Polymer-tethered quenched fluorescent probes for enhanced imaging of tumor associated proteases

. 2024 May 09 ; () : . [epub] 20240509

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu preprinty, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38766164

Grantová podpora
R01 EB028628 NIBIB NIH HHS - United States

Fluorescence-based contrast agents enable real-time detection of solid tumors and their neovasculature, making them ideal for use in image-guided surgery. Several agents have entered late-stage clinical trials or secured FDA approval, suggesting they are likely to become standard of care in cancer surgeries. One of the key parameters to optimize in contrast agent is molecular size, which dictates much of the pharmacokinetic and pharmacodynamic properties of the agent. Here, we describe the development of a class of protease-activated quenched fluorescent probes in which a N-(2-hydroxypropyl)methacrylamide copolymer is used as the primary scaffold. This copolymer core provides a high degree of probe modularity to generate structures that cannot be achieved with small molecules and peptide probes. We used a previously validated cathepsin substrate and evaluated the effects of length and type of linker as well as positioning of the fluorophore/quencher pair on the polymer core. We found that the polymeric probes could be optimized to achieve increased over-all signal and tumor-to-background ratios compared to the reference small molecule probe. Our results also revealed multiple structure-activity relationship trends that can be used to design and optimize future optical imaging probes. Furthermore, they confirm that a hydrophilic polymer is an ideal scaffold for use in optical imaging contrast probes, allowing a highly modular design that enables efficient optimization to maximize probe accumulation and overall biodistribution properties.

Aktualizováno

PubMed

Zobrazit více v PubMed

Barth C. W.; Gibbs S. Fluorescence Image-Guided Surgery: A Perspective on Contrast Agent Development. In Molecular-Guided Surgery: Molecules, Devices, and Applica-ions VI; Proc. SPIE; 11222, 2020, p18. PubMed PMC

Garland M.; Yim J. J.; Bogyo M. A Bright Future for Precision Medicine: Advances in Fluorescent Chemical Probe Design and Their Clinical Application. Cell. Chem. Biol. 2016, 23 (1), 122–136. PubMed PMC

Seah D.; Cheng Z.; Vendrell M. Fluorescent Probes for Imaging in Humans: Where Are We Now? ACS Nano 2023, 17, 19478–19490. PubMed PMC

Olson M. T.; Ly Q. P.; Mohs A. M. Fluorescence Guidance in Surgical Oncology: Challenges, Opportunities, and Translation. Mol. Imaging Biol. 2018, 21 (2), 200–218. PubMed PMC

Hong G.; Antaris A. L.; Dai H. Near-Infrared Fluor-ophores for Biomedical Imaging. Nat. Biomed. Eng. 2017. 1:1 2017, 1 (1), 1–22.

Peltrini R.; Podda M.; Castiglioni S.; Di Nuzzo M. M.; D’Ambra M.; Lionetti R.; Sodo M.; Luglio G.; Mucilli F.; Di Saverio S.; Bracale U.; Corcione F. Intraoperative Use of Indocyanine Green Fluorescence Imaging in Rectal Cancer Surgery: The State of the Art. World J. Gastroenterol. 2021, 27 (38), 6374. PubMed PMC

Seitkazina A.; Yang J.-K.; Kim S. Clinical Effectiveness and Prospects of Methylene Blue: A Systematic Re-view. Precis. Future Med. 2022, 6 (4), 193–208.

Hoogstins C. E. S.; Tummers Q. R. J. G.; Gaarenstroom K. N.; de Kroon C. D.; Trimbos J. B. M. Z.; Bosse T.; Smit V. T. H. B. M.; Vuyk J.; van de Velde C. J. H.; Cohen A. F.; Low P. S.; Burggraaf J.; Vahrmeijer A. L. A Novel Tumor-Specific Agent for Intraoperative Near-Infrared Fluorescence Imaging: A Translational Study in Healthy Volunteers and Patients with Ovarian Cancer. Clin. Cancer Res. 2016, 22 (12), 2929–2938. PubMed

Tanyi J. L.; Randall L. M.; Chambers S. K.; Butler K. A.; Winer I. S.; Langstraat C. L.; Han E. S.; Vahrmeijer A. L.; Chon H. S.; Morgan M. A.; Powell M. A.; Tseng J. H.; Lopez A. S.; Wenham R. M. A Phase III Study of Pafolacianine Injection (OTL38) for Intraoperative Imaging of Folate Receptor-Positive Ovarian Cancer (Study 006). J. Clin. Oncol. 2023, 41 (2), 276–284. PubMed

Investigation of Novel Surgical Imaging for Tumor Excision (INSITE), NCT03686215, 2023. https://clinicaltrials.gov/study/NCT03686215 (accessed 2024-03-29).

