A series of four novel alkaline earth metal-organic frameworks constructed of Ca(ii), Sr(ii), Ba(ii) ions and tetrahedral MTB linker: structural diversity, stability study and low/high-pressure gas adsorption properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35516486
PubMed Central
PMC9056647
DOI
10.1039/d0ra05145d
PII: d0ra05145d
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
A series of four novel microporous alkaline earth metal-organic frameworks (AE-MOFs) containing methanetetrabenzoate linker (MTB) with composition {[Ca4(μ8-MTB)2]·2DMF·4H2O} n (UPJS-6), {[Ca4(μ4-O)(μ8-MTB)3/2(H2O)4]·4DMF·4H2O} n (UPJS-7), {[Sr3(μ7-MTB)3/2]·4DMF·7H2O} n (UPJS-8) and {[Ba3(μ7-MTB)3/2(H2O)6]·2DMF·4H2O} n (UPJS-9) (UPJS = University of Pavol Jozef Safarik) have been successfully prepared and characterized. The framework stability and thermal robustness of prepared materials were investigated using thermogravimetric analysis (TGA) and high-energy powder X-ray diffraction (HE-PXRD). MOFs were tested as adsorbents for different gases at various pressures and temperatures. Nitrogen and argon adsorption showed that the activated samples have moderate BET surface areas: 103 m2 g-1 (N2)/126 m2 g-1 (Ar) for UPJS-7'', 320 m2 g-1 (N2)/358 m2 g-1 (Ar) for UPJS-9'' and UPJS-8'' adsorbs only a limited amount of N2 and Ar. It should be noted that all prepared compounds adsorb carbon dioxide with storage capacities ranging from 3.9 to 2.4 wt% at 20 °C and 1 atm, and 16.4-13.5 wt% at 30 °C and 20 bar. Methane adsorption isotherms show no adsorption at low pressures and with increasing pressure the storage capacity increases to 4.0-2.9 wt% of CH4 at 30 °C and 20 bar. Compounds displayed the highest hydrogen uptake of 3.7-1.8 wt% at -196 °C and 800 Torr among MTB containing MOFs.
Zobrazit více v PubMed
Kökçam-Demir Ü. Goldman A. Esrafili L. Gharib M. Morsali A. Weingart O. Janiak C. Chem. Soc. Rev. 2020;49:2751–2798. doi: 10.1039/C9CS00609E. PubMed DOI
Singh G. Lee J. Karakoti A. Bahadur R. Yi J. Zhao D. AlBahily K. Vinu A. Chem. Soc. Rev. 2020;49:4360–4404. doi: 10.1039/C9CS00609E. PubMed DOI
Ding M. Flaig R. W. Jiang H. L. Yaghi O. M. Chem. Soc. Rev. 2019;48:2783–2828. doi: 10.1039/C9CS00609E. PubMed DOI
Evans A. Cummings M. Decarolis D. Gianolio D. Shahid S. Law G. Attfield M. Law D. Petit C. RSC Adv. 2020;10:5152–5162. doi: 10.1039/C9CS00609E. PubMed DOI PMC
Fang R. Dhakshinamoorthy A. Li Y. Garcia H. Chem. Soc. Rev. 2020;49:3638–3687. doi: 10.1039/D0CS00070A. PubMed DOI
Gotico P. Halime Z. Aukauloo A. Dalton Trans. 2020;49:2381–2396. doi: 10.1039/D0CS00070A. PubMed DOI
Zhao L. Zhang Y. Bi S. Liu Q. RSC Adv. 2019;9:19236–19242. doi: 10.1039/D0CS00070A. PubMed DOI PMC
Mansano Willig J. C. Granetto G. Reginato D. Dutra F. R. Poruczinski É. F. de Oliveira I. M. Stefani H. A. de Campos S. D. de Campos É. A. Manarin F. Botteselle G. V. RSC Adv. 2020;10:3407–3415. doi: 10.1039/D0CS00070A. PubMed DOI PMC
