A series of four novel alkaline earth metal-organic frameworks constructed of Ca(ii), Sr(ii), Ba(ii) ions and tetrahedral MTB linker: structural diversity, stability study and low/high-pressure gas adsorption properties

. 2020 Sep 01 ; 10 (54) : 32323-32334. [epub] 20200901

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35516486

A series of four novel microporous alkaline earth metal-organic frameworks (AE-MOFs) containing methanetetrabenzoate linker (MTB) with composition {[Ca4(μ8-MTB)2]·2DMF·4H2O} n (UPJS-6), {[Ca4(μ4-O)(μ8-MTB)3/2(H2O)4]·4DMF·4H2O} n (UPJS-7), {[Sr3(μ7-MTB)3/2]·4DMF·7H2O} n (UPJS-8) and {[Ba3(μ7-MTB)3/2(H2O)6]·2DMF·4H2O} n (UPJS-9) (UPJS = University of Pavol Jozef Safarik) have been successfully prepared and characterized. The framework stability and thermal robustness of prepared materials were investigated using thermogravimetric analysis (TGA) and high-energy powder X-ray diffraction (HE-PXRD). MOFs were tested as adsorbents for different gases at various pressures and temperatures. Nitrogen and argon adsorption showed that the activated samples have moderate BET surface areas: 103 m2 g-1 (N2)/126 m2 g-1 (Ar) for UPJS-7'', 320 m2 g-1 (N2)/358 m2 g-1 (Ar) for UPJS-9'' and UPJS-8'' adsorbs only a limited amount of N2 and Ar. It should be noted that all prepared compounds adsorb carbon dioxide with storage capacities ranging from 3.9 to 2.4 wt% at 20 °C and 1 atm, and 16.4-13.5 wt% at 30 °C and 20 bar. Methane adsorption isotherms show no adsorption at low pressures and with increasing pressure the storage capacity increases to 4.0-2.9 wt% of CH4 at 30 °C and 20 bar. Compounds displayed the highest hydrogen uptake of 3.7-1.8 wt% at -196 °C and 800 Torr among MTB containing MOFs.

Zobrazit více v PubMed

Kökçam-Demir Ü. Goldman A. Esrafili L. Gharib M. Morsali A. Weingart O. Janiak C. Chem. Soc. Rev. 2020;49:2751–2798. doi: 10.1039/C9CS00609E. PubMed DOI

Singh G. Lee J. Karakoti A. Bahadur R. Yi J. Zhao D. AlBahily K. Vinu A. Chem. Soc. Rev. 2020;49:4360–4404. doi: 10.1039/C9CS00609E. PubMed DOI

Ding M. Flaig R. W. Jiang H. L. Yaghi O. M. Chem. Soc. Rev. 2019;48:2783–2828. doi: 10.1039/C9CS00609E. PubMed DOI

Evans A. Cummings M. Decarolis D. Gianolio D. Shahid S. Law G. Attfield M. Law D. Petit C. RSC Adv. 2020;10:5152–5162. doi: 10.1039/C9CS00609E. PubMed DOI PMC

Fang R. Dhakshinamoorthy A. Li Y. Garcia H. Chem. Soc. Rev. 2020;49:3638–3687. doi: 10.1039/D0CS00070A. PubMed DOI

Gotico P. Halime Z. Aukauloo A. Dalton Trans. 2020;49:2381–2396. doi: 10.1039/D0CS00070A. PubMed DOI

Zhao L. Zhang Y. Bi S. Liu Q. RSC Adv. 2019;9:19236–19242. doi: 10.1039/D0CS00070A. PubMed DOI PMC

Mansano Willig J. C. Granetto G. Reginato D. Dutra F. R. Poruczinski É. F. de Oliveira I. M. Stefani H. A. de Campos S. D. de Campos É. A. Manarin F. Botteselle G. V. RSC Adv. 2020;10:3407–3415. doi: 10.1039/D0CS00070A. PubMed DOI PMC

