Sr(II) and Ba(II) Alkaline Earth Metal-Organic Frameworks (AE-MOFs) for Selective Gas Adsorption, Energy Storage, and Environmental Application
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
1/0865/21
VEGA
1/0104/23
VEGA
20-0512
APVV
20-0138
APVV
SK-CZ-RD-21-0068
APVV
2022-2123
VVGS
FEKT-S-20-6206
BUT
CEP - Centrální evidence projektů
K801621N
FWO
CEP - Centrální evidence projektů
TRIANGEL
TRIANGEL
PubMed
36677987
PubMed Central
PMC9866501
DOI
10.3390/nano13020234
PII: nano13020234
Knihovny.cz E-zdroje
- Klíčová slova
- alkaline earth metals, energy storage, gas adsorption/separation, lithium-sulphur battery, metal–organic frameworks,
- Publikační typ
- časopisecké články MeSH
Two new alkaline earth metal-organic frameworks (AE-MOFs) containing Sr(II) (UPJS-15) or Ba(II) (UPJS-16) cations and extended tetrahedral linker (MTA) were synthesized and characterized in detail (UPJS stands for University of Pavol Jozef Safarik). Single-crystal X-ray analysis (SC-XRD) revealed that the materials are isostructural and, in their frameworks, one-dimensional channels are present with the size of ~11 × 10 Å2. The activation process of the compounds was studied by the combination of in situ heating infrared spectroscopy (IR), thermal analysis (TA) and in situ high-energy powder X-ray diffraction (HE-PXRD), which confirmed the stability of compounds after desolvation. The prepared compounds were investigated as adsorbents of different gases (Ar, N2, CO2, and H2). Nitrogen and argon adsorption measurements showed that UPJS-15 has SBET area of 1321 m2 g-1 (Ar) / 1250 m2 g-1 (N2), and UPJS-16 does not adsorb mentioned gases. From the environmental application, the materials were studied as CO2 adsorbents, and both compounds adsorb CO2 with a maximum capacity of 22.4 wt.% @ 0 °C; 14.7 wt.% @ 20 °C and 101 kPa for UPJS-15 and 11.5 wt.% @ 0°C; 8.4 wt.% @ 20 °C and 101 kPa for UPJS-16. According to IAST calculations, UPJS-16 shows high selectivity (50 for CO2/N2 10:90 mixture and 455 for CO2/N2 50:50 mixture) and can be applied as CO2 adsorbent from the atmosphere even at low pressures. The increased affinity of materials for CO2 was also studied by DFT modelling, which revealed that the primary adsorption sites are coordinatively unsaturated sites on metal ions, azo bonds, and phenyl rings within the MTA linker. Regarding energy storage, the materials were studied as hydrogen adsorbents, but the materials showed low H2 adsorption properties: 0.19 wt.% for UPJS-15 and 0.04 wt.% for UPJS-16 @ -196 °C and 101 kPa. The enhanced CO2/H2 selectivity could be used to scavenge carbon dioxide from hydrogen in WGS and DSR reactions. The second method of applying samples in the area of energy storage was the use of UPJS-15 as an additive in a lithium-sulfur battery. Cyclic performance at a cycling rate of 0.2 C showed an initial discharge capacity of 337 mAh g-1, which decreased smoothly to 235 mAh g-1 after 100 charge/discharge cycles.
Zobrazit více v PubMed
Ghanbari T., Abnisa F., Wan Daud W.M. A Review on Production of Metal-organic Frameworks (MOF) for CO2 Adsorption. Sci. Total Environ. 2020;707:135090. doi: 10.1016/j.scitotenv.2019.135090. PubMed DOI
Connolly B.M., Madden D.G., Wheatley A.E., Fairen-Jimenez D. Shaping the Future of Fuel: Monolithic Metal–organic Frameworks for High-Density Gas Storage. J. Am. Chem. Soc. 2020;142:8541–8549. doi: 10.1021/jacs.0c00270. PubMed DOI
Almáši M. Metal-Organic Framework-Based Nanomaterials for Energy Conversion and Storage. Elsevier; Amsterdam, The Netherlands: 2022. Current Development in MOFs for Hydrogen Storage; pp. 631–661.