Rojas S. Arenas-Vivo A. Horcajada P. Coord. Chem. Rev. 2019;388:202–226. doi: 10.1039/C9DT01710K. PubMed DOI
Forgan R. S. Dalton Trans. 2019;48:9037–9042. doi: 10.1039/C9DT01710K. PubMed DOI
Balasamy R. J. Ravinayagam V. Alomari M. Ansari M. A. Almofty S. A. Rehman S. Dafalla H. Marimuthu P. R. Akhtar S. Al Hamad M. RSC Adv. 2019;9:42395–42408. doi: 10.1039/C9DT01710K. PubMed DOI PMC
Lin C. He H. Zhang Y. Xu M. Tian F. Li L. Wang Y. RSC Adv. 2020;10:3084–3091. doi: 10.1039/C9DT01710K. PubMed DOI PMC
Espallargas G. M. Coronado E. Chem. Soc. Rev. 2018;47:533–557. doi: 10.1039/C7CS00653E. PubMed DOI
Bera S. P. Mondal A. Roy S. Dey B. Santra A. Konar S. Dalton Trans. 2018;47:15405–15415. doi: 10.1039/C7CS00653E. PubMed DOI
Kuyuldar S. Genna D. T. Burda C. J. Mater. Chem. A. 2019;7:21545–21576. doi: 10.1039/C7CS00653E. PubMed DOI
Almáši M. Zeleňák V. Zeleňáková A. Acta Phys. Pol., A. 2017;131:991–993. doi: 10.1039/C7CS00653E. PubMed DOI
Zeleňák V. Almáši M. Zeleňáková A. Hrubovčák P. Tarasenko R. Bourelly S. Llewellyn P. Sci. Rep. 2019;9:15572. doi: 10.1039/C7CS00653E. PubMed DOI PMC
Xiao X. Zou L. Pang H. Xu Q. Chem. Soc. Rev. 2020;49:301–331. doi: 10.1039/C7CS00614D. PubMed DOI
Ye W. Wang K. Yin W. Chai W. Rui Y. Tang B. Dalton Trans. 2019;48:10191–10198. doi: 10.1039/C7CS00614D. PubMed DOI
Mohamed N. Allam N. K. RSC Adv. 2020;10:21662–21685. doi: 10.1039/C7CS00614D. PubMed DOI PMC
Capková D. Almáši M. Kazda T. Čech O. Király N. Čudek P. Straková Fedorková A. Hornebecq V. Electrochim. Acta. 2020;354:136640. doi: 10.1039/C7CS00614D. PubMed DOI
Desai A. V. Pimenta V. King C. Cordes D. B. Slawin A. M. Z. Morris R. E. Armstrong A. R. RSC Adv. 2020;10:13732–13736. doi: 10.1039/C7CS00614D. PubMed DOI PMC
Gangu K. K. Maddila S. Mukkamala S. B. Jonnalagadd S. B. J. Energy Chem. 2019;30:132–144. doi: 10.1016/j.jechem.2018.04.012. DOI
Yu S. Jing G. Li S. Li Z. Ju X. Int. J. Hydrogen Energy. 2020;45:6757–6764. doi: 10.1016/j.jechem.2018.04.012. DOI
Pukazhselvan D. Sandhya K. S. Fagg D. P. Mater. Today. 2020:97–163. doi: 10.1016/j.jechem.2018.04.012. DOI
Pal T. K. De D. Bharadwaj P. K. Coord. Chem. Rev. 2020;408:213173. doi: 10.1039/C9RA03741A. DOI
Ghanbari T. Abnisa F. Daud W. M. A. W. Sci. Total Environ. 2020;707:135090. doi: 10.1039/C9RA03741A. PubMed DOI
Yin Q. Lu C. Zhang S. Liu M. Du K. Zhang L. Chang G. RSC Adv. 2019;9:22604–22608. doi: 10.1039/C9RA03741A. PubMed DOI PMC
Asgharnejad L. Abbasi A. Najafi M. Janczak J. Cryst. Growth Des. 2019;19:2679–2686. doi: 10.1039/C8RA05596C. DOI
Zhang J. Li Z. Wu Y. Guo X. Ye J. Yuan B. Wang S. Jiang L. RSC Adv. 2019;9:408–428. doi: 10.1039/C8RA05596C. PubMed DOI PMC
Diamantis S. A. Pournara A. D. Hatzidimitriou A. G. Manos M. J. Papaefstathiou G. S. Lazarides T. Polyhedron. 2018;153:173–180. doi: 10.1039/C8RA05596C. DOI
Chun H. Kim D. Dybtsev D. N. Kim K. Angew. Chem., Int. Ed. 2004;43:971. doi: 10.1002/anie.200353139. PubMed DOI
Furukawa H. Gándara F. Zhang Y. B. Jiang J. Queen W. L. Hudson M. R. Yaghi O. M. J. Am. Chem. Soc. 2014;136:4369–4381. doi: 10.1002/anie.200353139. PubMed DOI
