Cellulose-Amine Porous Materials: The Effect of Activation Method on Structure, Textural Properties, CO2 Capture, and Recyclability
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
38474671
PubMed Central
PMC10934251
DOI
10.3390/molecules29051158
PII: molecules29051158
Knihovny.cz E-zdroje
- Klíčová slova
- amines, carbon dioxide storage, cellulose, hydrothermal synthesis, pyrolysis,
- Publikační typ
- časopisecké články MeSH
CO2 capture via physical adsorption on activated porous carbons represents a promising solution towards effective carbon emission mitigation. Additionally, production costs can be further decreased by utilising biomass as the main precursor and applying energy-efficient activation. In this work, we developed novel cellulose-based activated carbons modified with amines (diethylenetriamine (DETA), 1,2-bis(3-aminopropylamino)ethane (BAPE), and melamine (MELA)) with different numbers of nitrogen atoms as in situ N-doping precursors. We investigated the effect of hydrothermal and thermal activation on the development of their physicochemical properties, which significantly influence the resulting CO2 adsorption capacity. This process entailed an initial hydrothermal activation of biomass precursor and amines at 240 °C, resulting in C+DETA, C+BAPE and C+MELA materials. Thermal samples (C+DETA (P), C+BAPE (P), and C+MELA (P)) were synthesised from hydrothermal materials by subsequent KOH chemical activation and pyrolysis in an inert argon atmosphere. Their chemical and structural properties were characterised using elemental analysis (CHN), infrared spectroscopy (IR), scanning electron microscopy (SEM), and thermogravimetric analysis (TG). The calculated specific surface areas (SBET) for thermal products showed higher values (998 m2 g-1 for C+DETA (P), 1076 m2 g-1 for C+BAPE (P), and 1348 m2 g-1 for C+MELA (P)) compared to the hydrothermal products (769 m2 g-1 for C+DETA, 833 m2 g-1 for C+BAPE, and 1079 m2 g-1 for C+MELA). Carbon dioxide adsorption as measured by volumetric and gravimetric methods at 0 and 25 °C, respectively, showed the opposite trend, which can be attributed to the reduced content of primary adsorption sites in the form of amine groups in thermal products. N2 and CO2 adsorption measurements were carried out on hydrothermal (C) and pyrolysed cellulose (C (P)), which showed a several-fold reduction in adsorption properties compared to amine-modified materials. The recyclability of C+MELA, which showed the highest CO2 adsorption capacity (7.34 mmol g-1), was studied using argon purging and thermal regeneration over five adsorption/desorption cycles.
Zobrazit více v PubMed
Langsdorf S., Löschke S., Möller V., Okem A., Rama B., Belling D., Dieck W., Götze S., Kersher T., Mangele P., et al. Climate Change 2022: Impacts, Adaptation and Vulnerability. Volume 1. Cambridge University Press; Cambridge, UK: 2022. Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. DOI
Masson-Delmotte V., Zhai P., Pirani A., Connors S., Péan C., Chen Y., Goldfarb L., Gomis M., Matthews J., Berger S., et al. Climate Change 2021 The Physical Science Basis. Volume 2. Cambridge University Press; Cambridge, UK: 2021. The Physical Science Basis Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Edited By. DOI
Rousset N. The Impact of Climate Change, Water Security and the Implications for Agriculture. China Perspect. 2007;2007:30–38. doi: 10.4000/chinaperspectives.1213. DOI