Zelenka T., Simanova K., Saini R., Zelenkova G., Nehra S.P., Sharma A., Almasi M. Carbon Dioxide and Hydrogen Adsorption Study on Surface-modified HKUST-1 with Diamine/triamine. Sci. Rep. 2022;12:17366. doi: 10.1038/s41598-022-22273-2. PubMed DOI PMC
Li H., Li L., Lin R.-B., Zhou W., Zhang Z., Xiang S., Chen B. Porous Metal-organic Frameworks for Gas Storage and Separation: Status and Challenges. EnergyChem. 2019;1:100006. doi: 10.1016/j.enchem.2019.100006. PubMed DOI PMC
Király N., Zeleňák V., Lenártová N., Zeleňáková A., Čižmár E., Almáši M., Meynen V., Hovan A., Gyepes R. Novel Lanthanide(III) Porphyrin-Based Metal–Organic Frameworks: Structure, Gas Adsorption, and Magnetic Properties. ACS Omega. 2021;6:24637–24649. doi: 10.1021/acsomega.1c03327. PubMed DOI PMC
Goetjen T.A., Liu J., Wu Y., Sui J., Zhang X., Hupp J.T., Farha O.K. Metal–Organic Framework (MOF) Materials as Polymerization Catalysts: A Review and Recent Advances. Chem. Commun. 2020;56:10409–10418. doi: 10.1039/D0CC03790G. PubMed DOI
Ali M., Pervaiz E., Noor T., Rabi O., Zahra R., Yang M. Recent Advancements in MOF-Based Catalysts for Applications in Electrochemical and Photoelectrochemical Water Splitting: A Review. Int. J. Energy Res. 2020;45:1190–1226. doi: 10.1002/er.5807. DOI
Wang Q., Astruc D. State of the Art and Prospects in Metal–Organic Framework (MOF)-Based and MOF-Derived Nanocatalysis. Chem. Rev. 2019;120:1438–1511. doi: 10.1021/acs.chemrev.9b00223. PubMed DOI
Almáši M., Zeleňák V., Opanasenko M., Císařová I. Ce(III) and Lu(III) Metal–Organic Frameworks with Lewis Acid Metal Sites: Preparation, Sorption Properties and Catalytic Activity in Knoevenagel Condensation. Catal. Today. 2015;243:184–194. doi: 10.1016/j.cattod.2014.07.028. DOI
Lawson H.D., Walton S.P., Chan C. Metal–Organic Frameworks for Drug Delivery: A Design Perspective. ACS Appl. Mater. Interfaces. 2021;13:7004–7020. doi: 10.1021/acsami.1c01089. PubMed DOI
Cao J., Li X., Tian H. Metal-Organic Framework (MOF)-Based Drug Delivery. Curr. Med. Chem. 2020;27:5949–5969. doi: 10.2174/0929867326666190618152518. PubMed DOI
Almáši M., Zeleňák V., Palotai P., Beňová E., Zeleňáková A. Metal-Organic Framework MIL-101(Fe)-NH2 Functionalized with Different Long-Chain Polyamines as Drug Delivery System. Inorg. Chem. Commun. 2018;93:115–120. doi: 10.1016/j.inoche.2018.05.007. DOI
Wang L., Yin K., Deng Q., Huang Q., He J., Duan J. Wetting Ridge-Guided Directional Water Self-Transport. Adv. Sci. 2022;9:2204891. doi: 10.1002/advs.202204891. PubMed DOI PMC
He Y., Wang L., Wu T., Wu Z., Chen Y., Yin K. Facile Fabrication of Hierarchical Textures for Substrate-independent and Durable Superhydrophobic Surfaces. Nanoscale. 2022;14:9392–9400. doi: 10.1039/D2NR02157A. PubMed DOI
Yin K., Chu D., Dong X., Wang C., Duan J.A., He J. Femtosecond Laser Induced Robust Periodic Nanoripple Structured Mesh for Highly Efficient Oil–water Separation. Nanoscale. 2017;9:14229–14235. doi: 10.1039/C7NR04582D. PubMed DOI