Hu K. Q. Jiang X. Wang C. Z. Mei L. Xie Z. N. Tao W. Q. Zhang X. L. Chai Z. F. Shi W. Q. Chem.–Eur. J. 2017;23:529–532. doi: 10.1002/anie.200353139. PubMed DOI
Wen L. Cheng P. Lin W. Chem. Sci. 2012;3:2288–2292. doi: 10.1039/C2SC20172K. DOI
Feng D. Wang K. Wei Z. Chen Y. P. Simon C. M. Arvapally R. K. Martin R. L. Bosch M. Liu T. F. Fordham S. Yuan D. Omary M. A. Haranczyk M. Smit B. Zhou H. C. Nat. Commun. 2014;5:5723. doi: 10.1039/C2SC20172K. PubMed DOI
Zhang M. Chen Y. P. Bosch M. Gentle III T. Wang K. Feng D. Wang Z. U. Zhou H. C. Angew. Chem., Int. Ed. 2014;53:815–818. doi: 10.1039/C2SC20172K. PubMed DOI
Wang Y. Liu Q. Zhang Q. Peng B. Deng H. Angew. Chem., Int. Ed. 2018;57:7120–7125. doi: 10.1039/C2SC20172K. PubMed DOI
Liu D. Xie Z. Ma L. Lin W. Inorg. Chem. 2010;49:9107–9109. doi: 10.1021/ic1009169. PubMed DOI
Liu D. Wu H. Wang S. Xie Z. Li J. Lin W. Chem. Sci. 2012;3:3032–3037. doi: 10.1039/C2SC20601C. DOI
Zhai Q. Lin Q. Wu T. Zheng S. T. Bu X. Feng P. Dalton Trans. 2012;41:2866–2868. doi: 10.1039/C2DT12215D. PubMed DOI
Biswas A. Kim M. B. Kim S. Y. Yoon T. U. Kim S. I. Bae Y. S. RSC Adv. 2016;6:81485–81490. doi: 10.1039/C2DT12215D. DOI
Cattaneo D. Warrender S. J. Duncan M. J. Castledine R. Parkinson N. Haley I. Morris R. E. Dalton Trans. 2016;45:618–629. doi: 10.1039/C2DT12215D. PubMed DOI
Simonato S. Möllmer J. Lange M. Gläser R. Staudt R. Feldmann C. RSC Adv. 2016;6:12446–12452. doi: 10.1039/C2DT12215D. DOI
Cattaneo D. Warrender S. J. Duncan M. J. Kelsall C. J. Doherty M. K. Whitfield P. D. Megson I. L. Morris R. E. RSC Adv. 2016;6:14059–14067. doi: 10.1039/C2DT12215D. PubMed DOI PMC
Sagastuy-Breña M. Mileo P. G. M. Sánchez-González E. Reynolds J. E. Jurado-Vázquez T. Balmaseda J. González-Zamora E. Devautour-Vinot S. Humphrey S. M. Maurin G. Ibarra I. A. Dalton Trans. 2018;47:15827–15834. doi: 10.1039/C2DT12215D. PubMed DOI
Kadi M. W. Abd El Salam H. M. Zaki T. Mohamed R. M. J. Nanopart. Res. 2020;22:143. doi: 10.1039/C2DT12215D. DOI
Vervoorts P. Schneemann A. Hante I. Pirillo J. Hijikata Y. Toyao T. Kon K. Shimizu K. Nakamura T. Noro S. Fischer R. A. ACS Appl. Mater. Interfaces. 2020;12:9448–9456. doi: 10.1039/C2DT12215D. PubMed DOI
Qian J. Chen G. Xiao S. Li H. Ouyang Y. Wang Q. RSC Adv. 2020;10:17195–17204. doi: 10.1039/C2DT12215D. PubMed DOI PMC
Zhang Z. Xiao Y. Cui M. Tang J. Fei Z. Liu Q. Chen X. Qiao X. Dalton Trans. 2019;48:14971–14974. doi: 10.1039/C9DT03332G. PubMed DOI
Leo P. Orcajo G. Briones D. Rodríguez-Diéguez A. Choquesillo-Lazarte D. Calleja G. Martínez F. Dalton Trans. 2019;48:11556–11564. doi: 10.1039/C9DT03332G. PubMed DOI
Noori Y. Akhbari K. RSC Adv. 2017;7:1782–1808. doi: 10.1039/C6RA24958B. DOI
Marieeswaran M. Panneerselvam P. RSC Adv. 2020;10:3705–3714. doi: 10.1039/C6RA24958B. PubMed DOI PMC
Xie X. X. Yang Y. C. Dou B. H. Li Z. F. Li G. Coord. Chem. Rev. 2020;403:213100. doi: 10.1016/j.ccr.2019.213100. DOI