Bellard C., Bertelsmeier C., Leadley P., Thuiller W., Courchamp F. Impacts of Climate Change on the Future of Biodiversity. Ecol. Lett. 2012;15:365–377. doi: 10.1111/j.1461-0248.2011.01736.x. PubMed DOI PMC
Ofori D.O., Bandauko E., Kutor S.K., Odoi A., Asare A.B., Akyea T., Arku G. A Systematic Review of International and Internal Climate-Induced Migration in Africa. Sustainability. 2023;15:16105. doi: 10.3390/su152216105. DOI
Hasaba S. The Impact of Climate Change in the Developing World: Where Developing Countries Are Positioned in Climate Change Discussions. Int. J. Clim. Chang. Impacts Responses. 2012;3:41–52. doi: 10.18848/1835-7156/CGP/v03i01/37092. DOI
Alo A.O., Baines R., Conway J., Cannon N. The Impacts of Climate Change on Agriculture in Developing Countries: A Case Study of Oyo State, Nigeria. Int. J. Clim. Chang. Impacts Responses. 2017;9:1–21. doi: 10.18848/1835-7156/CGP/v09i02/1-21. DOI
Chinowsky P., Hayles C., Schweikert A., Strzepek N., Strzepek K., Schlosser C.A. Climate Change: Comparative Impact on Developing and Developed Countries. Eng. Proj. Organ. J. 2011;1:67–80. doi: 10.1080/21573727.2010.549608. DOI
Bandilla K.W. Carbon Capture and Storage. Future Energy. 2020:669–692. doi: 10.1016/b978-0-08-102886-5.00031-1. DOI
Raganati F., Miccio F., Ammendola P. Adsorption of Carbon Dioxide for Post-Combustion Capture: A Review. Energy Fuels. 2021;35:12845–12868. doi: 10.1021/acs.energyfuels.1c01618. DOI
Almáši M., Zeleňák V., Gyepes R., Zauška L., Bourrelly S. A Series of Four Novel Alkaline Earth Metal-Organic Frameworks Constructed of Ca(ii), Sr(ii), Ba(ii) Ions and Tetrahedral MTB Linker: Structural Diversity, Stability Study and Low/High-Pressure Gas Adsorption Properties. RSC Adv. 2020;10:32323–32334. doi: 10.1039/D0RA05145D. PubMed DOI PMC
Azmi N.Z.M., Buthiyappan A., Raman A.A.A., Patah M.F.A., Sufian S. Recent Advances in Biomass Based Activated Carbon for Carbon Dioxide Capture—A Review. J. Ind. Eng. Chem. 2022;116:1–20. doi: 10.1016/j.jiec.2022.08.021. DOI
Meng F., Meng Y., Ju T., Han S., Lin L., Jiang J. Research Progress of Aqueous Amine Solution for CO2 Capture: A Review. Renew. Sustain. Energy Rev. 2022;168:112902. doi: 10.1016/j.rser.2022.112902. DOI
Rochelle G.T. Thermal Degradation of Amines for CO2 Capture. Curr. Opin. Chem. Eng. 2012;1:183–190. doi: 10.1016/j.coche.2012.02.004. DOI
Kim C., Talapaneni S.N., Dai L. Porous Carbon Materials for CO2 Capture, Storage and Electrochemical Conversion. Mater. Rep. Energy. 2023;3:100199. doi: 10.1016/j.matre.2023.100199. DOI
Zelenková G., Zelenka T., Almáši M., Soldánová M. Graphene as a Promising Additive to Hierarchically Porous Carbon Monoliths for Enhanced H2 and CO2 Sorption. J. CO2 Util. 2023;68:102371. doi: 10.1016/j.jcou.2022.102371. DOI
Gao Y., He X., Mao K., Russell C.K., Toan S., Wang A., Chien T., Cheng F., Russell A.G., Zeng X.C., et al. Catalytic CO2 Capture via Ultrasonically Activating Dually Functionalised Carbon Nanotubes. ACS Nano. 2023;17:8345–8354. doi: 10.1021/acsnano.2c12762. PubMed DOI
Flores M.C., De Souza Figueiredo K.C. Asymmetric Oxygen-functionalised Carbon Nanotubes Dispersed in Polysulfone for CO2 Separation. J. Appl. Polym. Sci. 2022;140:e53303. doi: 10.1002/app.53303. DOI