Rojas S. Arenas-Vivo A. Horcajada P. Coord. Chem. Rev. 2019;388:202–226. doi: 10.1039/C9DT01710K. PubMed DOI

Forgan R. S. Dalton Trans. 2019;48:9037–9042. doi: 10.1039/C9DT01710K. PubMed DOI

Balasamy R. J. Ravinayagam V. Alomari M. Ansari M. A. Almofty S. A. Rehman S. Dafalla H. Marimuthu P. R. Akhtar S. Al Hamad M. RSC Adv. 2019;9:42395–42408. doi: 10.1039/C9DT01710K. PubMed DOI PMC

Lin C. He H. Zhang Y. Xu M. Tian F. Li L. Wang Y. RSC Adv. 2020;10:3084–3091. doi: 10.1039/C9DT01710K. PubMed DOI PMC

Espallargas G. M. Coronado E. Chem. Soc. Rev. 2018;47:533–557. doi: 10.1039/C7CS00653E. PubMed DOI

Bera S. P. Mondal A. Roy S. Dey B. Santra A. Konar S. Dalton Trans. 2018;47:15405–15415. doi: 10.1039/C7CS00653E. PubMed DOI

Kuyuldar S. Genna D. T. Burda C. J. Mater. Chem. A. 2019;7:21545–21576. doi: 10.1039/C7CS00653E. PubMed DOI

Almáši M. Zeleňák V. Zeleňáková A. Acta Phys. Pol., A. 2017;131:991–993. doi: 10.1039/C7CS00653E. PubMed DOI

Zeleňák V. Almáši M. Zeleňáková A. Hrubovčák P. Tarasenko R. Bourelly S. Llewellyn P. Sci. Rep. 2019;9:15572. doi: 10.1039/C7CS00653E. PubMed DOI PMC

Xiao X. Zou L. Pang H. Xu Q. Chem. Soc. Rev. 2020;49:301–331. doi: 10.1039/C7CS00614D. PubMed DOI

Ye W. Wang K. Yin W. Chai W. Rui Y. Tang B. Dalton Trans. 2019;48:10191–10198. doi: 10.1039/C7CS00614D. PubMed DOI

Mohamed N. Allam N. K. RSC Adv. 2020;10:21662–21685. doi: 10.1039/C7CS00614D. PubMed DOI PMC

Capková D. Almáši M. Kazda T. Čech O. Király N. Čudek P. Straková Fedorková A. Hornebecq V. Electrochim. Acta. 2020;354:136640. doi: 10.1039/C7CS00614D. PubMed DOI

Desai A. V. Pimenta V. King C. Cordes D. B. Slawin A. M. Z. Morris R. E. Armstrong A. R. RSC Adv. 2020;10:13732–13736. doi: 10.1039/C7CS00614D. PubMed DOI PMC

Gangu K. K. Maddila S. Mukkamala S. B. Jonnalagadd S. B. J. Energy Chem. 2019;30:132–144. doi: 10.1016/j.jechem.2018.04.012. DOI

Yu S. Jing G. Li S. Li Z. Ju X. Int. J. Hydrogen Energy. 2020;45:6757–6764. doi: 10.1016/j.jechem.2018.04.012. DOI

Pukazhselvan D. Sandhya K. S. Fagg D. P. Mater. Today. 2020:97–163. doi: 10.1016/j.jechem.2018.04.012. DOI

Pal T. K. De D. Bharadwaj P. K. Coord. Chem. Rev. 2020;408:213173. doi: 10.1039/C9RA03741A. DOI

Ghanbari T. Abnisa F. Daud W. M. A. W. Sci. Total Environ. 2020;707:135090. doi: 10.1039/C9RA03741A. PubMed DOI

Yin Q. Lu C. Zhang S. Liu M. Du K. Zhang L. Chang G. RSC Adv. 2019;9:22604–22608. doi: 10.1039/C9RA03741A. PubMed DOI PMC