Phase 2 Study of VGT-309 in Lung Cancer, NCT05400226, 2023. https://classic.clinicaltrials.gov/ct2/show/NCT05400226 (accessed 2024-03-29).

Whitley M. J.; Cardona D. M.; Lazarides A. L.; Spasojevic I.; Ferrer J. M.; Cahill J.; Lee C. L.; Snuderl M.; Blazer D. G.; Hwang E. S.; Greenup R. A.; Mosca P. J.; Mito J. K.; Cuneo K. C.; Larrier N. A.; O’Reilly E. K.; Riedel R. F.; Eward W. C.; Strasfeld D. B.; Fukumura D.; Jain R. K.; Lee W. D.; Griffith L. G.; Bawendi M. G.; Kirsch D. G.; Brigman B. E. A Mouse-Human Phase 1 Co-Clinical Trial of a Protease-Activated Fluorescent Probe for Imaging Cancer. Sci. Transl. Med. 2016, 8 (320), 320ra4. PubMed PMC

Kennedy G. T.; Holt D. E.; Azari F. S.; Bernstein E.; Nadeem B.; Chang A.; Sullivan N. T.; Segil A.; Desphande C.; Bensen E.; Santini J. T.; Kucharczuk J. C.; Delikatny E. J.; Bogyo M.; Egan A. J. M.; Bradley C. W.; Eruslanov E.; Lickliter J. D.; Wright G.; Singhal S. A Cathepsin-Targeted Quenched Activity-Based Probe Facilitates Enhanced Detection of Human Tumors during Resection. Clin. Cancer Res. 2022, 28 (17), 3729–3741. PubMed PMC

Maeda H. Macromolecular Therapeutics in Cancer Treatment: The EPR Effect and Beyond. J. Control. Release 2012, 164 (2), 138–144. PubMed

Fang J.; Nakamura H.; Maeda H. The EPR Effect: Unique Features of Tumor Blood Vessels for Drug Delivery, Factors Involved, and Limitations and Augmentation of the Effect. Adv. Drug Deliv. Rev. 2011, 63 (3), 136–151. PubMed

Weissleder R.; Tung C.-H.; Mahmood U.; Bogdanov A. In Vivo Imaging of Tumors with Protease-Activated near-Infrared Fluorescent Probes. Nat. Biotechnol. 1999, 17 (4), 375–378. PubMed

Šácha P.; Knedlík T.; Schimer J.; Tykvart J.; Pa-rolek J.; Navrátil V.; Dvořáková P.; Sedlák F.; Ulbrich K.; Strohalm J.; Majer P.; Šubr V.; Konvalinka J. IBodies: Modular Synthetic Antibody Mimetics Based on Hydrophilic Pol-ymers Decorated with Functional Moieties. Angew. Chem. Int. Ed. 2016, 55 (7), 2356–2360. PubMed PMC

Pospíšilová K.; Knedlík T.; Šácha P.; Kostka L.; Schimer J.; Brynda J.; Král V.; Cígler P.; Navrátil V.; Etrych T.; Šubr V.; Kugler M.; Fábry M.; Řezáčová P.; Konvalinka J. Inhibitor–Polymer Conjugates as a Versatile Tool for Detection and Visualization of Cancer-Associated Carbonic Anhydrase Isoforms. ACS Omega 2019, 4 (4), 6746–6756.

Blažková K.; Beranová J.; Hradilek M.; Kostka L.; Šubr V.; Etrych T.; Šácha P.; Konvalinka J. The Development of a High-Affinity Conformation-Sensitive Antibody Mimetic Using a Biocompatible Copolymer Carrier (IBody). J. Biol. Chem. 2021, 297 (5), 101342. PubMed PMC

Šimon P.; Knedlík T.; Blažková K.; Dvořáková P.; Březinová A.; Kostka L.; Šubr V.; Konvalinka J.; Šácha P. Identification of Protein Targets of Bioactive Small Molecules Using Randomly Photomodified Probes. ACS Chem. Biol. 2018, 13 (12), 3333–3342. PubMed

Dvořáková P.; Bušek P.; Knedlík T.; Schimer J.; Etrych T.; Kostka L.; Stollinová Šromová L.; Šubr V.; Šácha P.; Šedo A.; Konvalinka J. Inhibitor-Decorated Polymer Conjugates Targeting Fibroblast Activation Protein. J. Med. Chem. 2017, 60 (20), 8385–8393. PubMed

Šubr V.; Ormsby T.; Šácha P.; Konvalinka J.; Etrych T.; Kostka L. The Role of the Biotin Linker in Poly-mer Antibody Mimetics, IBodies, in Biochemical Assays. Polym. Chem. 2021, 12 (41), 6009–6021.