Li H., Dilipkumar A., Abubakar S., Zhao D. Covalent Organic Frameworks for CO2 Capture: From Laboratory Curiosity to Industry Implementation. Chem. Soc. Rev. 2023;52:6294–6329. doi: 10.1039/D2CS00465H. PubMed DOI
Das N., Paul R., Chatterjee R., Shinde D.B., Lai Z., Bhaumik A., Mondal J. Tuning of Microenvironment in Covalent Organic Framework via Fluorination Strategy promotes Selective CO2 Capture. Chem. Asian J. 2023;18:e202200970. doi: 10.1002/asia.202200970. PubMed DOI
Garg A., Almáši M., Bednarčík J., Sharma R., Rao V.S., Panchal P., Jain A., Sharma A. Gd(III) Metal-organic Framework as an Effective Humidity Sensor and its Hydrogen Adsorption Properties. Chemosphere. 2022;305:135467. doi: 10.1016/j.chemosphere.2022.135467. PubMed DOI
Almáši M., Zeleňák V., Gyepes R., Zukal A., Čejka J. Synthesis, Characterisation and Sorption Properties of Zinc(II) Metal–organic Framework Containing Methanetetrabenzoate Ligand. Colloids Surf. A Physicochem. Eng. Asp. 2013;437:101–107. doi: 10.1016/j.colsurfa.2012.11.067. DOI
Király N., Capková D., Gyepes R., Vargová N., Kazda T., Bednarčík J., Yudina D., Zelenka T., Čudek P., Zeleňák V., et al. Sr(II) and Ba(II) Alkaline Earth Metal–Organic Frameworks (AE-MOFs) for Selective Gas Adsorption, Energy Storage, and Environmental Application. Nanomaterials. 2023;13:234. doi: 10.3390/nano13020234. PubMed DOI PMC
Capková D., Kazda T., Čech O., Király N., Zelenka T., Čudek P., Sharma A., Hornebecq V., Straková Fedorková A., Almáši M. Influence of Metal-Organic Framework MOF-76(Gd) Activation/Carbonisation on the Cycle Performance Stability in Li-S Battery. J. Energy Storage. 2022;51:104419. doi: 10.1016/j.est.2022.104419. DOI
Cavallo M., Dosa M., Porcaro N.G., Bonino F., Piumetti M., Crocellà V. Shaped Natural and Synthetic Zeolites for CO2 Capture in a Wide Temperature Range. J. CO2 Util. 2023;67:102335. doi: 10.1016/j.jcou.2022.102335. DOI
Boer D.G., Langerak J., Pescarmona P.P. Zeolites as Selective Adsorbents for CO2 Separation. ACS Appl. Energy Mater. 2023;6:2634–2656. doi: 10.1021/acsaem.2c03605. DOI
Fatemeh Bahmanzadegan. Mahyar Ashourzadeh Pordsari. Ghaemi A. Improving the Efficiency of 4A-Zeolite Synthesised from Kaolin by Amine Functionalization for CO2 Capture. Sci. Rep. 2023;13:12533. doi: 10.1038/s41598-023-39859-z. PubMed DOI PMC
Borcănescu S., Popa A., Verdeş O., Suba M. Functionalized Ordered Mesoporous MCM-48 Silica: Synthesis, Characterization and Adsorbent for CO2 capture. Int. J. Mol. Sci. 2023;24:10345. doi: 10.3390/ijms241210345. PubMed DOI PMC
Bisht M., Bhawna B., Singh B., Pandey S. Deep Eutectic Solvent-modified Mesoporous Silica for CO2 Capture: A New Generation of Hybrid Sorbents. J. Mol. Liq. 2023;384:122203. doi: 10.1016/j.molliq.2023.122203. DOI
Zeleňák V., Badaničová M., Halamová D., Čejka J., Zukal A., Murafa N., Goerigk G. Amine-Modified Ordered Mesoporous Silica: Effect of Pore Size on Carbon Dioxide Capture. Chem. Eng. J. 2008;144:336–342. doi: 10.1016/j.cej.2008.07.025. DOI
Krzyżak A., Habina-Skrzyniarz I., Machowski G., Mazur W. Overcoming the Barriers to the Exploration of Nanoporous Shales Porosity. Microporous Mesoporous Mater. 2020;298:110003. doi: 10.1016/j.micromeso.2020.110003. DOI
Pan C., Song Y., Wang J., Zhan S., Unluer C., Ruan S. Unlocking the Role of Recycled Aggregates in the Performance Enhancement and CO2 Capture of Reactive Magnesia Cement Formulations. Cem. Concr. Res. 2023;168:107148. doi: 10.1016/j.cemconres.2023.107148. DOI