Asgharnejad L. Abbasi A. Najafi M. Janczak J. Cryst. Growth Des. 2019;19:2679–2686. doi: 10.1039/C8RA05596C. DOI

Zhang J. Li Z. Wu Y. Guo X. Ye J. Yuan B. Wang S. Jiang L. RSC Adv. 2019;9:408–428. doi: 10.1039/C8RA05596C. PubMed DOI PMC

Diamantis S. A. Pournara A. D. Hatzidimitriou A. G. Manos M. J. Papaefstathiou G. S. Lazarides T. Polyhedron. 2018;153:173–180. doi: 10.1039/C8RA05596C. DOI

Chun H. Kim D. Dybtsev D. N. Kim K. Angew. Chem., Int. Ed. 2004;43:971. doi: 10.1002/anie.200353139. PubMed DOI

Furukawa H. Gándara F. Zhang Y. B. Jiang J. Queen W. L. Hudson M. R. Yaghi O. M. J. Am. Chem. Soc. 2014;136:4369–4381. doi: 10.1002/anie.200353139. PubMed DOI

Hu K. Q. Jiang X. Wang C. Z. Mei L. Xie Z. N. Tao W. Q. Zhang X. L. Chai Z. F. Shi W. Q. Chem.–Eur. J. 2017;23:529–532. doi: 10.1002/anie.200353139. PubMed DOI

Wen L. Cheng P. Lin W. Chem. Sci. 2012;3:2288–2292. doi: 10.1039/C2SC20172K. DOI

Feng D. Wang K. Wei Z. Chen Y. P. Simon C. M. Arvapally R. K. Martin R. L. Bosch M. Liu T. F. Fordham S. Yuan D. Omary M. A. Haranczyk M. Smit B. Zhou H. C. Nat. Commun. 2014;5:5723. doi: 10.1039/C2SC20172K. PubMed DOI

Zhang M. Chen Y. P. Bosch M. Gentle III T. Wang K. Feng D. Wang Z. U. Zhou H. C. Angew. Chem., Int. Ed. 2014;53:815–818. doi: 10.1039/C2SC20172K. PubMed DOI

Wang Y. Liu Q. Zhang Q. Peng B. Deng H. Angew. Chem., Int. Ed. 2018;57:7120–7125. doi: 10.1039/C2SC20172K. PubMed DOI

Liu D. Xie Z. Ma L. Lin W. Inorg. Chem. 2010;49:9107–9109. doi: 10.1021/ic1009169. PubMed DOI

Liu D. Wu H. Wang S. Xie Z. Li J. Lin W. Chem. Sci. 2012;3:3032–3037. doi: 10.1039/C2SC20601C. DOI

Zhai Q. Lin Q. Wu T. Zheng S. T. Bu X. Feng P. Dalton Trans. 2012;41:2866–2868. doi: 10.1039/C2DT12215D. PubMed DOI

Biswas A. Kim M. B. Kim S. Y. Yoon T. U. Kim S. I. Bae Y. S. RSC Adv. 2016;6:81485–81490. doi: 10.1039/C2DT12215D. DOI

Cattaneo D. Warrender S. J. Duncan M. J. Castledine R. Parkinson N. Haley I. Morris R. E. Dalton Trans. 2016;45:618–629. doi: 10.1039/C2DT12215D. PubMed DOI

Simonato S. Möllmer J. Lange M. Gläser R. Staudt R. Feldmann C. RSC Adv. 2016;6:12446–12452. doi: 10.1039/C2DT12215D. DOI

Cattaneo D. Warrender S. J. Duncan M. J. Kelsall C. J. Doherty M. K. Whitfield P. D. Megson I. L. Morris R. E. RSC Adv. 2016;6:14059–14067. doi: 10.1039/C2DT12215D. PubMed DOI PMC

Sagastuy-Breña M. Mileo P. G. M. Sánchez-González E. Reynolds J. E. Jurado-Vázquez T. Balmaseda J. González-Zamora E. Devautour-Vinot S. Humphrey S. M. Maurin G. Ibarra I. A. Dalton Trans. 2018;47:15827–15834. doi: 10.1039/C2DT12215D. PubMed DOI