Garg A., Almáši M., Bednarčík J., Sharma R., Rao V.S., Panchal P., Jain A., Sharma A. Gd(III) Metal-organic Framework as an Effective Humidity Sensor and its Hydrogen Adsorption Properties. Chemosphere. 2022;305:135467. doi: 10.1016/j.chemosphere.2022.135467. PubMed DOI
Wang L. Metal-Organic Frameworks for QCM-Based Gas Sensors: A Review. Sens. Actuators A Phys. 2020;307:111984. doi: 10.1016/j.sna.2020.111984. DOI
Wu F., Ye J., Cao Y., Wang Z., Miao T., Shi Q. Recent Advances in Fluorescence Sensors Based on DNA–MOF Hybrids. Luminescence. 2020;35:440–446. doi: 10.1002/bio.3790. PubMed DOI
Orts-Arroyo M., Rabelo R., Carrasco-Berlanga A., Moliner N., Cano J., Julve M., Lloret F., De Munno G., Ruiz-García R., Mayans J., et al. Field-Induced Slow Magnetic Relaxation and Magnetocaloric Effects in an Oxalato-Bridged Gadolinium(III)-Based 2D MOF. Dalton Trans. 2021;50:3801–3805. doi: 10.1039/D1DT00462J. PubMed DOI
Kim S., Oh H. Research Trend of Metal-Organic Frameworks for Magnetic Refrigeration Materials Application. Korean J. Mater. Res. 2020;30:136–141. doi: 10.3740/MRSK.2020.30.3.136. DOI
Zeleňák V., Almáši M., Zeleňáková A., Hrubovčák P., Tarasenko R., Bourelly S., Llewellyn P. Large and Tunable Magnetocaloric Effect in Gadolinium-Organic Framework: Tuning by Solvent Exchange. Sci. Rep. 2019;9:15572. doi: 10.1038/s41598-019-51590-2. PubMed DOI PMC
Zhao H., Sheng L., Wang L., Xu H., He X. The Opportunity of Metal Organic Frameworks and Covalent Organic Frameworks in Lithium (ION) Batteries and Fuel Cells. Energy Storage Mater. 2020;33:360–381. doi: 10.1016/j.ensm.2020.08.028. DOI
Zhou L., Danilov D.L., Eichel R.A., Notten P.H. Host Materials Anchoring Polysulfides in Li–S Batteries Reviewed. Adv. Energy Mater. 2020;11:2001304. doi: 10.1002/aenm.202001304. DOI
Capková D., Almáši M., Kazda T., Čech O., Király N., Čudek P., Fedorková A.S., Hornebecq V. Metal-Organic Framework Mil-101(Fe)–NH2 as an Efficient Host for Sulphur Storage in Long-Cycle Li–S Batteries. Electrochim. Acta. 2020;354:136640. doi: 10.1016/j.electacta.2020.136640. DOI
Capková D., Kazda T., Čech O., Király N., Zelenka T., Čudek P., Sharma A., Hornebecq V., Fedorková A.S., Almáši M. Influence of Metal-organic Framework MOF-76(Gd) Activation/carbonization on the Cycle Performance Stability in Li-S battery. J. Energy Storage. 2022;51:104419. doi: 10.1016/j.est.2022.104419. DOI
Qiao Z., Wang N., Jiang J., Zhou J. Design of Amine-Functionalized Metal–Organic Frameworks for CO2 Separation: The More Amine, the Better? Chem. Commun. 2016;52:974–977. doi: 10.1039/C5CC07171B. PubMed DOI
Klewiah I., Berawala D.S., Alexander Walker H.C., Andersen P.Ø., Nadeau P.H. Review of Experimental Sorption Studies of CO2 and CH4 in Shales. J. Nat. Gas Sci. Eng. 2020;73:103045. doi: 10.1016/j.jngse.2019.103045. DOI
Lee K., Howe J.D., Lin L.-C., Smit B., Neaton J.B. Small-Molecule Adsorption in Open-Site Metal–Organic Frameworks: A Systematic Density Functional Theory Study for Rational Design. Chem. Mater. 2015;27:668–678. doi: 10.1021/cm502760q. DOI