Marques L.M., Mota S.M., Teixeira P., Pinheiro C.I.C., Matos H.A. Ca-Looping Process Using Wastes of Marble Powders and Limestones for CO2 Capture from Real Flue Gas in the Cement Industry. J. CO2 Util. 2023;71:102450. doi: 10.1016/j.jcou.2023.102450. DOI
Lv Q., Zhou T., Luan Y., Zheng R., Guo X., Wang X., Hemmati-Sarapardeh A. A Green Aqueous Foam Stabilized by Cellulose Nanofibrils and Camellia Saponin for Geological CO2 Sequestration. J. Clean. Prod. 2023;406:136980. doi: 10.1016/j.jclepro.2023.136980. DOI
Rahma N.A., Kurniasari A., Pambudi Y.D.S., Bintang H.M., Zulfia A., Hudaya C. Characteristics of Corncob-Originated Activated Carbon Using Two Different Chemical Agent. IOP Conf. Ser. Mater. Sci. Eng. 2019;622:012030. doi: 10.1088/1757-899X/622/1/012030. DOI
Ahmed A.S., Alsultan M., Sabah A.A., Swiegers G.F. Carbon Dioxide Adsorption by a High-Surface-Area Activated Charcoal. J. Compos. Sci. 2023;7:179. doi: 10.3390/jcs7050179. DOI
Phothong K., Tangsathitkulchai C., Lawtae P. The Analysis of Pore Development and Formation of Surface Functional Groups in Bamboo-Based Activated Carbon during CO2 Activation. Molecules. 2021;26:5641. doi: 10.3390/molecules26185641. PubMed DOI PMC
Shafeeyan M.S., Daud W.M.A.W., Houshmand A., Shamiri A. A Review on Surface Modification of Activated Carbon for Carbon Dioxide Adsorption. J. Anal. Appl. Pyrolysis. 2010;89:143–151. doi: 10.1016/j.jaap.2010.07.006. DOI
Sreńscek-Nazzal J., Kiełbasa K. Advances in Modification of Commercial Activated Carbon for Enhancement of CO2 Capture. Appl. Surf. Sci. 2019;494:137–151. doi: 10.1016/j.apsusc.2019.07.108. DOI
Abuelnoor N., AlHajaj A., Khaleel M., Vega L.F., Abu-Zahra M.R.M. Activated Carbons from Biomass-Based Sources for CO2 Capture Applications. Chemosphere. 2021;282:131111. doi: 10.1016/j.chemosphere.2021.131111. PubMed DOI
Hack J., Maeda N., Meier D.M. Review on CO2 Capture Using Amine-Functionalised Materials. ACS Omega. 2022;7:39520–39530. doi: 10.1021/acsomega.2c03385. PubMed DOI PMC
Zaker A., Hammouda S.B., Sun J., Wang X., Li X., Chen Z. Carbon-based Materials for CO2 Capture: Their Production, Modification and Performance. J. Environ. Chem. Eng. 2023;11:109741. doi: 10.1016/j.jece.2023.109741. DOI
Mohamed M.G., Ebrahium S.M., Hammam A.S., Kuo S.-W., Aly K.I. Enhanced CO2 Capture in Nitrogen-Enriched Microporous Carbons Derived from Polybenzoxazines Containing Azobenzene and Carboxylic Acid Units. J. Polym. Res. 2020;27:1–12. doi: 10.1007/s10965-020-02179-1. DOI
Shang S., Tao Z., Yang C., Hanif A., Li L., Tsang D.C., Gu Q., Shang J. Facile Synthesis of CuBTC and its Graphene Oxide Composites as Efficient Adsorbents for CO2 Capture. Chem. Eng. J. 2020;393:124666. doi: 10.1016/j.cej.2020.124666. DOI
Wang Z., Goyal N., Liu L., Tsang D.C., Shang J., Liu W., Li G. N-doped porous carbon derived from polypyrrole for CO2 capture from humid flue gases. Chem. Eng. J. 2020;396:125376. doi: 10.1016/j.cej.2020.125376. DOI
Li J., Michalkiewicz B., Min J., Ma C., Chen X., Gong J., Mijowska E., Tang T. Selective Preparation of Biomass-derived Porous Carbon with Controllable Pore Sizes Toward Highly Efficient CO2 Capture. Chem. Eng. J. 2019;360:250–259. doi: 10.1016/j.cej.2018.11.204. DOI
Byrne J.F., Marsh H. Porosity in Carbons: Characterisation and Applications. CDIAC, Carbon Dioxide Information Analysis Center; Bethel, PA, USA: 1995.
