Post-synthetically modified metal-porphyrin framework GaTCPP for carbon dioxide adsorption and energy storage in Li-S batteries

. 2022 Aug 22 ; 12 (37) : 23989-24002. [epub] 20220824

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36093251

Lithium-sulphur batteries attract increasing interest due to their high theoretical specific capacity, advantageous economy, and "eco-friendliness". In this study, a metal-organic framework (MOF) GaTCPP containing a porphyrinic base ligand was used as a conductive additive for sulphur. GaTCPP was synthesized, characterized, and post-synthetically modified by the transition metal ions (Co2+/Ni2+). The doping of GaTCPP ensured an increase in the carbon dioxide adsorption capacities, which were measured under different conditions. Post-synthetic modification of GaTCPP with Co2+/Ni2+ ions has been shown to increase carbon dioxide storage capacity from 22.8 wt% for unmodified material to 23.1 wt% and 26.5 wt% at 0 °C and 1 bar for Co2+ and Ni2+-doped analogues, respectively. As a conductive part of cathode material, MOFs displayed successful sulphur capture and encapsulation proven by stable charge/discharge cycle performances, high-capacity retention, and coulombic efficiency. The electrodes with pristine GaTCPP showed a discharge capacity of 699 mA h g-1 at 0.2C in the fiftieth cycle. However, the doping of GaTCPP by Ni2+ has a positive impact on the electrochemical properties, the capacity increased to 778 mA h g-1 in the fiftieth cycle at 0.2C.

Zobrazit více v PubMed

Furukawa H. Ko N. Go Y. B. Aratani N. Choi S. B. Choi E. Yazaydin A. Ö. Snurr R. Q. O'Keeffe M. Kim J. Yaghi O. M. Science. 2010;329:424–428. doi: 10.1126/science.1192160. PubMed DOI

Shet S. P. Shanmuga Priya S. Sudhakar K. Tahir M. Int. J. Hydrogen Energy. 2021;46:11782–11803. doi: 10.1016/j.ijhydene.2021.01.020. DOI

Fakhraei Ghazvini M. Vahedi M. Najafi Nobar S. Sabouri F. J. Environ. Chem. Eng. 2021;9:104790. doi: 10.1016/j.jece.2020.104790. DOI

Almáši M. Király N. Zeleňák V. Vilková M. Bourrelly S. RSC Adv. 2021;11:20137–20150. doi: 10.1039/D1RA02938J. PubMed DOI PMC

Zeleňák V. Saldan I. Nanomaterials. 2021;11:1638. doi: 10.3390/nano11071638. PubMed DOI PMC

Almáši M. Zeleňák V. Gyepes R. Zauška Ľ. Bourrelly S. RSC Adv. 2020;10:32323–32334. doi: 10.1039/D0RA05145D. PubMed DOI PMC

Liu J. Chen L. Cui H. Zhang J. Zhang L. Su C.-Y. Chem. Soc. Rev. 2014;43:6011–6061. doi: 10.1039/C4CS00094C. PubMed DOI

Goetjen T. A. Liu J. Wu Y. Sui J. Zhang X. Hupp J. T. Farha O. K. Chem. Commun. 2020;56:10409–10418. doi: 10.1039/D0CC03790G. PubMed DOI

Almáši M. Zeleňák V. Opanasenko M. V. Čejka J. Catal. Lett. 2018;148:2263–2273. doi: 10.1007/s10562-018-2471-8. DOI

Cao J. Li X. Tian H. Curr. Med. Chem. 2020;27:5949–5969. doi: 10.2174/0929867326666190618152518. PubMed DOI

Wang Y. Yan J. Wen N. Xiong H. Cai S. He Q. Hu Y. Peng D. Liu Z. Liu Y. Biomaterials. 2020;230:119619. doi: 10.1016/j.biomaterials.2019.119619. PubMed DOI