Beranová J.; Knedlík T.; Šimková A.; Šubr V.; Kostka L.; Etrych T.; Šácha P.; Konvalinka J. Tris-(Nitrilotriacetic Acid)-Decorated Polymer Conjugates as Tools for Immobilization and Visualization of His-Tagged Proteins. Catalysts 2019, 9 (12), 1011.

Ofori L. O.; Withana N. P.; Prestwood T. R.; Verdoes M.; Brady J. J.; Winslow M. M.; Sorger J.; Bogyo M. Design of Protease Activated Optical Contrast Agents That Exploit a Latent Lysosomotropic Effect for Use in Fluorescence-Guided Surgery. ACS Chem. Biol. 2015, 10 (9), 1977–1988. PubMed PMC

Verdoes M.; Oresic Bender K.; Segal E.; van der Linden W. A.; Syed S.; Withana N. P.; Sanman L. E.; Bogyo M. Improved Quenched Fluorescent Probe for Imaging of Cysteine Cathepsin Activity. J. Am. Chem. Soc. 2013, 135 (39), 14726–14730. PubMed PMC

Poreba M.; Groborz K.; Vizovisek M.; Maruggi M.; Turk D.; Turk B.; Powis G.; Drag M.; Salvesen G. S. Fluorescent Probes towards Selective Cathepsin B Detection and Visualization in Cancer Cells and Patient Samples. Chem. Sci. 2019, 10 (36), 8461–8477. PubMed PMC

Tholen M.; Yim J. J.; Groborz K.; Yoo E.; Martin B. A.; van den Berg N. S.; Drag M.; Bogyo M. Design of Optical Imaging Probes by Screening of Diverse Substrate Libraries Directly in Disease Tissue Extracts. Angew. Chem. Int. Ed. Engl. 2020, 59 (43), 19143–19152. PubMed PMC

Yim J. J.; Tholen M.; Klaassen A.; Sorger J.; Bogyo M. Optimization of a Protease Activated Probe for Optical Surgical Navigation. Mol. Pharm. 2018, 15 (3), 750–758. PubMed

Yim J. J.; Harmsen S.; Flisikowski K.; Flisikow-ska T.; Namkoong H.; Garland M.; van den Berg N. S.; Vilches-Moure J. G.; Schnieke A.; Saur D.; Glasl S.; Gorpas D.; Habtezion A.; Ntziachristos V.; Contag C. H.; Gambhir S. S.; Bogyo M.; Rogalla S. A Protease-Activated, near-Infrared Fluorescent Probe for Early Endoscopic Detection of Premalignant Gastrointestinal Lesions. Proc. Natl. Acad. Sci. U.S.A. 2021, 118 (1), e2008072118. PubMed PMC

Roy J.; Hettiarachchi S. U.; Kaake M.; Mukkamala R.; Low P. S. Design and Validation of Fibroblast Activation Protein Alpha Targeted Imaging and Therapeutic Agents. Theranostics 2020, 10 (13), 5778–5789. PubMed PMC

A. Foss C.; C. Mease R.; Y. Cho S.; J. Kim H.; G. Pomper M. GCPII Imaging and Cancer. Curr. Med. Chem. 2012, 19 (9), 1346–1359. PubMed PMC

Widen J. C.; Tholen M.; Yim J. J.; Antaris A.; Casey K. M.; Rogalla S.; Klaassen A.; Sorger J.; Bogyo M. AND-Gate Contrast Agents for Enhanced Fluorescence-Guided Surgery. Nat. Biomed. Eng. 2020, 5 (3), 264–277. PubMed PMC

Faucher F. F.; Liu K. J.; Cosco E. D.; Widen J. C.; Sorger J.; Guerra M.; Bogyo M. Protease Activated Probes for Real-Time Ratiometric Imaging of Solid Tumors. ACS Cent. Sci. 2023, 9 (5), 1059–1069. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...