Kadi M. W. Abd El Salam H. M. Zaki T. Mohamed R. M. J. Nanopart. Res. 2020;22:143. doi: 10.1039/C2DT12215D. DOI

Vervoorts P. Schneemann A. Hante I. Pirillo J. Hijikata Y. Toyao T. Kon K. Shimizu K. Nakamura T. Noro S. Fischer R. A. ACS Appl. Mater. Interfaces. 2020;12:9448–9456. doi: 10.1039/C2DT12215D. PubMed DOI

Qian J. Chen G. Xiao S. Li H. Ouyang Y. Wang Q. RSC Adv. 2020;10:17195–17204. doi: 10.1039/C2DT12215D. PubMed DOI PMC

Zhang Z. Xiao Y. Cui M. Tang J. Fei Z. Liu Q. Chen X. Qiao X. Dalton Trans. 2019;48:14971–14974. doi: 10.1039/C9DT03332G. PubMed DOI

Leo P. Orcajo G. Briones D. Rodríguez-Diéguez A. Choquesillo-Lazarte D. Calleja G. Martínez F. Dalton Trans. 2019;48:11556–11564. doi: 10.1039/C9DT03332G. PubMed DOI

Noori Y. Akhbari K. RSC Adv. 2017;7:1782–1808. doi: 10.1039/C6RA24958B. DOI

Marieeswaran M. Panneerselvam P. RSC Adv. 2020;10:3705–3714. doi: 10.1039/C6RA24958B. PubMed DOI PMC

Xie X. X. Yang Y. C. Dou B. H. Li Z. F. Li G. Coord. Chem. Rev. 2020;403:213100. doi: 10.1016/j.ccr.2019.213100. DOI

Sarango-Ramírez M. K. Lim D. W. Kolokolov D. I. Khudozhitkov A. E. Stepanov A. G. Kitagawa H. J. Am. Chem. Soc. 2020;142:6861–6865. doi: 10.1016/j.ccr.2019.213100. PubMed DOI

Almáši M. Zeleňák V. Gyepes R. Zukal A. Čejka J. Colloids Surf., A. 2013;437:101–107. doi: 10.1016/j.colsurfa.2012.11.067. DOI

Almáši M. Zeleňák V. Zukal A. Kuchár J. Čejka J. Dalton Trans. 2016;45:1233–1242. doi: 10.1039/C5DT02437D. PubMed DOI

Almáši M. Zeleňák V. Opanasenko M. Čejka J. Dalton Trans. 2014;43:3730–3738. doi: 10.1039/C3DT52698D. PubMed DOI

Almáši M. Zeleňák V. Gyepes R. Bourrelly S. Opanasenko M. V. Llewellyn P. L. Čejka J. Inorg. Chem. 2018;57:1774–1786. doi: 10.1021/acs.inorgchem.7b02491. PubMed DOI

Almáši M. Zeleňák V. Opanasenko M. Čejka J. Catal. Lett. 2018;148:2263–2273. doi: 10.1007/s10562-018-2471-8. DOI

Sheldrick G. M. Acta Crystallogr. 2015;3:C71. doi: 10.1107/S090744490804362X. PubMed DOI PMC

Spek A. L. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2009;65:148–155. doi: 10.1107/S090744490804362X. PubMed DOI PMC

