Sr(II) and Ba(II) Alkaline Earth Metal-Organic Frameworks (AE-MOFs) for Selective Gas Adsorption, Energy Storage, and Environmental Application

. 2023 Jan 04 ; 13 (2) : . [epub] 20230104

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36677987

Grantová podpora
1/0865/21 VEGA
1/0104/23 VEGA
20-0512 APVV
20-0138 APVV
SK-CZ-RD-21-0068 APVV
2022-2123 VVGS
FEKT-S-20-6206 BUT CEP - Centrální evidence projektů
K801621N FWO CEP - Centrální evidence projektů
TRIANGEL TRIANGEL

Two new alkaline earth metal-organic frameworks (AE-MOFs) containing Sr(II) (UPJS-15) or Ba(II) (UPJS-16) cations and extended tetrahedral linker (MTA) were synthesized and characterized in detail (UPJS stands for University of Pavol Jozef Safarik). Single-crystal X-ray analysis (SC-XRD) revealed that the materials are isostructural and, in their frameworks, one-dimensional channels are present with the size of ~11 × 10 Å2. The activation process of the compounds was studied by the combination of in situ heating infrared spectroscopy (IR), thermal analysis (TA) and in situ high-energy powder X-ray diffraction (HE-PXRD), which confirmed the stability of compounds after desolvation. The prepared compounds were investigated as adsorbents of different gases (Ar, N2, CO2, and H2). Nitrogen and argon adsorption measurements showed that UPJS-15 has SBET area of 1321 m2 g-1 (Ar) / 1250 m2 g-1 (N2), and UPJS-16 does not adsorb mentioned gases. From the environmental application, the materials were studied as CO2 adsorbents, and both compounds adsorb CO2 with a maximum capacity of 22.4 wt.% @ 0 °C; 14.7 wt.% @ 20 °C and 101 kPa for UPJS-15 and 11.5 wt.% @ 0°C; 8.4 wt.% @ 20 °C and 101 kPa for UPJS-16. According to IAST calculations, UPJS-16 shows high selectivity (50 for CO2/N2 10:90 mixture and 455 for CO2/N2 50:50 mixture) and can be applied as CO2 adsorbent from the atmosphere even at low pressures. The increased affinity of materials for CO2 was also studied by DFT modelling, which revealed that the primary adsorption sites are coordinatively unsaturated sites on metal ions, azo bonds, and phenyl rings within the MTA linker. Regarding energy storage, the materials were studied as hydrogen adsorbents, but the materials showed low H2 adsorption properties: 0.19 wt.% for UPJS-15 and 0.04 wt.% for UPJS-16 @ -196 °C and 101 kPa. The enhanced CO2/H2 selectivity could be used to scavenge carbon dioxide from hydrogen in WGS and DSR reactions. The second method of applying samples in the area of energy storage was the use of UPJS-15 as an additive in a lithium-sulfur battery. Cyclic performance at a cycling rate of 0.2 C showed an initial discharge capacity of 337 mAh g-1, which decreased smoothly to 235 mAh g-1 after 100 charge/discharge cycles.

Zobrazit více v PubMed

Ghanbari T., Abnisa F., Wan Daud W.M. A Review on Production of Metal-organic Frameworks (MOF) for CO2 Adsorption. Sci. Total Environ. 2020;707:135090. doi: 10.1016/j.scitotenv.2019.135090. PubMed DOI

Connolly B.M., Madden D.G., Wheatley A.E., Fairen-Jimenez D. Shaping the Future of Fuel: Monolithic Metal–organic Frameworks for High-Density Gas Storage. J. Am. Chem. Soc. 2020;142:8541–8549. doi: 10.1021/jacs.0c00270. PubMed DOI

Almáši M. Metal-Organic Framework-Based Nanomaterials for Energy Conversion and Storage. Elsevier; Amsterdam, The Netherlands: 2022. Current Development in MOFs for Hydrogen Storage; pp. 631–661.

Zelenka T., Simanova K., Saini R., Zelenkova G., Nehra S.P., Sharma A., Almasi M. Carbon Dioxide and Hydrogen Adsorption Study on Surface-modified HKUST-1 with Diamine/triamine. Sci. Rep. 2022;12:17366. doi: 10.1038/s41598-022-22273-2. PubMed DOI PMC

Li H., Li L., Lin R.-B., Zhou W., Zhang Z., Xiang S., Chen B. Porous Metal-organic Frameworks for Gas Storage and Separation: Status and Challenges. EnergyChem. 2019;1:100006. doi: 10.1016/j.enchem.2019.100006. PubMed DOI PMC

Király N., Zeleňák V., Lenártová N., Zeleňáková A., Čižmár E., Almáši M., Meynen V., Hovan A., Gyepes R. Novel Lanthanide(III) Porphyrin-Based Metal–Organic Frameworks: Structure, Gas Adsorption, and Magnetic Properties. ACS Omega. 2021;6:24637–24649. doi: 10.1021/acsomega.1c03327. PubMed DOI PMC

