017;22:537–546. doi: 10.1007/s10008-017-3791-0. DOI
Bai S. Liu X. Zhu K. Wu S. Zhou H. Nat. Energy. 2016;1:16094. doi: 10.1038/nenergy.2016.94. DOI
Su Y.-S. Manthiram A. Nat. Commun. 2012;3:1166. doi: 10.1038/ncomms2163. PubMed DOI
Xie X.-C. Huang K.-J. Wu X. J. Mater. Chem. A. 2018;6:6754–6771. doi: 10.1039/C8TA00612A. DOI
Zheng Y. Zheng S. Xue H. Pang H. J. Mater. Chem. A. 2019;7:3469–3491. doi: 10.1039/C8TA11075A. DOI
Rana M. Luo B. Kaiser M. R. Gentle I. Knibbe R. J. Energy Chem. 2020;42:195–209. doi: 10.1016/j.jechem.2019.06.015. DOI
Du Z. Chen X. Hu W. Chuang C. Xie S. Hu A. Yan W. Kong X. Wu X. Ji H. Wan L.-J. J. Am. Chem. Soc. 2019;141:3977–3985. doi: 10.1021/jacs.8b12973. PubMed DOI
Capková D. Kazda T. Straková Fedorková A. Čudek P. Oriňaková R. ECS Trans. 2019;95:19–26. doi: 10.1149/09501.0019ecst. DOI
Xiao Z. Yang Z. Wang L. Nie H. Zhong M. Lai Q. Xu X. Zhang L. Huang S. Adv. Mater. 2015;27:2891–2898. doi: 10.1002/adma.201405637. PubMed DOI
Seh Z. W. Yu J. H. Li W. Hsu P.-C. Wang H. Sun Y. Yao H. Zhang Q. Cui Y. Nat. Commun. 2014;5:5017. doi: 10.1038/ncomms6017. PubMed DOI
Dong W. Wang D. Li X. Yao Y. Zhao X. Wang Z. Wang H.-E. Li Y. Chen L. Qian D. Su B.-L. J. Energy Chem. 2020;48:259–266. doi: 10.1016/j.jechem.2020.01.022. DOI
Zhao X. Pachfule P. Thomas A. Chem. Soc. Rev. 2021;50:6871–6913. doi: 10.1039/D0CS01569E. PubMed DOI
Capková D. Almáši M. Kazda T. Čech O. Király N. Čudek P. Fedorková A. S. Hornebecq V. Electrochim. Acta. 2020;354:136640. doi: 10.1016/j.electacta.2020.136640. DOI
Chen G. Li Y. Zhong W. Zheng F. Hu J. Ji X. Liu W. Yang C. Lin Z. Liu M. Energy Storage Mater. 2020;25:547–554. doi: 10.1016/j.ensm.2019.09.028. DOI
Wang Z. Wang B. Yang Y. Cui Y. Wang Z. Chen B. Qian G. ACS Appl. Mater. Interfaces. 2015;7:20999–21004. doi: 10.1021/acsami.5b07024. PubMed DOI
Xie X.-C. Huang K.-J. Wu X. J. Mater. Chem. A. 2018;6:6754–6771. doi: 10.1039/C8TA00612A. DOI
Skoda D. Kazda T. Munster L. Hanulikova B. Styskalik A. Eloy P. Debecker D. P. Vyroubal P. Simonikova L. Kuritka I. J. Mater. Sci. 2019;54:14102–14122. doi: 10.1007/s10853-019-03871-4. DOI
Capková D. Kazda T. Čech O. Király N. Zelenka T. Čudek P. Sharma A. Hornebecq V. Straková Fedorková A. Almáši M. Journal of Energy Storage. 2022;51:104419. doi: 10.1016/j.est.2022.104419. DOI
Capkova D. Kazda T. Almasi M. Cech O. Jasso K. Macak M. Macko J. Čudek P. Straková Fedorková A. Proc. Int. Astronaut. Congr. 2021;C3:177587.
Niu J. Kushima A. Li M. Wang Z. Li W. Wang C. Li J. J. Mater. Chem. A. 2014;2:19788–19796. doi: 10.1039/C4TA04759A. DOI
Zhou J. Li R. Fan X. Chen Y. Han R. Li W. Zheng J. Wang B. Li X. Energy Environ. Sci. 2014;7:2715. doi: 10.1039/C4EE01382D. DOI
Wang Z. Wang B. Yang Y. Cui Y. Wang Z. Chen B. Qian G. ACS Appl. Mater. Interfaces. 2015;7:20999–21004. doi: 10.1021/acsami.5b07024. PubMed DOI
Benítez A. Amaro-Gahete J. Esquivel D. Romero-Salguero F. J. Morales J. Caballero Á. Nanomaterials. 2020;10:424. doi: 10.3390/nano10030424. PubMed DOI PMC
Rhauderwiek T. Waitschat S. Wuttke S. Reinsch H. Bein T. Stock N. Inorg. Chem. 2016;55:5312–5319. doi: 10.1021/acs.inorgchem.6b00221. PubMed DOI
Fateeva A. Chater P. A. Ireland C. P. Tahir A. A. Khimyak Y. Z. Wiper P. V. Darwent J. R. Rosseinsky M. J. Angew. Chem., Int. Ed. 2012;51:7440–7444. doi: 10.1002/anie.201202471. PubMed DOI
Barthelet K. Riou D. Nogues M. Férey G. Inorg. Chem. 2003;42:1739–1743. doi: 10.1021/ic026175m. PubMed DOI
Thommes M. Kaneko K. Neimark A. V. Olivier J. P. Rodriguez-Reinoso F. Rouquerol J. Sing K. S. W. Pure Appl. Chem. 2015;87:1051–1069. doi: 10.1515/pac-2014-1117. DOI
Ghanbari T. Abnisa F. Wan Daud W. M. Sci. Total Environ. 2020;707:135090. doi: 10.1016/j.scitotenv.2019.135090. PubMed DOI
Dhawa T. Chattopadhyay S. De G. Mahanty S. ACS Omega. 2017;2:6481–6491. doi: 10.1021/acsomega.7b01156. PubMed DOI PMC
Xi K. Cao S. Peng X. Ducati C. Vasant Kumar R. Cheetham A. K. Chem. Commun. 2013;49:2192. doi: 10.1039/C3CC38009B. PubMed DOI
Chen X. Zhang M. Zhu J. Wang J. Jiao Z. Li Y. J. Alloys Compd. 2022;901:163649. doi: 10.1016/j.jallcom.2022.163649. DOI
Bao W. Zhang Z. Zhou C. Lai Y. Li J. J. Power Sources. 2014;248:570–576. doi: 10.1016/j.jpowsour.2013.09.132. DOI
Irving H. Williams R. J. P. J. Chem. Soc. 1953:3192–3210. doi: 10.1039/JR9530003192. DOI
Capkova D. Knap V. Strakova Fedorkova A. Stroe D.-I. J. Energy Chem. 2022;72:318–325. doi: 10.1016/j.jechem.2022.05.026. DOI
Ge X. Li C. Li Z. Yin L. Electrochim. Acta. 2018;281:700–709. doi: 10.1016/j.electacta.2018.06.010. DOI