Almáši M. J. Coord. Chem. 2021;74:2111–2127. doi: 10.1080/00958972.2021.1965130. DOI

Enakieva Y. Y. Zhigileva E. A. Fitch A. N. Chernyshev V. V. Stenina I. A. Yaroslavtsev A. B. Sinelshchikova A. A. Kovalenko K. A. Gorbunova Y. G. Tsivadze A. Y. Dalton Trans. 2021;50:6549–6560. doi: 10.1039/D1DT00612F. PubMed DOI

Cao J. Ma W. Lyu K. Zhuang L. Cong H. Deng H. Chem. Sci. 2020;11:3978–3985. doi: 10.1039/C9SC06500H. PubMed DOI PMC

Chen X. Li G. Inorg. Chem. Front. 2020;7:3765–3784. doi: 10.1039/D0QI00883D. DOI

Lee K. Park J. Song I. Yoon S. M. Bull. Korean Chem. Soc. 2021;42:1170–1183. doi: 10.1002/bkcs.12362. DOI

Thorarinsdottir A. E. Harris T. D. Chem. Rev. 2020;120:8716–8789. doi: 10.1021/acs.chemrev.9b00666. PubMed DOI

Király N. Zeleňák V. Zeleňáková A. Berkutova A. Almáši M. Gyepes R. Čižmár E. Acta Phys. Pol., A. 2020;137:770–772. doi: 10.12693/APhysPolA.137.770. DOI

Király N. Zeleňák V. Lenártová N. Zeleňáková A. Čižmár E. Almáši M. Meynen V. Hovan A. Gyepes R. ACS Omega. 2021;6:24637–24649. doi: 10.1021/acsomega.1c03327. PubMed DOI PMC

Gao W.-Y. Chrzanowski M. Ma S. Chem. Soc. Rev. 2014;43:5841–5866. doi: 10.1039/C4CS00001C. PubMed DOI

Huh S. Kim S.-J. Kim Y. CrystEngComm. 2016;18:345–368. doi: 10.1039/C5CE02106E. DOI

Das M. C. Xiang S. Zhang Z. Chen B. Angew. Chem., Int. Ed. 2011;50:10510–10520. doi: 10.1002/anie.201101534. PubMed DOI

Evans J. D. Sumby C. J. Doonan C. J. Chem. Soc. Rev. 2014;43:5933–5951. doi: 10.1039/C4CS00076E. PubMed DOI

Deria P. Mondloch J. E. Karagiaridi O. Bury W. Hupp J. T. Farha O. K. Chem. Soc. Rev. 2014;43:5896–5912. doi: 10.1039/C4CS00067F. PubMed DOI

Wang X. S. Chrzanowski M. Wojtas L. Chen Y. S. Ma S. Chem.–Eur. J. 2013;19:3297–3301. doi: 10.1002/chem.201204358. PubMed DOI

Brozek C. K. Dincă M. Chem. Soc. Rev. 2014;43:5456–5467. doi: 10.1039/C4CS00002A. PubMed DOI

Botas J. A. Calleja G. Sánchez-Sánchez M. Orcajo M. G. Langmuir. 2010;26:5300–5303. doi: 10.1021/la100423a. PubMed DOI

Yue H. Shi Z. Wang Q. Cao Z. Dong H. Qiao Y. Yin Y. Yang S. ACS Appl. Mater. Interfaces. 2014;6:17067–17074. doi: 10.1021/am5046873. PubMed DOI

Almáši M., in Current development in MOFs for hydrogen storage: a mechanistic investigation in metal-organic framework-based nanomaterials for energy conversion and storage, Elsevier, 2022, pp. 1–31

Ghanbari T. Abnisa F. Wan Daud W. M. Sci. Total Environ. 2020;707:135090. doi: 10.1016/j.scitotenv.2019.135090. PubMed DOI

Wang S. Liang Y. Dai T. Liu Y. Sui Z. Tian X. Chen Q. J. Colloid Interface Sci. 2021;591:264–272. doi: 10.1016/j.jcis.2021.02.010. PubMed DOI

Huang L. Li J. Liu B. Li Y. Shen S. Deng S. Lu C. Zhang W. Xia Y. Pan G. Wang X. Xiong Q. Xia X. Tu J. Adv. Funct. Mater. 2020;30:1910375. doi: 10.1002/adfm.201910375. DOI

Hu Y. Chen W. Lei T. Jiao Y. Huang J. Hu A. Gong C. Yan C. Wang X. Xiong J. Adv. Energy Mater. 2020;10:2000082. doi: 10.1002/aenm.202000082. DOI

Zheng Y. Zheng S. Xue H. Pang H. J. Mater. Chem. A. 2019;7:3469–3491. doi: 10.1039/C8TA11075A. DOI

Knap V. Vestergaard L. K. Stroe D.-I. Energies. 2020;13:4097. doi: 10.3390/en13164097. DOI

Knap V. Stroe D.-I. J. Power Sources. 2021;498:229913. doi: 10.1016/j.jpowsour.2021.229913. DOI

Chladil L. Kunický D. Kazda T. Vanýsek P. Čech O. Bača P. Journal of Energy Storage. 2021;41:102907. doi: 10.1016/j.est.2021.102907. DOI

Chladil L. Kunický D. Vanýsek P. Čech O. ECS Trans. 2018;87:107–114. doi: 10.1149/08701.0107ecst. DOI

Ma C. Zheng Z. Jia X. Liu X. Wang J. Qiao W. Ling L. J. Power Sources. 2021;486:229358. doi: 10.1016/j.jpowsour.2020.229358. DOI

Wang Z. Y. Wang L. Liu S. Li G. R. Gao X. P. Adv. Funct. Mater. 2019;29:1901051. doi: 10.1002/adfm.201901051. DOI

Kazda T. Krbal M. Pouzar M. Vondrák J. Straková A. F. Slávik M. Wagner T. Macak J. M. J. Power Sources. 2016;331:293–298. doi: 10.1016/j.jpowsour.2016.09.050. DOI

Kazda T. Capková D. Jaššo K. Fedorková Straková A. Shembel E. Markevich A. Sedlaříková M. Materials. 2021;14:5578. doi: 10.3390/ma14195578. PubMed DOI PMC

Capkova D. Kazda T. Čudek P. Strakova Fedorkova A. ECS Trans. 2020;99:161–167. doi: 10.1149/09901.0161ecst. DOI

Aguilera-Sigalat J. Bradshaw D. Coord. Chem. Rev. 2016;307:267–291. doi: 10.1016/j.ccr.2015.08.004. DOI

Vellingiri K. Deep A. Kim K.-H. ACS Appl. Mater. Interfaces. 2016;8:29835–29857. doi: 10.1021/acsami.6b10482. PubMed DOI

Jana M. Xu R. Cheng X.-B. Yeon J. S. Park J. M. Huang J.-Q. Zhang Q. Park H. S. Energy Environ. Sci. 2020;13:1049–1075. doi: 10.1039/C9EE02049G. DOI

Hu Y. Chen W. Lei T. Jiao Y. Huang J. Hu A. Gong C. Yan C. Wang X. Xiong J. Adv. Energy Mater. 2020;10:2000082. doi: 10.1002/aenm.202000082. DOI

Dörfler S. Althues H. Härtel P. Abendroth T. Schumm B. Kaskel S. Joule. 2020;4:539–554. doi: 10.1016/j.joule.2020.02.006. DOI

Wang Z. Wang Z. Yang L. Wang H. Song Y. Han L. Yang K. Hu J. Chen H. Pan F. Nano Energy. 2018;49:580–587. doi: 10.1016/j.nanoen.2018.04.076. DOI

Ji X. Lee K. T. Nazar L. F. Nat. Mater. 2009;8:500–506. doi: 10.1038/nmat2460. PubMed DOI

Kazda T. Čudek P. Vondrák J. Sedlaříková M. Tichý J. Slávik M. Fafilek G. Čech O. J. Solid State Electrochem. 2017;22:537–546. doi: 10.1007/s10008-017-3791-0. DOI

Bai S. Liu X. Zhu K. Wu S. Zhou H. Nat. Energy. 2016;1:16094. doi: 10.1038/nenergy.2016.94. DOI

Su Y.-S. Manthiram A. Nat. Commun. 2012;3:1166. doi: 10.1038/ncomms2163. PubMed DOI

Xie X.-C. Huang K.-J. Wu X. J. Mater. Chem. A. 2018;6:6754–6771. doi: 10.1039/C8TA00612A. DOI

Zheng Y. Zheng S. Xue H. Pang H. J. Mater. Chem. A. 2019;7:3469–3491. doi: 10.1039/C8TA11075A. DOI

Rana M. Luo B. Kaiser M. R. Gentle I. Knibbe R. J. Energy Chem. 2020;42:195–209. doi: 10.1016/j.jechem.2019.06.015. DOI

Du Z. Chen X. Hu W. Chuang C. Xie S. Hu A. Yan W. Kong X. Wu X. Ji H. Wan L.-J. J. Am. Chem. Soc. 2019;141:3977–3985. doi: 10.1021/jacs.8b12973. PubMed DOI

Capková D. Kazda T. Straková Fedorková A. Čudek P. Oriňaková R. ECS Trans. 2019;95:19–26. doi: 10.1149/09501.0019ecst. DOI

Xiao Z. Yang Z. Wang L. Nie H. Zhong M. Lai Q. Xu X. Zhang L. Huang S. Adv. Mater. 2015;27:2891–2898. doi: 10.1002/adma.201405637. PubMed DOI

Seh Z. W. Yu J. H. Li W. Hsu P.-C. Wang H. Sun Y. Yao H. Zhang Q. Cui Y. Nat. Commun. 2014;5:5017. doi: 10.1038/ncomms6017. PubMed DOI

Dong W. Wang D. Li X. Yao Y. Zhao X. Wang Z. Wang H.-E. Li Y. Chen L. Qian D. Su B.-L. J. Energy Chem. 2020;48:259–266. doi: 10.1016/j.jechem.2020.01.022. DOI

Zhao X. Pachfule P. Thomas A. Chem. Soc. Rev. 2021;50:6871–6913. doi: 10.1039/D0CS01569E. PubMed DOI

Capková D. Almáši M. Kazda T. Čech O. Király N. Čudek P. Fedorková A. S. Hornebecq V. Electrochim. Acta. 2020;354:136640. doi: 10.1016/j.electacta.2020.136640. DOI

Chen G. Li Y. Zhong W. Zheng F. Hu J. Ji X. Liu W. Yang C. Lin Z. Liu M. Energy Storage Mater. 2020;25:547–554. doi: 10.1016/j.ensm.2019.09.028. DOI

Wang Z. Wang B. Yang Y. Cui Y. Wang Z. Chen B. Qian G. ACS Appl. Mater. Interfaces. 2015;7:20999–21004. doi: 10.1021/acsami.5b07024. PubMed DOI

Xie X.-C. Huang K.-J. Wu X. J. Mater. Chem. A. 2018;6:6754–6771. doi: 10.1039/C8TA00612A. DOI

Skoda D. Kazda T. Munster L. Hanulikova B. Styskalik A. Eloy P. Debecker D. P. Vyroubal P. Simonikova L. Kuritka I. J. Mater. Sci. 2019;54:14102–14122. doi: 10.1007/s10853-019-03871-4. DOI

Capková D. Kazda T. Čech O. Király N. Zelenka T. Čudek P. Sharma A. Hornebecq V. Straková Fedorková A. Almáši M. Journal of Energy Storage. 2022;51:104419. doi: 10.1016/j.est.2022.104419. DOI

Capkova D. Kazda T. Almasi M. Cech O. Jasso K. Macak M. Macko J. Čudek P. Straková Fedorková A. Proc. Int. Astronaut. Congr. 2021;C3:177587.