Goetjen T.A., Liu J., Wu Y., Sui J., Zhang X., Hupp J.T., Farha O.K. Metal–Organic Framework (MOF) Materials as Polymerization Catalysts: A Review and Recent Advances. Chem. Commun. 2020;56:10409–10418. doi: 10.1039/D0CC03790G. PubMed DOI

Ali M., Pervaiz E., Noor T., Rabi O., Zahra R., Yang M. Recent Advancements in MOF-Based Catalysts for Applications in Electrochemical and Photoelectrochemical Water Splitting: A Review. Int. J. Energy Res. 2020;45:1190–1226. doi: 10.1002/er.5807. DOI

Wang Q., Astruc D. State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chem. Rev. 2019;120:1438–1511. doi: 10.1021/acs.chemrev.9b00223. PubMed DOI

Almáši M., Zeleňák V., Opanasenko M., Císařová I. Ce(III) and Lu(III) Metal–Organic Frameworks with Lewis Acid Metal Sites: Preparation, Sorption Properties and Catalytic Activity in Knoevenagel Condensation. Catal. Today. 2015;243:184–194. doi: 10.1016/j.cattod.2014.07.028. DOI

Lawson H.D., Walton S.P., Chan C. Metal–Organic Frameworks for Drug Delivery: A Design Perspective. ACS Appl. Mater. Interfaces. 2021;13:7004–7020. doi: 10.1021/acsami.1c01089. PubMed DOI

Cao J., Li X., Tian H. Metal-Organic Framework (MOF)-Based Drug Delivery. Curr. Med. Chem. 2020;27:5949–5969. doi: 10.2174/0929867326666190618152518. PubMed DOI

Almáši M., Zeleňák V., Palotai P., Beňová E., Zeleňáková A. Metal-Organic Framework MIL-101(Fe)-NH2 Functionalized with Different Long-Chain Polyamines as Drug Delivery System. Inorg. Chem. Commun. 2018;93:115–120. doi: 10.1016/j.inoche.2018.05.007. DOI

Wang L., Yin K., Deng Q., Huang Q., He J., Duan J. Wetting Ridge-Guided Directional Water Self-Transport. Adv. Sci. 2022;9:2204891. doi: 10.1002/advs.202204891. PubMed DOI PMC

He Y., Wang L., Wu T., Wu Z., Chen Y., Yin K. Facile Fabrication of Hierarchical Textures for Substrate-independent and Durable Superhydrophobic Surfaces. Nanoscale. 2022;14:9392–9400. doi: 10.1039/D2NR02157A. PubMed DOI

Yin K., Chu D., Dong X., Wang C., Duan J.A., He J. Femtosecond Laser Induced Robust Periodic Nanoripple Structured Mesh for Highly Efficient Oil–water Separation. Nanoscale. 2017;9:14229–14235. doi: 10.1039/C7NR04582D. PubMed DOI

Garg A., Almáši M., Bednarčík J., Sharma R., Rao V.S., Panchal P., Jain A., Sharma A. Gd(III) Metal-organic Framework as an Effective Humidity Sensor and its Hydrogen Adsorption Properties. Chemosphere. 2022;305:135467. doi: 10.1016/j.chemosphere.2022.135467. PubMed DOI

Wang L. Metal-Organic Frameworks for QCM-Based Gas Sensors: A Review. Sens. Actuators A Phys. 2020;307:111984. doi: 10.1016/j.sna.2020.111984. DOI

Wu F., Ye J., Cao Y., Wang Z., Miao T., Shi Q. Recent Advances in Fluorescence Sensors Based on DNA–MOF Hybrids. Luminescence. 2020;35:440–446. doi: 10.1002/bio.3790. PubMed DOI

Orts-Arroyo M., Rabelo R., Carrasco-Berlanga A., Moliner N., Cano J., Julve M., Lloret F., De Munno G., Ruiz-García R., Mayans J., et al. Field-Induced Slow Magnetic Relaxation and Magnetocaloric Effects in an Oxalato-Bridged Gadolinium(III)-Based 2D MOF. Dalton Trans. 2021;50:3801–3805. doi: 10.1039/D1DT00462J. PubMed DOI

Kim S., Oh H. Research Trend of Metal-Organic Frameworks for Magnetic Refrigeration Materials Application. Korean J. Mater. Res. 2020;30:136–141. doi: 10.3740/MRSK.2020.30.3.136. DOI

Zeleňák V., Almáši M., Zeleňáková A., Hrubovčák P., Tarasenko R., Bourelly S., Llewellyn P. Large and Tunable Magnetocaloric Effect in Gadolinium-Organic Framework: Tuning by Solvent Exchange. Sci. Rep. 2019;9:15572. doi: 10.1038/s41598-019-51590-2. PubMed DOI PMC

Zhao H., Sheng L., Wang L., Xu H., He X. The Opportunity of Metal Organic Frameworks and Covalent Organic Frameworks in Lithium (ION) Batteries and Fuel Cells. Energy Storage Mater. 2020;33:360–381. doi: 10.1016/j.ensm.2020.08.028. DOI

Zhou L., Danilov D.L., Eichel R.A., Notten P.H. Host Materials Anchoring Polysulfides in Li–S Batteries Reviewed. Adv. Energy Mater. 2020;11:2001304. doi: 10.1002/aenm.202001304. DOI