Rada Z.H., Abid H.R., Sun H., Shang J., Li J., He Y., Liu S., Wang S. Effects of -NO2 and -NH2 Functional Groups in Mixed-Linker Zr-Based MOFs on Gas Adsorption of CO2 and CH4. Prog. Nat. Sci. Mater. Int. 2018;28:160–167. doi: 10.1016/j.pnsc.2018.01.016. DOI
Pachfule P., Chen Y., Jiang J., Banerjee R. Fluorinated Metal-Organic Frameworks: Advantageous for Higher H2 and CO2 Adsorption or Not? Chem.—Eur. J. 2011;18:688–694. doi: 10.1002/chem.201102295. PubMed DOI
Kökçam-Demir Ü., Goldman A., Esrafili L., Gharib M., Morsali A., Weingart O., Janiak C. Coordinatively Unsaturated Metal Sites (Open Metal Sites) in Metal–Organic Frameworks: Design and Applications. Chem. Soc. Rev. 2020;49:2751–2798. doi: 10.1039/C9CS00609E. PubMed DOI
Caskey S.R., Wong-Foy A.G., Matzger A.J. Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores. J. Am. Chem. Soc. 2008;130:10870–10871. doi: 10.1021/ja8036096. PubMed DOI
Milner P.J., Siegelman R.L., Forse A.C., Gonzalez M.I., Runčevski T., Martell J.D., Reimer J.A., Long J.R. A Diaminopropane-Appended Metal–Organic Framework Enabling Efficient CO2 Capture from Coal Flue Gas via a Mixed Adsorption Mechanism. J. Am. Chem. Soc. 2017;139:13541–13553. doi: 10.1021/jacs.7b07612. PubMed DOI PMC
Kim E.J., Siegelman R.L., Jiang H.Z., Forse A.C., Lee J.-H., Martell J.D., Milner P.J., Falkowski J.M., Neaton J.B., Reimer J.A., et al. Cooperative Carbon Capture and Steam Regeneration with Tetraamine-Appended Metal–Organic Frameworks. Science. 2020;369:392–396. doi: 10.1126/science.abb3976. PubMed DOI PMC
Ren J., Langmi H.W., North B.C., Mathe M. Review on Processing of Metal-Organic Framework (MOF) Materials towards System Integration for Hydrogen Storage. Int. J. Energy Res. 2014;39:607–620. doi: 10.1002/er.3255. DOI
Rivard E., Trudeau M., Zaghib K. Hydrogen Storage for Mobility: A Review. Materials. 2019;12:1973. doi: 10.3390/ma12121973. PubMed DOI PMC
Langmi H.W., Ren J., North B., Mathe M., Bessarabov D. Hydrogen Storage in Metal-Organic Frameworks: A Review. Electrochim. Acta. 2014;128:368–392. doi: 10.1016/j.electacta.2013.10.190. DOI
Almáši M., Zeleňák V., Gyepes R., Zauška Ľ., Bourrelly S. A Series of Four Novel Alkaline Earth Metal–Organic Frameworks Constructed of Ca(II), Sr(II), Ba(II) Ions and Tetrahedral MTB Linker: Structural Diversity, Stability Study and Low/High-Pressure Gas Adsorption Properties. RSC Adv. 2020;10:32323–32334. doi: 10.1039/D0RA05145D. PubMed DOI PMC
Sumida K., Hill M.R., Horike S., Dailly A., Long J.R. Synthesis and Hydrogen Storage Properties of Be12(OH)12(1,3,5-Benzenetribenzoate)4. J. Am. Chem. Soc. 2009;131:15120–15121. doi: 10.1021/ja9072707. PubMed DOI
Lin R.-B., Li L., Zhou H.-L., Wu H., He C., Li S., Krishna R., Li J., Zhou W., Chen B. Molecular Sieving of Ethylene from Ethane Using a Rigid Metal–Organic Framework. Nat. Mater. 2018;17:1128–1133. doi: 10.1038/s41563-018-0206-2. PubMed DOI
Foo M.L., Horike S., Inubushi Y., Kitagawa S. An Alkaline Earth I3O0 Porous Coordination Polymer: [Ba2TMA(NO3)(DMF)] Angew. Chem. Int. Ed. 2012;51:6107–6111. doi: 10.1002/anie.201202285. PubMed DOI
