Carbon dioxide and hydrogen adsorption study on surface-modified HKUST-1 with diamine/triamine
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
LUASK22049
INTER-EXCELLENCE II
SGS16/PřF/2022
OSU
CEP Register
SK-CZ-RD-21-0068
APVV
2022-2123
VVGS
1/0865/21
VEGA
006UPJS-4/2021
KEGA
PubMed
36253389
PubMed Central
PMC9574841
DOI
10.1038/s41598-022-22273-2
PII: 10.1038/s41598-022-22273-2
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
The present article intended to study the influence of post-synthetic modification with ethylenediamine (en, diamine) and diethylenetriamine (deta, triamine) within the coordinatively unsaturated sites (CUSs) of HKUST-1 on carbon dioxide and hydrogen storage. The as-sythesized adsorbent was solvent-exchanged and subsequently post-synthetically modified with di-/triamines as sources of amine-based sorption sites due to the increased CO2 storage capacity. It is known that carbon dioxide molecules have a high affinity for amine groups, and moreover, the volume of amine molecules itself reduces the free pore volume in HKUST-1, which is the driving force for increasing the hydrogen storage capacity. Different concentrations of amines were used for modification of HKUST-1, through which materials with different molar ratios of HKUST-1 to amine: 1:0.05; 1:0.1; 1:0.25; 1:0.5; 1:0.75; 1:1; 1:1.5 were synthesized. Adsorption measurements of carbon dioxide at 0 °C up to 1 bar have shown that the compounds can adsorb large amounts of carbon dioxide. In general, deta-modified samples showed higher adsorbed amounts of CO2 compared to en-modified materials, which can be explained by the higher number of amine groups within the deta molecule. With an increasing molar ratio of amines, there was a decrease in wt.% CO2. The maximum storage capacity of CO2 was 22.3 wt.% for HKUST-1: en/1:0.1 and 33.1 wt.% for HKUST-1: deta/1:0.05 at 0 °C and 1 bar. Hydrogen adsorption measurements showed the same trend as carbon dioxide, with the maximum H2 adsorbed amounts being 1.82 wt.% for HKUST-1: en/1:0.1 and 2.28 wt.% for HKUST-1: deta/1:0.05 at - 196 °C and 1 bar.
See more in PubMed
Link 1, https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal/delivering-european-green-deal_en.
Link 2, https://www.osti.gov/biblio/1480987-cost-performance-baseline-fossil-energy-plants-volume-bituminous-coal-pc-natural-gas-electricity-revision.
Link 3, https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles.
Fan W, Zhang X, Kang Z, Liu X, Sun D. Isoreticular chemistry within metal–organic frameworks for gas storage and separation. Coord. Chem. Rev. 2021;443:213968. doi: 10.1016/j.ccr.2021.213968. DOI
Almáši M, Zeleňák V, Gyepes R, Zauška U, Bourrelly S. A series of four novel alkaline earth metal–organic frameworks constructed of Ca(II), Sr(II), Ba(II) ions and tetrahedral MTB linker: Structural diversity, stability study and low/high-pressure gas adsorption properties. RSC Adv. 2020;10:32323–32334. doi: 10.1039/d0ra05145d. PubMed DOI PMC
Fakhraei Ghazvini M, Vahedi M, Najafi Nobar S, Sabouri F. Investigation of the MOF adsorbents and the gas adsorptive separation mechanisms. J. Environ. Chem. Eng. 2021;9:104790. doi: 10.1016/j.jece.2020.104790. DOI
Almáši M, Király N, Zeleňák V, Vilková M, Bourrelly S. Zinc(II) and cadmium(II) amorphous metal–organic frameworks (aMOFs): Study of activation process and high-pressure adsorption of greenhouse gases. RSC Adv. 2021;11:20137–20150. doi: 10.1039/d1ra02938j. PubMed DOI PMC
Hao M, Qiu M, Yang H, Hu B, Wang X. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Sci. Total Environ. 2021;760:143333. doi: 10.1016/j.scitotenv.2020.143333. PubMed DOI
Almáši M, Zeleňák V, Opanasenko MV, Čejka J. Efficient and reusable Pb(II) metal–organic framework for Knoevenagel condensation. Catal. Lett. 2018;148:2263–2273. doi: 10.1007/s10562-018-2471-8. DOI
Yao MS, Li WH, Xu G. Metal–organic frameworks and their derivatives for electrically-transduced gas sensors. Coord. Chem. Rev. 2021;426:213479. doi: 10.1016/j.ccr.2020.213479. DOI