Capková D., Almáši M., Kazda T., Čech O., Király N., Čudek P., Fedorková A.S., Hornebecq V. Metal-Organic Framework Mil-101(Fe)–NH2 as an Efficient Host for Sulphur Storage in Long-Cycle Li–S Batteries. Electrochim. Acta. 2020;354:136640. doi: 10.1016/j.electacta.2020.136640. DOI

Capková D., Kazda T., Čech O., Király N., Zelenka T., Čudek P., Sharma A., Hornebecq V., Fedorková A.S., Almáši M. Influence of Metal-organic Framework MOF-76(Gd) Activation/carbonization on the Cycle Performance Stability in Li-S battery. J. Energy Storage. 2022;51:104419. doi: 10.1016/j.est.2022.104419. DOI

Qiao Z., Wang N., Jiang J., Zhou J. Design of Amine-Functionalized Metal–Organic Frameworks for CO2 Separation: The More Amine, the Better? Chem. Commun. 2016;52:974–977. doi: 10.1039/C5CC07171B. PubMed DOI

Klewiah I., Berawala D.S., Alexander Walker H.C., Andersen P.Ø., Nadeau P.H. Review of Experimental Sorption Studies of CO2 and CH4 in Shales. J. Nat. Gas Sci. Eng. 2020;73:103045. doi: 10.1016/j.jngse.2019.103045. DOI

Lee K., Howe J.D., Lin L.-C., Smit B., Neaton J.B. Small-Molecule Adsorption in Open-Site Metal–Organic Frameworks: A Systematic Density Functional Theory Study for Rational Design. Chem. Mater. 2015;27:668–678. doi: 10.1021/cm502760q. DOI

Rada Z.H., Abid H.R., Sun H., Shang J., Li J., He Y., Liu S., Wang S. Effects of -NO2 and -NH2 Functional Groups in Mixed-Linker Zr-Based MOFs on Gas Adsorption of CO2 and CH4. Prog. Nat. Sci. Mater. Int. 2018;28:160–167. doi: 10.1016/j.pnsc.2018.01.016. DOI

Pachfule P., Chen Y., Jiang J., Banerjee R. Fluorinated Metal-Organic Frameworks: Advantageous for Higher H2 and CO2 Adsorption or Not? Chem.—Eur. J. 2011;18:688–694. doi: 10.1002/chem.201102295. PubMed DOI

Kökçam-Demir Ü., Goldman A., Esrafili L., Gharib M., Morsali A., Weingart O., Janiak C. Coordinatively Unsaturated Metal Sites (Open Metal Sites) in Metal–Organic Frameworks: Design and Applications. Chem. Soc. Rev. 2020;49:2751–2798. doi: 10.1039/C9CS00609E. PubMed DOI

Caskey S.R., Wong-Foy A.G., Matzger A.J. Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores. J. Am. Chem. Soc. 2008;130:10870–10871. doi: 10.1021/ja8036096. PubMed DOI

Milner P.J., Siegelman R.L., Forse A.C., Gonzalez M.I., Runčevski T., Martell J.D., Reimer J.A., Long J.R. A Diaminopropane-Appended Metal–Organic Framework Enabling Efficient CO2 Capture from Coal Flue Gas via a Mixed Adsorption Mechanism. J. Am. Chem. Soc. 2017;139:13541–13553. doi: 10.1021/jacs.7b07612. PubMed DOI PMC

Kim E.J., Siegelman R.L., Jiang H.Z., Forse A.C., Lee J.-H., Martell J.D., Milner P.J., Falkowski J.M., Neaton J.B., Reimer J.A., et al. Cooperative Carbon Capture and Steam Regeneration with Tetraamine-Appended Metal–Organic Frameworks. Science. 2020;369:392–396. doi: 10.1126/science.abb3976. PubMed DOI PMC

Ren J., Langmi H.W., North B.C., Mathe M. Review on Processing of Metal-Organic Framework (MOF) Materials towards System Integration for Hydrogen Storage. Int. J. Energy Res. 2014;39:607–620. doi: 10.1002/er.3255. DOI

Rivard E., Trudeau M., Zaghib K. Hydrogen Storage for Mobility: A Review. Materials. 2019;12:1973. doi: 10.3390/ma12121973. PubMed DOI PMC

Langmi H.W., Ren J., North B., Mathe M., Bessarabov D. Hydrogen Storage in Metal-Organic Frameworks: A Review. Electrochim. Acta. 2014;128:368–392. doi: 10.1016/j.electacta.2013.10.190. DOI

Almáši M., Zeleňák V., Gyepes R., Zauška Ľ., Bourrelly S. A Series of Four Novel Alkaline Earth Metal–Organic Frameworks Constructed of Ca(II), Sr(II), Ba(II) Ions and Tetrahedral MTB Linker: Structural Diversity, Stability Study and Low/High-Pressure Gas Adsorption Properties. RSC Adv. 2020;10:32323–32334. doi: 10.1039/D0RA05145D. PubMed DOI PMC