Liu T., Hu H., Ding X., Yuan H., Jin C., Nai J., Liu Y., Wang Y., Wan Y., Tao X. 12 Years Roadmap of the Sulfur Cathode for Lithium Sulfur Batteries (2009–2020) Energy Storage Mater. 2020;30:346–366. doi: 10.1016/j.ensm.2020.05.023. DOI
Kazda T., Capková D., Jaššo K., Fedorková Straková A., Shembel E., Markevich A., Sedlaříková M. Carrageenan as an Ecological Alternative of Polyvinylidene Difluoride Binder for Li-S Batteries. Materials. 2021;14:5578. doi: 10.3390/ma14195578. PubMed DOI PMC
Capkova D., Kazda T., Čudek P., Strakova Fedorkova A. Binder Influence on Electrochemical Properties of Li-S Batteries. ECS Trans. 2020;99:161–167. doi: 10.1149/09901.0161ecst. DOI
Capková D., Kazda T., Straková Fedorková A., Čudek P., Oriňaková R. Carbon Materials as the Matrices for Sulfur in Li-S Batteries. ECS Trans. 2019;95:19–26. doi: 10.1149/09501.0019ecst. DOI
Liu G., Feng K., Cui H., Li J., Liu Y., Wang M. MOF Derived in-Situ Carbon-Encapsulated Fe3O4@C to Mediate Polysulfides Redox for Ultrastable Lithium-Sulfur Batteries. Chem. Eng. J. 2020;381:122652. doi: 10.1016/j.cej.2019.122652. DOI
Jiang H., Liu X.-C., Wu Y., Shu Y., Gong X., Ke F.-S., Deng H. Metal-Organic Frameworks for High Charge-Discharge Rates in Lithium-Sulfur Batteries. Angew. Chem. Int. Ed. 2018;57:3916–3921. doi: 10.1002/anie.201712872. PubMed DOI
Li M., Feng W., Su W., Song C., Cheng L. Mof-Derived Hollow Cage Ni–Co Mixed Oxide/CNTS Nanocomposites with Enhanced Electrochemical Performance for Lithium–Sulfur Batteries. Ionics. 2019;25:4037–4045. doi: 10.1007/s11581-019-02989-4. DOI
Zhang H., Xin S., Li J., Cui H., Liu Y., Yang Y., Wang M. Synergistic Regulation of Polysulfides Immobilization and Conversion by MOF-Derived COP-HNC Nanocages for High-Performance Lithium-Sulfur Batteries. Nano Energy. 2021;85:106011. doi: 10.1016/j.nanoen.2021.106011. DOI
Kazda T., Čudek P., Vondrák J., Sedlaříková M., Tichý J., Slávik M., Fafilek G., Čech O. Lithium-Sulphur Batteries Based on Biological 3D Structures. J. Solid State Electrochem. 2017;22:537–546. doi: 10.1007/s10008-017-3791-0. DOI
Fan L., Wu H., Wu X., Wang M., Cheng J., Zhang N., Feng Y., Sun K. Fe-MOF Derived Jujube Pit like Fe3O4/C Composite as Sulfur Host for Lithium-Sulfur Battery. Electrochim. Acta. 2019;295:444–451. doi: 10.1016/j.electacta.2018.08.107. DOI
Wang D., Zheng G., Zhang W., Niu X., Yan J., Nie T., Ji Z., Gu Y., Yan X. A Highly Stable Cathode for Lithium-Sulfur Battery Built of Ni-Doped Carbon Framework Linked to CNT. J. Alloys Compd. 2021;881:160496. doi: 10.1016/j.jallcom.2021.160496. DOI
Geng P., Du M., Guo X., Pang H., Tian Z., Braunstein P., Xu Q. Bimetallic Metal-Organic Framework with High-Adsorption Capacity toward Lithium Polysulfides for Lithium–Sulfur Batteries. Energy Environ. Mater. 2022;5:599–607. doi: 10.1002/eem2.12196. DOI
Ye Y., Gong L., Xiang S., Zhang Z., Chen B. Metal–Organic Frameworks as a Versatile Platform for Proton Conductors. Adv. Mater. 2020;32:1907090. doi: 10.1002/adma.201907090. PubMed DOI