Niu J. Kushima A. Li M. Wang Z. Li W. Wang C. Li J. J. Mater. Chem. A. 2014;2:19788–19796. doi: 10.1039/C4TA04759A. DOI

Zhou J. Li R. Fan X. Chen Y. Han R. Li W. Zheng J. Wang B. Li X. Energy Environ. Sci. 2014;7:2715. doi: 10.1039/C4EE01382D. DOI

Wang Z. Wang B. Yang Y. Cui Y. Wang Z. Chen B. Qian G. ACS Appl. Mater. Interfaces. 2015;7:20999–21004. doi: 10.1021/acsami.5b07024. PubMed DOI

Benítez A. Amaro-Gahete J. Esquivel D. Romero-Salguero F. J. Morales J. Caballero Á. Nanomaterials. 2020;10:424. doi: 10.3390/nano10030424. PubMed DOI PMC

Rhauderwiek T. Waitschat S. Wuttke S. Reinsch H. Bein T. Stock N. Inorg. Chem. 2016;55:5312–5319. doi: 10.1021/acs.inorgchem.6b00221. PubMed DOI

Fateeva A. Chater P. A. Ireland C. P. Tahir A. A. Khimyak Y. Z. Wiper P. V. Darwent J. R. Rosseinsky M. J. Angew. Chem., Int. Ed. 2012;51:7440–7444. doi: 10.1002/anie.201202471. PubMed DOI

Barthelet K. Riou D. Nogues M. Férey G. Inorg. Chem. 2003;42:1739–1743. doi: 10.1021/ic026175m. PubMed DOI

Thommes M. Kaneko K. Neimark A. V. Olivier J. P. Rodriguez-Reinoso F. Rouquerol J. Sing K. S. W. Pure Appl. Chem. 2015;87:1051–1069. doi: 10.1515/pac-2014-1117. DOI

Ghanbari T. Abnisa F. Wan Daud W. M. Sci. Total Environ. 2020;707:135090. doi: 10.1016/j.scitotenv.2019.135090. PubMed DOI

Dhawa T. Chattopadhyay S. De G. Mahanty S. ACS Omega. 2017;2:6481–6491. doi: 10.1021/acsomega.7b01156. PubMed DOI PMC

Xi K. Cao S. Peng X. Ducati C. Vasant Kumar R. Cheetham A. K. Chem. Commun. 2013;49:2192. doi: 10.1039/C3CC38009B. PubMed DOI

Chen X. Zhang M. Zhu J. Wang J. Jiao Z. Li Y. J. Alloys Compd. 2022;901:163649. doi: 10.1016/j.jallcom.2022.163649. DOI

Bao W. Zhang Z. Zhou C. Lai Y. Li J. J. Power Sources. 2014;248:570–576. doi: 10.1016/j.jpowsour.2013.09.132. DOI

Irving H. Williams R. J. P. J. Chem. Soc. 1953:3192–3210. doi: 10.1039/JR9530003192. DOI

Capkova D. Knap V. Strakova Fedorkova A. Stroe D.-I. J. Energy Chem. 2022;72:318–325. doi: 10.1016/j.jechem.2022.05.026. DOI

Ge X. Li C. Li Z. Yin L. Electrochim. Acta. 2018;281:700–709. doi: 10.1016/j.electacta.2018.06.010. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Novel Cu(II)-based metal-organic framework STAM-1 as a sulfur host for Li-S batteries

. 2024 Apr 22 ; 14 (1) : 9232. [epub] 20240422

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...