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Petersson G. A., Nakatsuji H., Li X., Caricato M., Marenich A. V., Bloino J., Janesko B. G., Gomperts R., Mennucci B., Hratchian H. P., Ortiz J. V., Izmaylov A. F., Sonnenberg J. L., Williams-Young D., Ding F., Lipparini F., Egidi F., Goings J., Peng B., Petrone A., Henderson T., Ranasinghe D., Zakrzewski V. G., Gao J., Rega N., Zheng G., Liang W., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Throssell K., Montgomery Jr J. A., Peralta J. E., Ogliaro F., Bearpark M. J., Heyd J. J., Brothers E. N., Kudin K. N., Staroverov V. N., Keith T. A., Kobayashi R., Normand J., Raghavachari K., Rendell A. P., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Millam J. M., Klene M., Adamo C., Cammi R., Ochterski J. W., Martin R. L., Morokuma K., Farkas O., Foresman J. B. and Fox D. J., Gaussian 16 Revision A.03, Gaussian, Inc., Wallingford CT, 2010

Wiersum A. D. Giovannangeli C. Vincent D. Bloch E. Reinsch H. Stock N. Lee J. S. Chang J. S. Llewellyn P. L. ACS Comb. Sci. 2013;15:111–119. doi: 10.1021/co300128w. PubMed DOI

Lemmon E. W. and McLinden M. H., MO Reference Fluid Thermodynamic and Transport Properties, REFPROP 8.0, National Institute of Standards and Technology, Gaithersburg, MD, 2007

Khoshhal S. Ghoreyshi A. A. Jahanshahi M. Mohammadi M. RSC Adv. 2015;5:24758–24768. doi: 10.1039/C5RA01890K. DOI

Almáši M. Zeleňák V. Zeleňáková A. Vargová Z. Císařová I. Inorg. Chem. Commun. 2016;74:66–71. doi: 10.1039/C5RA01890K. DOI

Vornholt S. M. Henkelis S. E. Morris R. E. Dalton Trans. 2017;46:8298–8303. doi: 10.1039/C5RA01890K. PubMed DOI

Seetharaj R. Vandana P. V. Arya P. Mathew S. Arabian J. Chem. 2019;12:295–315. doi: 10.1039/C5RA01890K. DOI

Blatov V. A. Shevchenko A. P. Proserpio D. M. Cryst. Growth Des. 2014;14:3576–3586. doi: 10.1021/cg500498k. DOI

Yaghi O. M. O'Keeffe M. Ockwig N. W. Chae H. K. Eddaoudi M. Kim J. Nature. 2003;423:705–714. doi: 10.1038/nature01650. PubMed DOI

Liu J. Lukose B. Shekhah O. Arslan H. K. Weidler P. Gliemann H. Bräse S. Grosjean S. Godt A. Feng X. Müllen K. Magdau I. B. Heine T. Wöll C. Sci. Rep. 2012;2:921. doi: 10.1038/nature01650. PubMed DOI PMC

Lin H. Maggard P. A. Inorg. Chem. 2008;47:8044–8052. doi: 10.1039/C0CE00539H. PubMed DOI

Sun D. Wei Z. H. Yang C. F. Wang D. F. Zhang N. Huang R. B. Zhang L. S. CrystEngComm. 2011;13:1591–1601. doi: 10.1039/C0CE00539H. DOI

Fang S. M. Hu M. Zhang Q. Du M. Liu C. S. Dalton Trans. 2011;40:4527–4541. doi: 10.1039/C0CE00539H. PubMed DOI

Stein I. Ruschewitz U. Acta Crystallogr., Sect. E: Struct. Rep. Online. 2005;61:m141–m143. doi: 10.1039/C2CC31135F. PubMed DOI

Stahl K. Andersen J. E. T. Christgau S. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 2006;62:m144–m149. doi: 10.1039/C2CC31135F. PubMed DOI

Cheng P. C. Zhan J. X. Wu C. Y. Lin C. H. Acta Crystallogr., Sect. E: Struct. Rep. Online. 2011;67:m1647. doi: 10.1039/C2CC31135F. PubMed DOI PMC

Kundu T. Sahoo S. C. Banerjee R. Chem. Commun. 2012;48:4998–5000. doi: 10.1039/C2CC31135F. PubMed DOI

Kitagawa S. Uemura K. Chem. Soc. Rev. 2005;34:109–119. doi: 10.1039/B313997M. PubMed DOI