Zauška Ľ., Bova S., Beňová E., Bednarčík J., Baláž M., Zeleňák V., Hornebecq V., Almáši M. Thermosensitive Drug Delivery System SBA-15-PEI for Controlled Release of Nonsteroidal Anti-Inflammatory Drug Diclofenac Sodium Salt: A Comparative Study. Materials. 2021;14:1880. doi: 10.3390/ma14081880. PubMed DOI PMC
Sing K.S.W., Williams R.T. Physisorption Hysteresis Loops and the Characterization of Nanoporous Materials. Adsorpt. Sci. Technol. 2004;22:773–782. doi: 10.1260/0263617053499032. DOI
Melouki R., Ouadah A., Llewellyn P.L. The CO2 Adsorption Behavior Study on Activated Carbon Synthesised from Olive Waste. J. CO2 Util. 2020;42:101292. doi: 10.1016/j.jcou.2020.101292. DOI
Bai J., Huang J., Yu Q., Demir M., Gecit F.H., Altay B.N., Wang L., Hu X. One-pot Synthesis of Self S-doped Porous Carbon for Efficient CO2 Adsorption. Fuel Process. Technol. 2023;244:107700. doi: 10.1016/j.fuproc.2023.107700. DOI
Rouquerol J., Avnir D., Fairbridge C.W., Everett D.H., Haynes J.M., Pernicone N., Ramsay J.D.F., Sing K.S.W., Unger K.K. Recommendations for the Characterisation of Porous Solids (Technical Report) Pure Appl. Chem. 1994;66:1739–1758. doi: 10.1351/pac199466081739. DOI
Paryanto, Wibowo W.A., Hantoko D., Saputro M.E. Preparation of Activated Carbon from Mangrove Waste by KOH Chemical Activation. IOP Conf. Ser. Mater. Sci. Eng. 2019;543:012087. doi: 10.1088/1757-899X/543/1/012087. DOI
Plachy T., Kutalkova E., Skoda D., Holcapkova P. Transformation of Cellulose via Two-Step Carbonization to Conducting Carbonaceous Particles and Their Outstanding Electrorheological Performance. Int. J. Mol. Sci. 2022;23:5477. doi: 10.3390/ijms23105477. PubMed DOI PMC
Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report) Pure Appl. Chem. 2015;87:1051–1069. doi: 10.1515/pac-2014-1117. DOI
Spessato L., Duarte V.A., Fonseca J.M., Arroyo P.A., Almeida V.C. Nitrogen-Doped Activated Carbons with High Performances for CO2 Adsorption. J. CO2 Util. 2022;61:102013. doi: 10.1016/j.jcou.2022.102013. DOI
Zelenka T., Simanova K., Saini R., Zelenková G., Nehra S., Sharma A., Almáši M. Carbon Dioxide and Hydrogen Adsorption Study on Surface-modified HKUST-1 with Diamine/triamine. Sci. Rep. 2022;12:17366. doi: 10.1038/s41598-022-22273-2. PubMed DOI PMC
Almáši M., Király N., Zeleňák V., Vilková M., Bourrelly S. Zinc(ii) and Cadmium(ii) Amorphous Metal-organic Frameworks (aMOFs): Study of Activation Process and High-pressure Adsorption of Greenhouse Gases. RSC Adv. 2021;11:20137–20150. doi: 10.1039/D1RA02938J. PubMed DOI PMC
Li M., Xiao R. Preparation of a Dual Pore Structure Activated Carbon from Rice Husk Char as an Adsorbent for CO2 Capture. Fuel Process. Technol. 2019;186:35–39. doi: 10.1016/j.fuproc.2018.12.015. DOI