Sumida K., Hill M.R., Horike S., Dailly A., Long J.R. Synthesis and Hydrogen Storage Properties of Be12(OH)12(1,3,5-Benzenetribenzoate)4. J. Am. Chem. Soc. 2009;131:15120–15121. doi: 10.1021/ja9072707. PubMed DOI

Lin R.-B., Li L., Zhou H.-L., Wu H., He C., Li S., Krishna R., Li J., Zhou W., Chen B. Molecular Sieving of Ethylene from Ethane Using a Rigid Metal–Organic Framework. Nat. Mater. 2018;17:1128–1133. doi: 10.1038/s41563-018-0206-2. PubMed DOI

Foo M.L., Horike S., Inubushi Y., Kitagawa S. An Alkaline Earth I3O0 Porous Coordination Polymer: [Ba2TMA(NO3)(DMF)] Angew. Chem. Int. Ed. 2012;51:6107–6111. doi: 10.1002/anie.201202285. PubMed DOI

Liu T., Hu H., Ding X., Yuan H., Jin C., Nai J., Liu Y., Wang Y., Wan Y., Tao X. 12 Years Roadmap of the Sulfur Cathode for Lithium Sulfur Batteries (2009–2020) Energy Storage Mater. 2020;30:346–366. doi: 10.1016/j.ensm.2020.05.023. DOI

Kazda T., Capková D., Jaššo K., Fedorková Straková A., Shembel E., Markevich A., Sedlaříková M. Carrageenan as an Ecological Alternative of Polyvinylidene Difluoride Binder for Li-S Batteries. Materials. 2021;14:5578. doi: 10.3390/ma14195578. PubMed DOI PMC

Capkova D., Kazda T., Čudek P., Strakova Fedorkova A. Binder Influence on Electrochemical Properties of Li-S Batteries. ECS Trans. 2020;99:161–167. doi: 10.1149/09901.0161ecst. DOI

Capková D., Kazda T., Straková Fedorková A., Čudek P., Oriňaková R. Carbon Materials as the Matrices for Sulfur in Li-S Batteries. ECS Trans. 2019;95:19–26. doi: 10.1149/09501.0019ecst. DOI

Liu G., Feng K., Cui H., Li J., Liu Y., Wang M. MOF Derived in-Situ Carbon-Encapsulated Fe3O4@C to Mediate Polysulfides Redox for Ultrastable Lithium-Sulfur Batteries. Chem. Eng. J. 2020;381:122652. doi: 10.1016/j.cej.2019.122652. DOI

Jiang H., Liu X.-C., Wu Y., Shu Y., Gong X., Ke F.-S., Deng H. Metal-Organic Frameworks for High Charge-Discharge Rates in Lithium-Sulfur Batteries. Angew. Chem. Int. Ed. 2018;57:3916–3921. doi: 10.1002/anie.201712872. PubMed DOI

Li M., Feng W., Su W., Song C., Cheng L. Mof-Derived Hollow Cage Ni–Co Mixed Oxide/CNTS Nanocomposites with Enhanced Electrochemical Performance for Lithium–Sulfur Batteries. Ionics. 2019;25:4037–4045. doi: 10.1007/s11581-019-02989-4. DOI

Zhang H., Xin S., Li J., Cui H., Liu Y., Yang Y., Wang M. Synergistic Regulation of Polysulfides Immobilization and Conversion by MOF-Derived COP-HNC Nanocages for High-Performance Lithium-Sulfur Batteries. Nano Energy. 2021;85:106011. doi: 10.1016/j.nanoen.2021.106011. DOI

Kazda T., Čudek P., Vondrák J., Sedlaříková M., Tichý J., Slávik M., Fafilek G., Čech O. Lithium-Sulphur Batteries Based on Biological 3D Structures. J. Solid State Electrochem. 2017;22:537–546. doi: 10.1007/s10008-017-3791-0. DOI

Fan L., Wu H., Wu X., Wang M., Cheng J., Zhang N., Feng Y., Sun K. Fe-MOF Derived Jujube Pit like Fe3O4/C Composite as Sulfur Host for Lithium-Sulfur Battery. Electrochim. Acta. 2019;295:444–451. doi: 10.1016/j.electacta.2018.08.107. DOI

Wang D., Zheng G., Zhang W., Niu X., Yan J., Nie T., Ji Z., Gu Y., Yan X. A Highly Stable Cathode for Lithium-Sulfur Battery Built of Ni-Doped Carbon Framework Linked to CNT. J. Alloys Compd. 2021;881:160496. doi: 10.1016/j.jallcom.2021.160496. DOI

Geng P., Du M., Guo X., Pang H., Tian Z., Braunstein P., Xu Q. Bimetallic Metal-Organic Framework with High-Adsorption Capacity toward Lithium Polysulfides for Lithium–Sulfur Batteries. Energy Environ. Mater. 2022;5:599–607. doi: 10.1002/eem2.12196. DOI

Ye Y., Gong L., Xiang S., Zhang Z., Chen B. Metal–Organic Frameworks as a Versatile Platform for Proton Conductors. Adv. Mater. 2020;32:1907090. doi: 10.1002/adma.201907090. PubMed DOI

Li A.-L., Gao Q., Xu J., Bu X.-H. Proton-Conductive Metal-Organic Frameworks: Recent Advances and Perspectives. Coord. Chem. Rev. 2017;344:54–82. doi: 10.1016/j.ccr.2017.03.027. DOI

Afrin U., Mian M.R., Otake K.-I., Drout R.J., Redfern L.R., Horike S., Islamoglu T., Farha O.K. Proton Conductivity via Trapped Water in Phosphonate-Based Metal–Organic Frameworks Synthesized in Aqueous Media. Inorg. Chem. 2021;60:1086–1091. doi: 10.1021/acs.inorgchem.0c03206. PubMed DOI

Chand S., Pal S.C., Lim D.-W., Otsubo K., Pal A., Kitagawa H., Das M.C. A 2d Mg(II)-MOF with High Density of Coordinated Waters as Sole Intrinsic Proton Sources for Ultrahigh Superprotonic Conduction. ACS Mater. Lett. 2020;2:1343–1350. doi: 10.1021/acsmaterialslett.0c00358. DOI

Chen W., Wang J., Zhao L., Dai W., Li Z., Li G. Enhancing Proton Conductivity of a Highly Water Stable 3D Sr(II) Metal-Organic Framework by Exposure to Aqua-Ammonia Vapor. J. Alloys Compd. 2018;750:895–901. doi: 10.1016/j.jallcom.2018.04.087. DOI

Saha D., Sen R., Maity T., Koner S. Porous Magnesium Carboxylate Framework: Synthesis, X-Ray Crystal Structure, Gas Adsorption Property and Heterogeneous Catalytic Aldol Condensation Reaction. Dalton Trans. 2012;41:7399. doi: 10.1039/c2dt00057a. PubMed DOI

Saha D., Maity T., Das S., Koner S. A Magnesium-Based Multifunctional Metal–Organic Framework: Synthesis, Thermally Induced Structural Variation, Selective Gas Adsorption, Photoluminescence and Heterogeneous Catalytic Study. Dalton Trans. 2013;42:13912. doi: 10.1039/c3dt51509e. PubMed DOI

Saha D., Maity T., Koner S. Alkaline Earth Metal-Based Metal–Organic Framework: Hydrothermal Synthesis, X-Ray Structure and Heterogeneously Catalyzed Claisen–Schmidt Reaction. Dalton Trans. 2014;43:13006–13017. doi: 10.1039/C4DT00575A. PubMed DOI

Platero Prats A.E., de la Peña-O’Shea V.A., Iglesias M., Snejko N., Monge Á., Gutiérrez-Puebla E. Heterogeneous Catalysis with Alkaline-Earth Metal-Based MOFs: A Green Calcium Catalyst. ChemCatChem. 2010;2:147–149. doi: 10.1002/cctc.200900228. DOI

Lacroix P.G., Malfant I., Lepetit C. Second-Order Nonlinear Optics in Coordination Chemistry: An Open Door towards Multi-Functional Materials and Molecular Switches. Coord. Chem. Rev. 2016;308:381–394. doi: 10.1016/j.ccr.2015.05.015. DOI

Song Y., Feng M.-L., Wu Z.-F., Huang X.-Y. Solvent-Assisted Construction of Diverse Mg-TDC Coordination Polymers. CrystEngComm. 2015;17:1348–1357. doi: 10.1039/C4CE02288B. DOI

Liu D., Kramer S.A., Huxford-Phillips R.C., Wang S., Della Rocca J., Lin W. Coercing Bisphosphonates to Kill Cancer Cells with Nanoscale Coordination Polymers. Chem. Commun. 2012;48:2668. doi: 10.1039/c2cc17635a. PubMed DOI PMC

Matlinska M.A., Ha M., Hughton B., Oliynyk A.O., Iyer A.K., Bernard G.M., Lambkin G., Lawrence M.C., Katz M.J., Mar A., et al. Alkaline Earth Metal–Organic Frameworks with Tailorable Ion Release: A Path for Supporting Biomineralization. ACS Appl. Mater. Interfaces. 2019;11:32739–32745. doi: 10.1021/acsami.9b11004. PubMed DOI

Li Z., Li Z., Li S., Wang K., Ma F., Tang B. Potential Application Development of Sr/HCOOH Metal Organic Framework in Osteoarthritis. Microporous Mesoporous Mater. 2020;294:109835. doi: 10.1016/j.micromeso.2019.109835. DOI

Almáši M. A Review on State of Art and Perspectives of Metal-Organic Frameworks (MOFs) in the Fight against Coronavirus SARS-CoV-2. J. Coord. Chem. 2021;74:2111–2127. doi: 10.1080/00958972.2021.1965130. DOI

Almáši M., Király N., Zeleňák V., Vilková M., Bourrelly S. Zinc(II) and Cadmium(II) Amorphous Metal–Organic Frameworks (AMOFs): Study of Activation Process and High-Pressure Adsorption of Greenhouse Gases. RSC Adv. 2021;11:20137–20150. doi: 10.1039/D1RA02938J. PubMed DOI PMC

Hammersley A.P., Svensson S.O., Hanfland M., Fitch A.N., Hausermann D. Two-Dimensional Detector Software: From Real Detector to Idealised Image or Two-Theta Scan. High Press. Res. 1996;14:235–248. doi: 10.1080/08957959608201408. DOI

Sheldrick G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC

Spek A.L. Structure Validation in Chemical Crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2009;65:148–155. doi: 10.1107/S090744490804362X. PubMed DOI PMC

Brandenburg K. DIAMOND 3.2e. Crystal Impact GbR; Bonn, Germany: 2010.

Alexandrov E.V., Shevchenko A.P., Blatov V.A. Topological Databases: Why Do We Need Them for Design of Coordination Polymers? Cryst. Growth Des. 2019;19:2604–2614. doi: 10.1021/acs.cgd.8b01721. DOI

Shevchenko A.P., Blatov V.A. Simplify to Understand: How to Elucidate Crystal Structures? Struct. Chem. 2021;32:507–519. doi: 10.1007/s11224-020-01724-4. DOI

Frisch M.J., Trucks G., Schlegel H., Scuseria G., Robb M., Cheeseman J., Scalmani G., Barone V., Petersson G., Nakatsuji H., et al. Gaussian, Inc.; Wallingford, CT, USA: 2019.

Becke A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI

Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI

Vosko S.H., Wilk L., Nusair M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis. Can. J. Phys. 1980;58:1200–1211. doi: 10.1139/p80-159. DOI

Fuentealba P., Preuss H., Stoll H., Von Szentpály L. A Proper Account of Core-Polarization with Pseudopotentials: Single Valence-Electron Alkali Compounds. Chem. Phys. Lett. 1982;89:418–422. doi: 10.1016/0009-2614(82)80012-2. DOI

Grimme S., Antony J., Ehrlich S., Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI

Groom C.R., Bruno I.J., Lightfoot M.P., Ward S.C. The Cambridge Structural Database. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016;72:171–179. doi: 10.1107/S2052520616003954. PubMed DOI PMC

The Materials Project Materials Data on SrCO3 by Materials Project. 2020. [(accessed on 25 December 2022)]. Available online: https://materialsproject.org/materials/mp-33746.

Antao S.M., Hassan I. BaCO3: High-Temperature Crystal Structures and the Pmcm→R3m Phase Transition at 811 °C. Phys. Chem. Miner. 2007;34:573–580. doi: 10.1007/s00269-007-0172-8. DOI

Kitagawa S., Uemura K. Dynamic Porous Properties of Coordination Polymers Inspired by Hydrogen Bonds. Chem. Soc. Rev. 2005;34:109. doi: 10.1039/b313997m. PubMed DOI

Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report) Pure Appl. Chem. 2015;87:1051–1069. doi: 10.1515/pac-2014-1117. DOI

Cheon Y.E., Suh M.P. Multifunctional Fourfold Interpenetrating Diamondoid Network: Gas Separation and Fabrication of Palladium Nanoparticles. Chem.—Eur. J. 2008;14:3961–3967. doi: 10.1002/chem.200701813. PubMed DOI

Almáši M., Zeleňák V., Gyepes R., Zukal A., Čejka J. Synthesis, Characterization and Sorption Properties of Zinc(II) Metal–Organic Framework Containing Methanetetrabenzoate Ligand. Colloids Surf. A Physicochem. Eng. Asp. 2013;437:101–107. doi: 10.1016/j.colsurfa.2012.11.067. DOI

Jiang X., Kou H.-Z. Solid State Reconstructive Phase Transition from Porous Supramolecular Network to Porous Coordination Polymer. Chem. Commun. 2016;52:2952–2955. doi: 10.1039/C5CC09808D. PubMed DOI

Cheon Y.E., Suh M.P. Selective Gas Adsorption in a Microporous Metal–Organic Framework Constructed of CoII4 Clusters. Chem. Commun. 2009;17:2296. doi: 10.1039/b900085b. PubMed DOI

Ma L., Jin A., Xie Z., Lin W. Freeze Drying Significantly Increases Permanent Porosity and Hydrogen Uptake in 4,4-Connected Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2009;48:9905–9908. doi: 10.1002/anie.200904983. PubMed DOI

Almáši M., Zeleňák V., Zukal A., Kuchár J., Čejka J. A Novel Zinc(II) Metal–Organic Framework with a Diamond-like Structure: Synthesis, Study of Thermal Robustness and Gas Adsorption Properties. Dalton Trans. 2016;45:1233–1242. doi: 10.1039/C5DT02437D. PubMed DOI

Almáši M., Zeleňák V., Opanasenko M., Čejka J. A Novel Nickel Metal–Organic Framework with Fluorite-like Structure: Gas Adsorption Properties and Catalytic Activity in Knoevenagel Condensation. Dalton Trans. 2014;43:3730. doi: 10.1039/c3dt52698d. PubMed DOI

Almáši M., Zeleňák V., Gyepes R., Bourrelly S., Opanasenko M.V., Llewellyn P.L., Čejka J. Microporous Lead–Organic Framework for Selective CO2 Adsorption and Heterogeneous Catalysis. Inorg. Chem. 2018;57:1774–1786. doi: 10.1021/acs.inorgchem.7b02491. PubMed DOI