Cheon Y. E. Suh M. P. Chem.–Eur. J. 2008;14:3961–3967. doi: 10.1002/chem.200701813. PubMed DOI

Jiang X. Kou H. Z. Chem. Commun. 2016;52:2952–2955. doi: 10.1039/C5CC09808D. PubMed DOI

Cheon Y. E. Suh M. P. Chem. Commun. 2009:2296–2298. doi: 10.1039/B900085B. PubMed DOI

Ma L. Jin A. Xie Z. Lin W. Angew. Chem., Int. Ed. 2009;48:9905–9908. doi: 10.1002/anie.200904983. PubMed DOI

Furukawa H. Gándara F. Zhang Y. B. Jiang J. Queen W. L. Hudson M. R. Yaghi O. M. J. Am. Chem. Soc. 2014;136:4369–4381. doi: 10.1021/ja500330a. PubMed DOI

Lama P. Aggarwal H. Bezuidenhout C. X. Barbour L. J. Angew. Chem., Int. Ed. 2016;55:13271–13275. doi: 10.1002/anie.201607076. PubMed DOI

Wu H. Thibault C. G. Wang H. Cychosz K. A. Thommes M. Li J. Mirop. Mesop. Mater. 2016;219:186–189. doi: 10.1002/anie.201607076. PubMed DOI

Lv D. Shi R. Chen Y. Chen Y. Wu H. Zhou X. Xi H. Li Z. Xia Q. Chem. Commun. 2018;57:12215–12224.

Zeleňák V. Vargová Z. Almáši M. Zeleňáková A. Kuchár J. Mirop. Mesop. Mater. 2010;129:354–359. doi: 10.1016/j.micromeso.2009.11.002. DOI

Banerjee D. Zhang Z. Plonka A. M. Li J. Parise J. B. Cryst. Growth Des. 2012;12:2162–2165. doi: 10.1021/cg300274n. DOI

Mallick A. Schon E. M. Panda T. Sreenivas K. Diaz D. D. Banerjee R. J. Mater. Chem. 2012;22:14951–14963. doi: 10.1039/C2JM30866E. DOI

Noh K. Ko N. Park H. J. Park S. Y. Kim J. CrystEngComm. 2014;16:8664–8668. doi: 10.1039/C4CE01237B. DOI

Yeh C. T. Lin W. C. Lo S. H. Kao C. C. Lin C. H. Yang C. C. CrystEngComm. 2012;14:1219–1222. doi: 10.1039/C2CE05875H. DOI

Foo M. L. Horike S. Kitagawa S. Inorg. Chem. 2011;50:11853–11855. doi: 10.1021/ic201814g. PubMed DOI

Wang Q. Pan S. Wu Y. B. Deng G. Bian J. H. Wang G. Zhao L. Zhou M. Frenking G. Angew. Chem., Int. Ed. 2019;58:17365–17374. doi: 10.1002/anie.201908572. PubMed DOI PMC

Stegner P. Färber C. Oetzel J. Siemeling U. Wiesinger M. Langer J. Pan S. Holzmann N. Frenking G. Albold U. Sarkar B. Harder S. Angew. Chem., Int. Ed. 2020;59:14615–14620. doi: 10.1002/anie.201908572. PubMed DOI PMC

Mason J. A. Veenstra M. Long J. R. Chem. Sci. 2017;5:32–51. doi: 10.1039/C3SC52633J. DOI

Miller S. R. Alvarez E. Fradcourt L. Devic T. Wuttke S. Wheatley P. S. Steunou N. Bonhomme C. Gervais C. Laurencin D. Morris R. E. Vimont A. Daturi M. Horcajada P. Serre C. Chem. Commun. 2013;49:7773–7775. doi: 10.1039/C3CC41987H. PubMed DOI

Foo M. L. Horike S. Inubushi Y. Kitagawa S. Angew. Chem., Int. Ed. 2012;51:6107–6111. doi: 10.1002/anie.201202285. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace