Polymer-Tethered Quenched Fluorescent Probes for Enhanced Imaging of Tumor-Associated Proteases

. 2024 Jul 26 ; 9 (7) : 3720-3729. [epub] 20240628

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, Research Support, U.S. Gov't, Non-P.H.S., práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38941307

Grantová podpora
R01 EB028628 NIBIB NIH HHS - United States
T32 GM141819 NIGMS NIH HHS - United States

Fluorescence-based contrast agents enable real-time detection of solid tumors and their neovasculature, making them ideal for use in image-guided surgery. Several agents have entered late-stage clinical trials or secured FDA approval, suggesting they are likely to become the standard of care in cancer surgeries. One of the key parameters to optimize in contrast agents is molecular size, which dictates much of the pharmacokinetic and pharmacodynamic properties of the agent. Here, we describe the development of a class of protease-activated quenched fluorescent probes in which a N-(2-hydroxypropyl)methacrylamide copolymer is used as the primary scaffold. This copolymer core provides a high degree of probe modularity to generate structures that cannot be achieved with small molecules and peptide probes. We used a previously validated cathepsin substrate and evaluated the effects of length and type of linker, as well as the positioning of the fluorophore/quencher pair on the polymer core. We found that the polymeric probes could be optimized to achieve increased overall signal and tumor-to-background ratios compared to the reference small molecule probe. Our results also revealed multiple structure-activity relationship trends that can be used to design and optimize future optical imaging probes. Furthermore, they confirm that a hydrophilic polymer is an ideal scaffold for use in optical imaging contrast probes, allowing a highly modular design that enables efficient optimization to maximize probe accumulation and overall biodistribution properties.

Před aktualizací

PubMed

Zobrazit více v PubMed

Barth C. W.; Gibbs S.. Fluorescence Image-Guided Surgery: A Perspective on Contrast Agent Development. Molecular-Guided Surgery: Molecules, Devices, and Applications VI; Proceedings of SPIE 11222, 2020; Vol. 11222, p 18. PubMed PMC

Garland M.; Yim J. J.; Bogyo M. A Bright Future for Precision Medicine: Advances in Fluorescent Chemical Probe Design and Their Clinical Application. Cell Chem. Biol. 2016, 23 (1), 122–136. 10.1016/j.chembiol.2015.12.003. PubMed DOI PMC

Seah D.; Cheng Z.; Vendrell M. Fluorescent Probes for Imaging in Humans: Where Are We Now?. ACS Nano 2023, 17, 19478–19490. 10.1021/acsnano.3c03564. PubMed DOI PMC

Olson M. T.; Ly Q. P.; Mohs A. M. Fluorescence Guidance in Surgical Oncology: Challenges, Opportunities, and Translation. Mol. Imaging Biol. 2019, 21 (2), 200–218. 10.1007/s11307-018-1239-2. PubMed DOI PMC

Hong G.; Antaris A. L.; Dai H. Near-Infrared Fluorophores for Biomedical Imaging. Nat. Biomed. Eng. 2017, 1 (1), 0010.10.1038/s41551-016-0010. DOI

Peltrini R.; Podda M.; Castiglioni S.; Di Nuzzo M. M.; D’Ambra M.; Lionetti R.; Sodo M.; Luglio G.; Mucilli F.; Di Saverio S.; Bracale U.; Corcione F. Intraoperative Use of Indocyanine Green Fluorescence Imaging in Rectal Cancer Surgery: The State of the Art. World J. Gastroenterol. 2021, 27 (38), 6374–6386. 10.3748/wjg.v27.i38.6374. PubMed DOI PMC

Seitkazina A.; Yang J.-K.; Kim S. Clinical Effectiveness and Prospects of Methylene Blue: A Systematic Review. Precis. Future Med. 2022, 6 (4), 193–208. 10.23838/pfm.2022.00079. DOI

Hoogstins C. E. S.; Tummers Q. R. J. G.; Gaarenstroom K. N.; de Kroon C. D.; Trimbos J. B. M. Z.; Bosse T.; Smit V. T. H. B. M.; Vuyk J.; van de Velde C. J. H.; Cohen A. F.; Low P. S.; Burggraaf J.; Vahrmeijer A. L. A Novel Tumor-Specific Agent for Intraoperative Near-Infrared Fluorescence Imaging: A Translational Study in Healthy Volunteers and Patients with Ovarian Cancer. Clin. Cancer Res. 2016, 22 (12), 2929–2938. 10.1158/1078-0432.CCR-15-2640. PubMed DOI

Tanyi J. L.; Randall L. M.; Chambers S. K.; Butler K. A.; Winer I. S.; Langstraat C. L.; Han E. S.; Vahrmeijer A. L.; Chon H. S.; Morgan M. A.; Powell M. A.; Tseng J. H.; Lopez A. S.; Wenham R. M. A Phase III Study of Pafolacianine Injection (OTL38) for Intraoperative Imaging of Folate Receptor-Positive Ovarian Cancer (Study 006). J. Clin. Oncol. 2023, 41 (2), 276–284. 10.1200/JCO.22.00291. PubMed DOI

Investigation of Novel Surgical Imaging for Tumor Excision (INSITE), NCT03686215, 2023. https://clinicaltrials.gov/study/NCT03686215 (accessed March 29, 2024).

Phase 2 Study of VGT-309 in Lung Cancer, NCT05400226, 2023. https://classic.clinicaltrials.gov/ct2/show/NCT05400226 (accessed March 29, 2024).

Whitley M. J.; Cardona D. M.; Lazarides A. L.; Spasojevic I.; Ferrer J. M.; Cahill J.; Lee C. L.; Snuderl M.; Blazer D. G.; Hwang E. S.; Greenup R. A.; Mosca P. J.; Mito J. K.; Cuneo K. C.; Larrier N. A.; O’Reilly E. K.; Riedel R. F.; Eward W. C.; Strasfeld D. B.; Fukumura D.; Jain R. K.; Lee W. D.; Griffith L. G.; Bawendi M. G.; Kirsch D. G.; Brigman B. E. A Mouse-Human Phase 1 Co-Clinical Trial of a Protease-Activated Fluorescent Probe for Imaging Cancer. Sci. Transl. Med. 2016, 8 (320), 320ra4.10.1126/scitranslmed.aad0293. PubMed DOI PMC

Kennedy G. T.; Holt D. E.; Azari F. S.; Bernstein E.; Nadeem B.; Chang A.; Sullivan N. T.; Segil A.; Desphande C.; Bensen E.; Santini J. T.; Kucharczuk J. C.; Delikatny E. J.; Bogyo M.; Egan A. M.; Bradley C. W.; Eruslanov E.; Lickliter J. D.; Wright G.; Singhal S. A Cathepsin-Targeted Quenched Activity-Based Probe Facilitates Enhanced Detection of Human Tumors during Resection. Clin. Cancer Res. 2022, 28 (17), 3729–3741. 10.1158/1078-0432.CCR-22-1215. PubMed DOI PMC

Maeda H. Macromolecular Therapeutics in Cancer Treatment: The EPR Effect and Beyond. J. Controlled Release 2012, 164 (2), 138–144. 10.1016/j.jconrel.2012.04.038. PubMed DOI

Fang J.; Nakamura H.; Maeda H. The EPR Effect: Unique Features of Tumor Blood Vessels for Drug Delivery, Factors Involved, and Limitations and Augmentation of the Effect. Adv. Drug Deliv. Rev. 2011, 63 (3), 136–151. 10.1016/j.addr.2010.04.009. PubMed DOI

Weissleder R.; Tung C.-H.; Mahmood U.; Bogdanov A. In Vivo Imaging of Tumors with Protease-Activated near-Infrared Fluorescent Probes. Nat. Biotechnol. 1999, 17 (4), 375–378. 10.1038/7933. PubMed DOI

Šácha P.; Knedlík T.; Schimer J.; Tykvart J.; Parolek J.; Navrátil V.; Dvořáková P.; Sedlák F.; Ulbrich K.; Strohalm J.; Majer P.; Šubr V.; Konvalinka J. IBodies: Modular Synthetic Antibody Mimetics Based on Hydrophilic Polymers Decorated with Functional Moieties. Angew. Chem., Int. Ed. 2016, 55 (7), 2356–2360. 10.1002/anie.201508642. PubMed DOI PMC

Pospíšilová K.; Knedlík T.; Šácha P.; Kostka L.; Schimer J.; Brynda J.; Král V.; Cígler P.; Navrátil V.; Etrych T.; Šubr V.; Kugler M.; Fábry M.; Řezáčová P.; Konvalinka J. Inhibitor-Polymer Conjugates as a Versatile Tool for Detection and Visualization of Cancer-Associated Carbonic Anhydrase Isoforms. ACS Omega 2019, 4 (4), 6746–6756. 10.1021/acsomega.9b00596. DOI

Blažková K.; Beranová J.; Hradilek M.; Kostka L.; Šubr V.; Etrych T.; Šácha P.; Konvalinka J. The Development of a High-Affinity Conformation-Sensitive Antibody Mimetic Using a Biocompatible Copolymer Carrier (iBody). J. Biol. Chem. 2021, 297 (5), 101342.10.1016/j.jbc.2021.101342. PubMed DOI PMC

Šimon P.; Knedlík T.; Blažková K.; Dvořáková P.; Březinová A.; Kostka L.; Šubr V.; Konvalinka J.; Šácha P. Identification of Protein Targets of Bioactive Small Molecules Using Randomly Photomodified Probes. ACS Chem. Biol. 2018, 13 (12), 3333–3342. 10.1021/acschembio.8b00791. PubMed DOI