Almáši M., Zeleňák V., Opanasenko M.V., Čejka J. Efficient and Reusable Pb(II) Metal–Organic Framework for Knoevenagel Condensation. Catal. Lett. 2018;148:2263–2273. doi: 10.1007/s10562-018-2471-8. DOI

Furukawa H., Gándara F., Zhang Y.-B., Jiang J., Queen W.L., Hudson M.R., Yaghi O.M. Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. J. Am. Chem. Soc. 2014;136:4369–4381. doi: 10.1021/ja500330a. PubMed DOI

Liu D., Xie Z., Ma L., Lin W. Three-Dimensional Metal−Organic Frameworks Based on Tetrahedral and Square-Planar Building Blocks: Hydrogen Sorption and Dye Uptake Studies. Inorg. Chem. 2010;49:9107–9109. doi: 10.1021/ic1009169. PubMed DOI

Wen L., Cheng P., Lin W. Mixed-Motif Interpenetration and Cross-Linking of High-Connectivity Networks Led to Robust and Porous Metal–Organic Frameworks with High Gas Uptake Capacities. Chem. Sci. 2012;3:2288. doi: 10.1039/c2sc20172k. DOI

Wen L., Cheng P., Lin W. Solvent-Induced Single-Crystal to Single-Crystal Transformation of a 2D Coordination Network to a 3D Metal–Organic Framework Greatly Enhances Porosity and Hydrogen Uptake. Chem. Commun. 2012;48:2846. doi: 10.1039/c2cc17298d. PubMed DOI

Zhang M., Chen Y.-P., Bosch M., Gentle T., Wang K., Feng D., Wang Z.U., Zhou H.-C. Symmetry-Guided Synthesis of Highly Porous Metal-Organic Frameworks with Fluorite Topology. Angew. Chem. Int. Ed. 2013;53:815–818. doi: 10.1002/anie.201307340. PubMed DOI

Tan C., Yang S., Champness N.R., Lin X., Blake A.J., Lewis W., Schröder M. High Capacity Gas Storage by a 4,8-Connected Metal–Organic Polyhedral Framework. Chem. Commun. 2011;47:4487. doi: 10.1039/c1cc10378d. PubMed DOI

Liu D., Wu H., Wang S., Xie Z., Li J., Lin W. A High Connectivity Metal–Organic Framework with Exceptional Hydrogen and Methane Uptake Capacities. Chem. Sci. 2012;3:3032. doi: 10.1039/c2sc20601c. DOI

Si X., Jiao C., Li F., Zhang J., Wang S., Liu S., Li Z., Sun L., Xu F., Gabelica Z., et al. High and Selective CO2 Uptake, H2 Storage and Methanol Sensing on the Amine-Decorated 12-Connected Mof Cau-1. Energy Environ. Sci. 2011;4:4522. doi: 10.1039/c1ee01380g. DOI

Lee Y.-G., Moon H.R., Cheon Y.E., Suh M.P. A Comparison of the H2 Sorption Capacities of Isostructural Metal-Organic Frameworks with and without Accessible Metal Sites: [{Zn2(ABTC)(DMF)2}3] and [{Cu2(ABTC)(DDMF)2}3] versus [{Cu2(ABTC)}3] Angew. Chem. Int. Ed. 2008;47:7741–7745. doi: 10.1002/anie.200801488. PubMed DOI

Kim T.K., Suh M.P. Selective CO2 Adsorption in a Flexible Non-Interpenetrated Metal–Organic Framework. Chem. Commun. 2011;47:4258. doi: 10.1039/c0cc05199c. PubMed DOI

Patel H.A., Hyun Je S., Park J., Chen D.P., Jung Y., Yavuz C.T., Coskun A. Unprecedented High-Temperature CO2 Selectivity in N2-Phobic Nanoporous Covalent Organic Polymers. Nat. Commun. 2013;4:1357. doi: 10.1038/ncomms2359. PubMed DOI

Poater J., Gimferrer M., Poater A. Covalent and Ionic Capacity of MOFs To Sorb Small Gas Molecules. Inorg. Chem. 2018;57:6981–6990. doi: 10.1021/acs.inorgchem.8b00670. PubMed DOI

Myers A.L., Prausnitz J.M. Thermodynamics of Mixed-Gas Adsorption. AIChE J. 1965;11:121–127. doi: 10.1002/aic.690110125. DOI

Langmuir I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918;40:1361–1403. doi: 10.1021/ja02242a004. DOI

Hay P.J., Wadt W.R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals. J. Chem. Phys. 1985;82:299–310. doi: 10.1063/1.448975. DOI

Simmons J.M., Wu H., Zhou W., Yildirim T. Carbon Capture in Metal–Organic Frameworks—A Comparative Study. Energy Environ. Sci. 2011;4:2177. doi: 10.1039/c0ee00700e. DOI