Li D., Tian Y., Li L., Li J., Zhang H. Production of Highly Microporous Carbons with Large CO2 Uptakes at Atmospheric Pressure by KOH Activation of Peanut Shell Char. J. Porous Mater. 2015;22:1581–1588. doi: 10.1007/s10934-015-0041-7. DOI
Zhang C., Song W., Ma Q., Xie L., Zhang X., Guo H. Enhancement of CO2 Capture on Biomass-Based Carbon from Black Locust by KOH Activation and Ammonia Modification. Energy Fuels. 2016;30:4181–4190. doi: 10.1021/acs.energyfuels.5b02764. DOI
Serafin J., Dziejarski B., Vendrell X., Kiełbasa K., Michalkiewicz B. Biomass Waste Fern Leaves as a Material for a Sustainable Method of Activated Carbon Production for CO2 Capture. Biomass Bioenergy. 2023;175:106880. doi: 10.1016/j.biombioe.2023.106880. DOI
Kim C.-H., Lee S.-Y., Park S.-J. Efficient Micropore Sizes for Carbon Dioxide Physisorption of Pine Cone-Based Carbonaceous Materials at Different Temperatures. J. CO2 Util. 2021;54:101770. doi: 10.1016/j.jcou.2021.101770. DOI
Singh G., Kim I.Y., Lakhi K.S., Joseph S., Srivastava P., Naidu R., Vinu A. Heteroatom Functionalized Activated Porous Biocarbons and Their Excellent Performance for CO2 Capture at High Pressure. J. Mater. Chem. A Mater. Energy Sustain. 2017;5:21196–21204. doi: 10.1039/C7TA07186H. DOI
Serafin J., Narkiewicz U., Morawski A.W., Wróbel R.J., Michalkiewicz B. Highly Microporous Activated Carbons from Biomass for CO2 Capture and Effective Micropores at Different Conditions. J. CO2 Util. 2017;18:73–79. doi: 10.1016/j.jcou.2017.01.006. DOI
He S., Chen G., Xiao H., Shi G., Ruan C., Ma Y., Dai H., Yuan B., Chen X., Yang X. Facile Preparation of N-Doped Activated Carbon Produced from Rice Husk for CO2 Capture. J. Colloid Interface Sci. 2021;582:90–101. doi: 10.1016/j.jcis.2020.08.021. PubMed DOI
Ello A.S., de Souza L.K.C., Trokourey A., Jaroniec M. Coconut Shell-Based Microporous Carbons for CO2 Capture. Microporous Mesoporous Mater. 2013;180:280–283. doi: 10.1016/j.micromeso.2013.07.008. DOI
Guo Y., Tan C., Sun J., Li W., Zhang J., Zhao C. Porous Activated Carbons Derived from Waste Sugarcane Bagasse for CO2 Adsorption. Chem. Eng. J. 2020;381:122736. doi: 10.1016/j.cej.2019.122736. DOI
Zhang Y., Wei Z., Liu X., Liu F., Yan Z., Zhou S., Wang J., Deng Q. Synthesis of Palm Sheath Derived-Porous Carbon for Selective CO2 Adsorption. RSC Adv. 2022;12:8592–8599. doi: 10.1039/D2RA00139J. PubMed DOI PMC
Brunauer S., Emmett P.H., Teller E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938;60:309–319. doi: 10.1021/ja01269a023. DOI
Zelenka T., Horikawa T., Do D.D. Artifacts and Misinterpretations in Gas Physisorption Measurements and Characterisation of Porous Solids. Adv. Colloid Interface Sci. 2023;311:102831. doi: 10.1016/j.cis.2022.102831. PubMed DOI