Li A.-L., Gao Q., Xu J., Bu X.-H. Proton-Conductive Metal-Organic Frameworks: Recent Advances and Perspectives. Coord. Chem. Rev. 2017;344:54–82. doi: 10.1016/j.ccr.2017.03.027. DOI
Afrin U., Mian M.R., Otake K.-I., Drout R.J., Redfern L.R., Horike S., Islamoglu T., Farha O.K. Proton Conductivity via Trapped Water in Phosphonate-Based Metal–Organic Frameworks Synthesized in Aqueous Media. Inorg. Chem. 2021;60:1086–1091. doi: 10.1021/acs.inorgchem.0c03206. PubMed DOI
Chand S., Pal S.C., Lim D.-W., Otsubo K., Pal A., Kitagawa H., Das M.C. A 2d Mg(II)-MOF with High Density of Coordinated Waters as Sole Intrinsic Proton Sources for Ultrahigh Superprotonic Conduction. ACS Mater. Lett. 2020;2:1343–1350. doi: 10.1021/acsmaterialslett.0c00358. DOI
Chen W., Wang J., Zhao L., Dai W., Li Z., Li G. Enhancing Proton Conductivity of a Highly Water Stable 3D Sr(II) Metal-Organic Framework by Exposure to Aqua-Ammonia Vapor. J. Alloys Compd. 2018;750:895–901. doi: 10.1016/j.jallcom.2018.04.087. DOI
Saha D., Sen R., Maity T., Koner S. Porous Magnesium Carboxylate Framework: Synthesis, X-Ray Crystal Structure, Gas Adsorption Property and Heterogeneous Catalytic Aldol Condensation Reaction. Dalton Trans. 2012;41:7399. doi: 10.1039/c2dt00057a. PubMed DOI
Saha D., Maity T., Das S., Koner S. A Magnesium-Based Multifunctional Metal–Organic Framework: Synthesis, Thermally Induced Structural Variation, Selective Gas Adsorption, Photoluminescence and Heterogeneous Catalytic Study. Dalton Trans. 2013;42:13912. doi: 10.1039/c3dt51509e. PubMed DOI
Saha D., Maity T., Koner S. Alkaline Earth Metal-Based Metal–Organic Framework: Hydrothermal Synthesis, X-Ray Structure and Heterogeneously Catalyzed Claisen–Schmidt Reaction. Dalton Trans. 2014;43:13006–13017. doi: 10.1039/C4DT00575A. PubMed DOI
Platero Prats A.E., de la Peña-O’Shea V.A., Iglesias M., Snejko N., Monge Á., Gutiérrez-Puebla E. Heterogeneous Catalysis with Alkaline-Earth Metal-Based MOFs: A Green Calcium Catalyst. ChemCatChem. 2010;2:147–149. doi: 10.1002/cctc.200900228. DOI
Lacroix P.G., Malfant I., Lepetit C. Second-Order Nonlinear Optics in Coordination Chemistry: An Open Door towards Multi-Functional Materials and Molecular Switches. Coord. Chem. Rev. 2016;308:381–394. doi: 10.1016/j.ccr.2015.05.015. DOI
Song Y., Feng M.-L., Wu Z.-F., Huang X.-Y. Solvent-Assisted Construction of Diverse Mg-TDC Coordination Polymers. CrystEngComm. 2015;17:1348–1357. doi: 10.1039/C4CE02288B. DOI
Liu D., Kramer S.A., Huxford-Phillips R.C., Wang S., Della Rocca J., Lin W. Coercing Bisphosphonates to Kill Cancer Cells with Nanoscale Coordination Polymers. Chem. Commun. 2012;48:2668. doi: 10.1039/c2cc17635a. PubMed DOI PMC
Matlinska M.A., Ha M., Hughton B., Oliynyk A.O., Iyer A.K., Bernard G.M., Lambkin G., Lawrence M.C., Katz M.J., Mar A., et al. Alkaline Earth Metal–Organic Frameworks with Tailorable Ion Release: A Path for Supporting Biomineralization. ACS Appl. Mater. Interfaces. 2019;11:32739–32745. doi: 10.1021/acsami.9b11004. PubMed DOI