Sarango-Ramírez M. K. Lim D. W. Kolokolov D. I. Khudozhitkov A. E. Stepanov A. G. Kitagawa H. J. Am. Chem. Soc. 2020;142:6861–6865. doi: 10.1016/j.ccr.2019.213100. PubMed DOI
Almáši M. Zeleňák V. Gyepes R. Zukal A. Čejka J. Colloids Surf., A. 2013;437:101–107. doi: 10.1016/j.colsurfa.2012.11.067. DOI
Almáši M. Zeleňák V. Zukal A. Kuchár J. Čejka J. Dalton Trans. 2016;45:1233–1242. doi: 10.1039/C5DT02437D. PubMed DOI
Almáši M. Zeleňák V. Opanasenko M. Čejka J. Dalton Trans. 2014;43:3730–3738. doi: 10.1039/C3DT52698D. PubMed DOI
Almáši M. Zeleňák V. Gyepes R. Bourrelly S. Opanasenko M. V. Llewellyn P. L. Čejka J. Inorg. Chem. 2018;57:1774–1786. doi: 10.1021/acs.inorgchem.7b02491. PubMed DOI
Almáši M. Zeleňák V. Opanasenko M. Čejka J. Catal. Lett. 2018;148:2263–2273. doi: 10.1007/s10562-018-2471-8. DOI
Sheldrick G. M. Acta Crystallogr. 2015;3:C71. doi: 10.1107/S090744490804362X. PubMed DOI PMC
Spek A. L. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2009;65:148–155. doi: 10.1107/S090744490804362X. PubMed DOI PMC
Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B. and Fox D. J., Gaussian 16 Revision A.03, Gaussian, Inc., Wallingford CT, 2010
Wiersum A. D. Giovannangeli C. Vincent D. Bloch E. Reinsch H. Stock N. Lee J. S. Chang J. S. Llewellyn P. L. ACS Comb. Sci. 2013;15:111–119. doi: 10.1021/co300128w. PubMed DOI
Lemmon E. W. and McLinden M. H., MO Reference Fluid Thermodynamic and Transport Properties, REFPROP 8.0, National Institute of Standards and Technology, Gaithersburg, MD, 2007
Khoshhal S. Ghoreyshi A. A. Jahanshahi M. Mohammadi M. RSC Adv. 2015;5:24758–24768. doi: 10.1039/C5RA01890K. DOI
Almáši M. Zeleňák V. Zeleňáková A. Vargová Z. Císařová I. Inorg. Chem. Commun. 2016;74:66–71. doi: 10.1039/C5RA01890K. DOI
Vornholt S. M. Henkelis S. E. Morris R. E. Dalton Trans. 2017;46:8298–8303. doi: 10.1039/C5RA01890K. PubMed DOI
Seetharaj R. Vandana P. V. Arya P. Mathew S. Arabian J. Chem. 2019;12:295–315. doi: 10.1039/C5RA01890K. DOI
Blatov V. A. Shevchenko A. P. Proserpio D. M. Cryst. Growth Des. 2014;14:3576–3586. doi: 10.1021/cg500498k. DOI
Yaghi O. M. O'Keeffe M. Ockwig N. W. Chae H. K. Eddaoudi M. Kim J. Nature. 2003;423:705–714. doi: 10.1038/nature01650. PubMed DOI
Liu J. Lukose B. Shekhah O. Arslan H. K. Weidler P. Gliemann H. Bräse S. Grosjean S. Godt A. Feng X. Müllen K. Magdau I. B. Heine T. Wöll C. Sci. Rep. 2012;2:921. doi: 10.1038/nature01650. PubMed DOI PMC
Lin H. Maggard P. A. Inorg. Chem. 2008;47:8044–8052. doi: 10.1039/C0CE00539H. PubMed DOI
Sun D. Wei Z. H. Yang C. F. Wang D. F. Zhang N. Huang R. B. Zhang L. S. CrystEngComm. 2011;13:1591–1601. doi: 10.1039/C0CE00539H. DOI
Fang S. M. Hu M. Zhang Q. Du M. Liu C. S. Dalton Trans. 2011;40:4527–4541. doi: 10.1039/C0CE00539H. PubMed DOI
Stein I. Ruschewitz U. Acta Crystallogr., Sect. E: Struct. Rep. Online. 2005;61:m141–m143. doi: 10.1039/C2CC31135F. PubMed DOI
Stahl K. Andersen J. E. T. Christgau S. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2006;62:m144–m149. doi: 10.1039/C2CC31135F. PubMed DOI