Dvořáková P.; Bušek P.; Knedlík T.; Schimer J.; Etrych T.; Kostka L.; Stollinová Šromová L.; Šubr V.; Šácha P.; Šedo A.; Konvalinka J. Inhibitor-Decorated Polymer Conjugates Targeting Fibroblast Activation Protein. J. Med. Chem. 2017, 60 (20), 8385–8393. 10.1021/acs.jmedchem.7b00767. PubMed DOI

Šubr V.; Ormsby T.; Šácha P.; Konvalinka J.; Etrych T.; Kostka L. The Role of the Biotin Linker in Polymer Antibody Mimetics, iBodies, in Biochemical Assays. Polym. Chem. 2021, 12 (41), 6009–6021. 10.1039/D1PY00707F. DOI

Beranová J.; Knedlík T.; Šimková A.; Šubr V.; Kostka L.; Etrych T.; Šácha P.; Konvalinka J. Tris-(Nitrilotriacetic Acid)-Decorated Polymer Conjugates as Tools for Immobilization and Visualization of His-Tagged Proteins. Catalysts 2019, 9 (12), 1011.10.3390/catal9121011. DOI

Ofori L. O.; Withana N. P.; Prestwood T. R.; Verdoes M.; Brady J. J.; Winslow M. M.; Sorger J.; Bogyo M. Design of Protease Activated Optical Contrast Agents That Exploit a Latent Lysosomotropic Effect for Use in Fluorescence-Guided Surgery. ACS Chem. Biol. 2015, 10 (9), 1977–1988. 10.1021/acschembio.5b00205. PubMed DOI PMC

Verdoes M.; Oresic Bender K.; Segal E.; van der Linden W. A.; Syed S.; Withana N. P.; Sanman L. E.; Bogyo M. Improved Quenched Fluorescent Probe for Imaging of Cysteine Cathepsin Activity. J. Am. Chem. Soc. 2013, 135 (39), 14726–14730. 10.1021/ja4056068. PubMed DOI PMC

Poreba M.; Groborz K.; Vizovisek M.; Maruggi M.; Turk D.; Turk B.; Powis G.; Drag M.; Salvesen G. S. Fluorescent Probes towards Selective Cathepsin B Detection and Visualization in Cancer Cells and Patient Samples. Chem. Sci. 2019, 10 (36), 8461–8477. 10.1039/C9SC00997C. PubMed DOI PMC

Tholen M.; Yim J. J.; Groborz K.; Yoo E.; Martin B. A.; van den Berg N. S.; Drag M.; Bogyo M. Design of Optical Imaging Probes by Screening of Diverse Substrate Libraries Directly in Disease Tissue Extracts. Angew. Chem., Int. Ed. 2020, 59 (43), 19143–19152. 10.1002/anie.202006719. PubMed DOI PMC

Yim J. J.; Tholen M.; Klaassen A.; Sorger J.; Bogyo M. Optimization of a Protease Activated Probe for Optical Surgical Navigation. Mol. Pharmaceutics 2018, 15 (3), 750–758. 10.1021/acs.molpharmaceut.7b00822. PubMed DOI

Yim J. J.; Harmsen S.; Flisikowski K.; Flisikowska T.; Namkoong H.; Garland M.; van den Berg N. S.; Vilches-Moure J. G.; Schnieke A.; Saur D.; Glasl S.; Gorpas D.; Habtezion A.; Ntziachristos V.; Contag C. H.; Gambhir S. S.; Bogyo M.; Rogalla S. A Protease-Activated, Near-Infrared Fluorescent Probe for Early Endoscopic Detection of Premalignant Gastrointestinal Lesions. Proc. Natl. Acad. Sci. U.S.A. 2021, 118 (1), e200807211810.1073/pnas.2008072118. PubMed DOI PMC

Roy J.; Hettiarachchi S. U.; Kaake M.; Mukkamala R.; Low P. S. Design and Validation of Fibroblast Activation Protein Alpha Targeted Imaging and Therapeutic Agents. Theranostics 2020, 10 (13), 5778–5789. 10.7150/thno.41409. PubMed DOI PMC

Foss C. A.; Mease R. C.; Cho S. Y.; Kim H. J.; Pomper M. G. GCPII Imaging and Cancer. Curr. Med. Chem. 2012, 19 (9), 1346–1359. 10.2174/092986712799462612. PubMed DOI PMC

Widen J. C.; Tholen M.; Yim J. J.; Antaris A.; Casey K. M.; Rogalla S.; Klaassen A.; Sorger J.; Bogyo M. AND-Gate Contrast Agents for Enhanced Fluorescence-Guided Surgery. Nat. Biomed. Eng. 2021, 5 (3), 264–277. 10.1038/s41551-020-00616-6. PubMed DOI PMC

Faucher F. F.; Liu K. J.; Cosco E. D.; Widen J. C.; Sorger J.; Guerra M.; Bogyo M. Protease Activated Probes for Real-Time Ratiometric Imaging of Solid Tumors. ACS Cent. Sci. 2023, 9 (5), 1059–1069. 10.1021/acscentsci.3c00261. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...