Li Z., Li Z., Li S., Wang K., Ma F., Tang B. Potential Application Development of Sr/HCOOH Metal Organic Framework in Osteoarthritis. Microporous Mesoporous Mater. 2020;294:109835. doi: 10.1016/j.micromeso.2019.109835. DOI
Almáši M. A Review on State of Art and Perspectives of Metal-Organic Frameworks (MOFs) in the Fight against Coronavirus SARS-CoV-2. J. Coord. Chem. 2021;74:2111–2127. doi: 10.1080/00958972.2021.1965130. DOI
Almáši M., Király N., Zeleňák V., Vilková M., Bourrelly S. Zinc(II) and Cadmium(II) Amorphous Metal–Organic Frameworks (AMOFs): Study of Activation Process and High-Pressure Adsorption of Greenhouse Gases. RSC Adv. 2021;11:20137–20150. doi: 10.1039/D1RA02938J. PubMed DOI PMC
Hammersley A.P., Svensson S.O., Hanfland M., Fitch A.N., Hausermann D. Two-Dimensional Detector Software: From Real Detector to Idealised Image or Two-Theta Scan. High Press. Res. 1996;14:235–248. doi: 10.1080/08957959608201408. DOI
Sheldrick G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Spek A.L. Structure Validation in Chemical Crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2009;65:148–155. doi: 10.1107/S090744490804362X. PubMed DOI PMC
Brandenburg K. DIAMOND 3.2e. Crystal Impact GbR; Bonn, Germany: 2010.
Alexandrov E.V., Shevchenko A.P., Blatov V.A. Topological Databases: Why Do We Need Them for Design of Coordination Polymers? Cryst. Growth Des. 2019;19:2604–2614. doi: 10.1021/acs.cgd.8b01721. DOI
Shevchenko A.P., Blatov V.A. Simplify to Understand: How to Elucidate Crystal Structures? Struct. Chem. 2021;32:507–519. doi: 10.1007/s11224-020-01724-4. DOI
Frisch M.J., Trucks G., Schlegel H., Scuseria G., Robb M., Cheeseman J., Scalmani G., Barone V., Petersson G., Nakatsuji H., et al. Gaussian, Inc.; Wallingford, CT, USA: 2019.
Becke A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993;98:5648–5652. doi: 10.1063/1.464913. DOI
Lee C., Yang W., Parr R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B. 1988;37:785–789. doi: 10.1103/PhysRevB.37.785. PubMed DOI
Vosko S.H., Wilk L., Nusair M. Accurate Spin-Dependent Electron Liquid Correlation Energies for Local Spin Density Calculations: A Critical Analysis. Can. J. Phys. 1980;58:1200–1211. doi: 10.1139/p80-159. DOI
Fuentealba P., Preuss H., Stoll H., Von Szentpály L. A Proper Account of Core-Polarization with Pseudopotentials: Single Valence-Electron Alkali Compounds. Chem. Phys. Lett. 1982;89:418–422. doi: 10.1016/0009-2614(82)80012-2. DOI
Grimme S., Antony J., Ehrlich S., Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010;132:154104. doi: 10.1063/1.3382344. PubMed DOI
Groom C.R., Bruno I.J., Lightfoot M.P., Ward S.C. The Cambridge Structural Database. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2016;72:171–179. doi: 10.1107/S2052520616003954. PubMed DOI PMC
The Materials Project Materials Data on SrCO3 by Materials Project. 2020. [(accessed on 25 December 2022)]. Available online: https://materialsproject.org/materials/mp-33746.