Garg A, Almáši M, Rattan Paul D, Poonia E, Luthra JR, Sharma A. Metal-organic framework MOF-76(Nd): Synthesis, characterization and study of hydrogen storage and humidity sensing. Front. Energy Res. 2021;8:604735. doi: 10.3389/fenrg.2020.604735. DOI
Garg A, Almáši M, Bednarčík J, Sharma R, Rao VS, Panchal P, Jain A, Sharma A. Gd(III) metal-organic framework as an effective humidity sensor and its hydrogen adsorption properties. Chemosphere. 2022;305:135467. doi: 10.1016/j.chemosphere.2022.135467. PubMed DOI
Zhong X, Hu JJ, Yao SL, Zhang RJ, Wang JJ, Cai DG, Luo TK, Peng Y, Liu SJ, Wen HR. Gd(III)-based inorganic polymers, metal–organic frameworks and coordination polymers for magnetic refrigeration. CrystEngComm. 2022;24:2370–2382. doi: 10.1039/d1ce01633d. DOI
Zeleňák V, Almáši M, Zeleňáková A, Hrubovčák P, Tarasenko R, Bourelly S, Llewellyn P. Large and tunable magnetocaloric effect in gadolinium-organic framework: Tuning by solvent exchange. Sci. Rep. 2019;9:15572. doi: 10.1038/s41598-019-51590-2. PubMed DOI PMC
Mallakpour S, Nikkhoo E, Hussain CM. Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coord. Chem. Rev. 2022;451:214262. doi: 10.1016/j.ccr.2021.214262. DOI
Almáši M, Zeleňák V, Palotai P, Beňová E, Zeleňáková A. Metal-organic framework MIL-101(Fe)-NH2 functionalized with different long-chain polyamines as drug delivery system. Inorg. Chem. Commun. 2018;93:115–120. doi: 10.1016/j.inoche.2018.05.007. DOI
Rabiee N, Fatahi Y, Ahmadi S, Abbariki N, Ojaghi A, Rabiee M, Radmanesh F, Dinarvand R, Bagherzadeh M, Mostafavi E, Ashrafizadeh M, Makvandi P, Lima EC, Saeb MR. Bioactive hybrid metal-organic framework (MOF)-based nanosensors for optical detection of recombinant SARS-CoV-2 spike antigen. Sci. Total Environ. 2022;825:153902. doi: 10.1016/j.scitotenv.2022.153902. PubMed DOI PMC
Almáši M. A review on state of art and perspectives of metal-organic frameworks (MOFs) in the fight against coronavirus SARS-CoV-2. J. Coord. Chem. 2021;74:2111–2127. doi: 10.1080/00958972.2021.1965130. DOI
Li L, Yang J, Li J, Chen Y, Li J. Separation of CO2/CH4 and CH4/N2 mixtures by M/DOBDC: A detailed dynamic comparison with MIL-100(Cr) and activated carbon. Microporous Mesoporous Mater. 2014;198:236–246. doi: 10.1016/j.micromeso.2014.07.041. DOI
Mason JA, McDonald TM, Bae TH, Bachman JE, Sumida K, Dutton JJ, Kaye SS, Long JR. Application of a high-throughput analyzer in evaluating solid adsorbents for post-combustion carbon capture via multicomponent adsorption of CO2, N2 and H2O. J. Am. Chem. Soc. 2015;137:4787–4803. doi: 10.1021/jacs.5b00838. PubMed DOI
Luo J, Wang J, Li G, Huo Q, Liu Y. Assembly of a unique octa-nuclear copper cluster-based metal–organic framework with highly selective CO2 adsorption over N2 and CH4. Chem. Commun. 2013;49:11433. doi: 10.1039/c3cc47462c. PubMed DOI
Ghanbari T, Abnisa F, Wan Daud WMA. A review on production of metal organic frameworks (MOF) for CO2 adsorption. Sci. Total Environ. 2020;707:35090. doi: 10.1016/j.scitotenv.2019.135090. PubMed DOI
Su X, Bromberg L, Martis V, Simeon F, Huq A, Hatton TA. Postsynthetic functionalization of Mg-MOF-74 with tetraethylenepentamine: Structural characterization and enhanced CO2 adsorption. ACS Appl. Mater. Interfaces. 2017;9:11299–11306. doi: 10.1021/acsami.7b02471. PubMed DOI
Lin Y, Yan Q, Kong C, Chen L. Polyethyleneimine incorporated metal-organic frameworks adsorbent for highly selective CO2 capture. Sci. Rep. 2013;3:1859. doi: 10.1038/srep01859. PubMed DOI PMC
Shet SP, Shanmuga Priya S, Sudhakar K, Tahir M. A review on current trends in potential use of metal-organic framework for hydrogen storage. Int. J. Hydrog. Energy. 2021;46:11782–11803. doi: 10.1016/j.ijhydene.2021.01.020. DOI
Langmi HW, Ren J, North B, Mathe M, Bessarabov D. Hydrogen storage in metal-organic frameworks: A review. Electrochim. Acta. 2014;128:368–392. doi: 10.1016/j.electacta.2013.10.190. DOI
Grünker R, Bon V, Müller P, Stoeck U, Krause S, Mueller U, Senkovska I, Kaskel S. A new metal–organic framework with ultra-high surface area. Chem. Commun. 2014;50:3450. doi: 10.1039/c4cc00113c. PubMed DOI