Sumida K., Rogow D.L., Mason J.A., McDonald T.M., Bloch E.D., Herm Z.R., Bae T.-H., Long J.R. Carbon Dioxide Capture in Metal–Organic Frameworks. Chem. Rev. 2011;112:724–781. doi: 10.1021/cr2003272. PubMed DOI

Saha D., Van Bramer S.E., Orkoulas G., Ho H.-C., Chen J., Henley D.K. CO2 Capture in Lignin-Derived and Nitrogen-Doped Hierarchical Porous Carbons. Carbon. 2017;121:257–266. doi: 10.1016/j.carbon.2017.05.088. DOI

Duan F., Liu X., Qu D., Li B., Wu L. Polyoxometalate-Based Ionic Frameworks for Highly Selective CO2 Capture and Separation. CCS Chem. 2021;3:2676–2687. doi: 10.31635/ccschem.020.202000498. DOI

Yang Z., Zhang G., Guo X., Xu Y. Designing a Novel N-Doped Adsorbent with Ultrahigh Selectivity for CO2: Waste Biomass Pyrolysis and Two-Step Activation. Biomass Convers. Biorefin. 2020;11:2843–2854. doi: 10.1007/s13399-020-00633-0. DOI

Li H., Feng X., Ma D., Zhang M., Zhang Y., Liu Y., Zhang J., Wang B. Stable Aluminum Metal–Organic Frameworks (Al-MOFs) for Balanced CO2 and Water Selectivity. ACS Appl. Mater. Interfaces. 2018;10:3160–3163. doi: 10.1021/acsami.7b17026. PubMed DOI

Li N., Chang Z., Huang H., Feng R., He W.W., Zhong M., Madden D.G., Zaworotko M.J., Bu X.H. CO2 Capture: Specific K+ Binding Sites as CO2 Traps in a Porous MOF for Enhenced CO2 Selective Sorption. Small. 2019;15:1970118. doi: 10.1002/smll.201970118. PubMed DOI

Li T., Chen D.-L., Sullivan J.E., Kozlowski M.T., Johnson J.K., Rosi N.L. Systematic Modulation and Enhancement of CO2: N2 Selectivity and Water Stability in an Isoreticular Series of Bio-MOF-11 Analogues. Chem. Sci. 2013;4:1746. doi: 10.1039/c3sc22207a. DOI

Hong L., Ju S., Liu X., Zhuang Q., Zhan G., Yu X. Highly Selective CO2 Uptake in Novel Fishnet-like Polybenzoxazine-Based Porous Carbon. Energy Fuels. 2019;33:11454–11464. doi: 10.1021/acs.energyfuels.9b02631. DOI

Li G., Qin L., Yao C., Xu Y. Controlled Synthesis of Conjugated Polycarbazole Polymers via Structure Tuning for Gas Storage and Separation Applications. Sci. Rep. 2017;7:15394. doi: 10.1038/s41598-017-10372-4. PubMed DOI PMC

Idriss H., Scott M., Subramani V. Compendium of Hydrogen Energy. Woodhead Publishing; Sawston, UK: 2015. Introduction to Hydrogen and Its Properties; pp. 3–19.

Garg A., Almáši M., Rattan Paul D., Poonia E., Luthra J.R., Sharma A. Metal-Organic Framework MOF-76(Nd): Synthesis, Characterization, and Study of Hydrogen Storage and Humidity Sensing. Front. Energy Res. 2021;8:604735. doi: 10.3389/fenrg.2020.604735. DOI

Dhawa T., Chattopadhyay S., De G., Mahanty S. In Situ Mg/MgO-Embedded Mesoporous Carbon Derived from Magnesium 1,4-Benzenedicarboxylate Metal Organic Framework as Sustainable Li–S Battery Cathode Support. ACS Omega. 2017;2:6481–6491. doi: 10.1021/acsomega.7b01156. PubMed DOI PMC

Zhou J., Li R., Fan X., Chen Y., Han R., Li W., Zheng J., Wang B., Li X. Rational Design of a Metal–Organic Framework Host for Sulfur Storage in Fast, Long-Cycle Li–S Batteries. Energy Environ. Sci. 2014;7:2715. doi: 10.1039/C4EE01382D. DOI

Xi K., Cao S., Peng X., Ducati C., Vasant Kumar R., Cheetham A.K. Carbon with Hierarchical Pores from Carbonized Metal–Organic Frameworks for Lithium Sulphur Batteries. Chem. Commun. 2013;49:2192. doi: 10.1039/c3cc38009b. PubMed DOI

Chen X., Zhang M., Zhu J., Wang J., Jiao Z., Li Y. Boosting Electrochemical Performance of Li-S Batteries by Cerium-Based MOFs Coated with Polypyrrole. J. Alloys Compd. 2022;901:163649. doi: 10.1016/j.jallcom.2022.163649. DOI

Bao W., Zhang Z., Zhou C., Lai Y., Li J. Multi-Walled Carbon Nanotubes @ Mesoporous Carbon Hybrid Nanocomposites from Carbonized Mitli-Walled Carbon Nanotubes @ Metal-Organic Framework for Lithium Sulphur Battery. J. Power Sources. 2014;248:570. doi: 10.1016/j.jpowsour.2013.09.132. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...