Cheng P. C. Zhan J. X. Wu C. Y. Lin C. H. Acta Crystallogr., Sect. E: Struct. Rep. Online. 2011;67:m1647. doi: 10.1039/C2CC31135F. PubMed DOI PMC
Kundu T. Sahoo S. C. Banerjee R. Chem. Commun. 2012;48:4998–5000. doi: 10.1039/C2CC31135F. PubMed DOI
Kitagawa S. Uemura K. Chem. Soc. Rev. 2005;34:109–119. doi: 10.1039/B313997M. PubMed DOI
Cheon Y. E. Suh M. P. Chem.–Eur. J. 2008;14:3961–3967. doi: 10.1002/chem.200701813. PubMed DOI
Jiang X. Kou H. Z. Chem. Commun. 2016;52:2952–2955. doi: 10.1039/C5CC09808D. PubMed DOI
Cheon Y. E. Suh M. P. Chem. Commun. 2009:2296–2298. doi: 10.1039/B900085B. PubMed DOI
Ma L. Jin A. Xie Z. Lin W. Angew. Chem., Int. Ed. 2009;48:9905–9908. doi: 10.1002/anie.200904983. PubMed DOI
Furukawa H. Gándara F. Zhang Y. B. Jiang J. Queen W. L. Hudson M. R. Yaghi O. M. J. Am. Chem. Soc. 2014;136:4369–4381. doi: 10.1021/ja500330a. PubMed DOI
Lama P. Aggarwal H. Bezuidenhout C. X. Barbour L. J. Angew. Chem., Int. Ed. 2016;55:13271–13275. doi: 10.1002/anie.201607076. PubMed DOI
Wu H. Thibault C. G. Wang H. Cychosz K. A. Thommes M. Li J. Mirop. Mesop. Mater. 2016;219:186–189. doi: 10.1002/anie.201607076. PubMed DOI
Lv D. Shi R. Chen Y. Chen Y. Wu H. Zhou X. Xi H. Li Z. Xia Q. Chem. Commun. 2018;57:12215–12224.
Zeleňák V. Vargová Z. Almáši M. Zeleňáková A. Kuchár J. Mirop. Mesop. Mater. 2010;129:354–359. doi: 10.1016/j.micromeso.2009.11.002. DOI
Banerjee D. Zhang Z. Plonka A. M. Li J. Parise J. B. Cryst. Growth Des. 2012;12:2162–2165. doi: 10.1021/cg300274n. DOI
Mallick A. Schon E. M. Panda T. Sreenivas K. Diaz D. D. Banerjee R. J. Mater. Chem. 2012;22:14951–14963. doi: 10.1039/C2JM30866E. DOI
Noh K. Ko N. Park H. J. Park S. Y. Kim J. CrystEngComm. 2014;16:8664–8668. doi: 10.1039/C4CE01237B. DOI
Yeh C. T. Lin W. C. Lo S. H. Kao C. C. Lin C. H. Yang C. C. CrystEngComm. 2012;14:1219–1222. doi: 10.1039/C2CE05875H. DOI
Foo M. L. Horike S. Kitagawa S. Inorg. Chem. 2011;50:11853–11855. doi: 10.1021/ic201814g. PubMed DOI
Wang Q. Pan S. Wu Y. B. Deng G. Bian J. H. Wang G. Zhao L. Zhou M. Frenking G. Angew. Chem., Int. Ed. 2019;58:17365–17374. doi: 10.1002/anie.201908572. PubMed DOI PMC
Stegner P. Färber C. Oetzel J. Siemeling U. Wiesinger M. Langer J. Pan S. Holzmann N. Frenking G. Albold U. Sarkar B. Harder S. Angew. Chem., Int. Ed. 2020;59:14615–14620. doi: 10.1002/anie.201908572. PubMed DOI PMC
Mason J. A. Veenstra M. Long J. R. Chem. Sci. 2017;5:32–51. doi: 10.1039/C3SC52633J. DOI
Miller S. R. Alvarez E. Fradcourt L. Devic T. Wuttke S. Wheatley P. S. Steunou N. Bonhomme C. Gervais C. Laurencin D. Morris R. E. Vimont A. Daturi M. Horcajada P. Serre C. Chem. Commun. 2013;49:7773–7775. doi: 10.1039/C3CC41987H. PubMed DOI
Foo M. L. Horike S. Inubushi Y. Kitagawa S. Angew. Chem., Int. Ed. 2012;51:6107–6111. doi: 10.1002/anie.201202285. PubMed DOI
Strategies for enhanced bioavailability of oxime reactivators in the central nervous system
Carbon dioxide and hydrogen adsorption study on surface-modified HKUST-1 with diamine/triamine