Gómez-Gualdrón DA, Colón YJ, Zhang X, Wang TC, Chen YS, Hupp JT, Yildirim T, Farha OK, Zhang J, Snurr RQ. Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage. Energy Environ. Sci. 2016;9:3279–3289. doi: 10.1039/c6ee02104b. DOI
Park HJ, Lim D, Yang WS, Oh T, Suh MP. A highly porous metal–organic framework: Structural transformations of a guest-free MOF depending on activation method and temperature. Chem. Eur. J. 2011;17:7251–7260. doi: 10.1002/chem.201003376. PubMed DOI
Almáši M, Beňová E, Zeleňák V, Madaj B, Huntošová V, Brus J, Urbanová M, Bednarčík J, Hornebecq V. Cytotoxicity study and influence of SBA-15 surface polarity and pH on adsorption and release properties of anticancer agent pemetrexed. Mater. Sci. Eng. C. 2020;109:110552. doi: 10.1016/j.msec.2019.110552. PubMed DOI
Zauska L, Bova S, Benova E, Bednarcik J, Balaz M, Zelenak V, Hornebecq V, Almasi M. Thermosensitive drug delivery system SBA-15-PEI for controlled release of nonsteroidal anti-inflammatory drug diclofenac sodium salt: A comparative study. Materials. 2021;14:1880. doi: 10.3390/ma14081880. PubMed DOI PMC
Stoddart A. Predicting perfect pores. Nat. Rev. Mater. 2020;5:331. doi: 10.1038/s41578-020-0200-6. DOI
Zhang X, Lin R, Wang J, Wang B, Liang B, Yildirim T, Zhang J, Zhou W, Chen B. Optimization of the pore structures of MOFs for record high hydrogen volumetric working capacity. Adv. Mater. 2020;32:1907995. doi: 10.1002/adma.201907995. PubMed DOI PMC
Seymour, L. United States Patent 5, 360, 743, issued 1 (1994).
Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) Pure Appl. Chem. 2015;87:1051–1069. doi: 10.1515/pac-2014-1117. DOI
Chui SSY, Lo SMF, Charmant JPH, Orpen AG, Williams ID. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science. 1999;283:1148–1150. doi: 10.1126/science.283.5405.1148. PubMed DOI
Madalan AM, Maxim C, Jurca B, Avarvari N, Andruh M. Constructing robust channel structures by packing metallacalixarenes: Reversible single-crystal-to-single-crystal dehydration. J. Am. Chem. Soc. 2009;131:4586–4587. doi: 10.1021/ja900416e. PubMed DOI
Konar S, Mukherjee PS, Zangrando E, Drew MG, Diaz C, Ribas J, Chaudhuri NR. A new porous 2D coordination polymer built by copper(II) and trimesic acid. Inorg. Chim. Acta. 2005;358:29–35. doi: 10.1016/j.ica.2004.08.010. DOI
Gaikwad S, Kim Y, Gaikwad R, Han S. Enhanced CO2 capture capacity of amine-functionalized MOF-177 metal organic framework. J. Environ. Chem. Eng. 2021;9:105523. doi: 10.1016/j.jece.2021.105523. DOI
Flaig RW, Osborn Popp TM, Fracaroli AM, Kapustin EA, Kalmutzki MJ, Altamimi RM, Fathieh F, Reimer JA, Yaghi OM. The chemistry of CO2 capture in an amine-functionalized metal–organic framework under dry and humid conditions. J. Am. Chem. Soc. 2017;139:12125–12128. doi: 10.1021/jacs.7b06382. PubMed DOI
Xian S, Wu Y, Wu J, Wang X, Xiao J. Enhanced dynamic CO2 adsorption capacity and CO2/CH4 selectivity on polyethylenimine-impregnated UiO-66. Ind. Eng. Chem. Res. 2015;54:11151–11158. doi: 10.1021/acs.iecr.5b03517. DOI
Wang N, Mundstock A, Liu Y, Huang A, Caro J. Amine-modified Mg-MOF-74/CPO-27-Mg membrane with enhanced H2/CO2 separation. Chem. Eng. Sci. 2015;124:27–36. doi: 10.1016/j.ces.2014.10.037. DOI
Fan H, Xia H, Kong C, Chen L. Synthesis of thin amine-functionalized MIL-53 membrane with high hydrogen permeability. Int. J. Hydrog. Energy. 2013;38:10795–10801. doi: 10.1016/j.ijhydene.2013.02.040. DOI
Gadipelli S, Ford J, Zhou W, Wu H, Udovic TJ, Yildirim T. Nanoconfinement and catalytic dehydrogenation of ammonia borane by magnesium-metal–organic-framework-74. Chem. Eur. J. 2011;17:6043–6047. doi: 10.1002/chem.201100090. PubMed DOI
Xia L, Liu Q. Adsorption of H2 on aluminum-based metal-organic frameworks: A computational study. Comput. Mater. Sci. 2017;126:176–181. doi: 10.1016/j.commatsci.2016.09.039. DOI
Sumida K, Brown CM, Herm ZR, Chavan S, Bordiga S, Long JR. Hydrogen storage properties and neutron scattering studies of Mg2(dobdc)—A metal–organic framework with open Mg2+adsorption sites. Chem. Commun. 2011;47:1157–1159. doi: 10.1039/c0cc03453c. PubMed DOI
Novel Cu(II)-based metal-organic framework STAM-1 as a sulfur host for Li-S batteries