Antao S.M., Hassan I. BaCO3: High-Temperature Crystal Structures and the Pmcm→R3m Phase Transition at 811 °C. Phys. Chem. Miner. 2007;34:573–580. doi: 10.1007/s00269-007-0172-8. DOI
Kitagawa S., Uemura K. Dynamic Porous Properties of Coordination Polymers Inspired by Hydrogen Bonds. Chem. Soc. Rev. 2005;34:109. doi: 10.1039/b313997m. PubMed DOI
Thommes M., Kaneko K., Neimark A.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report) Pure Appl. Chem. 2015;87:1051–1069. doi: 10.1515/pac-2014-1117. DOI
Cheon Y.E., Suh M.P. Multifunctional Fourfold Interpenetrating Diamondoid Network: Gas Separation and Fabrication of Palladium Nanoparticles. Chem.—Eur. J. 2008;14:3961–3967. doi: 10.1002/chem.200701813. PubMed DOI
Almáši M., Zeleňák V., Gyepes R., Zukal A., Čejka J. Synthesis, Characterization and Sorption Properties of Zinc(II) Metal–Organic Framework Containing Methanetetrabenzoate Ligand. Colloids Surf. A Physicochem. Eng. Asp. 2013;437:101–107. doi: 10.1016/j.colsurfa.2012.11.067. DOI
Jiang X., Kou H.-Z. Solid State Reconstructive Phase Transition from Porous Supramolecular Network to Porous Coordination Polymer. Chem. Commun. 2016;52:2952–2955. doi: 10.1039/C5CC09808D. PubMed DOI
Cheon Y.E., Suh M.P. Selective Gas Adsorption in a Microporous Metal–Organic Framework Constructed of CoII4 Clusters. Chem. Commun. 2009;17:2296. doi: 10.1039/b900085b. PubMed DOI
Ma L., Jin A., Xie Z., Lin W. Freeze Drying Significantly Increases Permanent Porosity and Hydrogen Uptake in 4,4-Connected Metal-Organic Frameworks. Angew. Chem. Int. Ed. 2009;48:9905–9908. doi: 10.1002/anie.200904983. PubMed DOI
Almáši M., Zeleňák V., Zukal A., Kuchár J., Čejka J. A Novel Zinc(II) Metal–Organic Framework with a Diamond-like Structure: Synthesis, Study of Thermal Robustness and Gas Adsorption Properties. Dalton Trans. 2016;45:1233–1242. doi: 10.1039/C5DT02437D. PubMed DOI
Almáši M., Zeleňák V., Opanasenko M., Čejka J. A Novel Nickel Metal–Organic Framework with Fluorite-like Structure: Gas Adsorption Properties and Catalytic Activity in Knoevenagel Condensation. Dalton Trans. 2014;43:3730. doi: 10.1039/c3dt52698d. PubMed DOI
Almáši M., Zeleňák V., Gyepes R., Bourrelly S., Opanasenko M.V., Llewellyn P.L., Čejka J. Microporous Lead–Organic Framework for Selective CO2 Adsorption and Heterogeneous Catalysis. Inorg. Chem. 2018;57:1774–1786. doi: 10.1021/acs.inorgchem.7b02491. PubMed DOI
Almáši M., Zeleňák V., Opanasenko M.V., Čejka J. Efficient and Reusable Pb(II) Metal–Organic Framework for Knoevenagel Condensation. Catal. Lett. 2018;148:2263–2273. doi: 10.1007/s10562-018-2471-8. DOI
Furukawa H., Gándara F., Zhang Y.-B., Jiang J., Queen W.L., Hudson M.R., Yaghi O.M. Water Adsorption in Porous Metal–Organic Frameworks and Related Materials. J. Am. Chem. Soc. 2014;136:4369–4381. doi: 10.1021/ja500330a. PubMed DOI
Liu D., Xie Z., Ma L., Lin W. Three-Dimensional Metal−Organic Frameworks Based on Tetrahedral and Square-Planar Building Blocks: Hydrogen Sorption and Dye Uptake Studies. Inorg. Chem. 2010;49:9107–9109. doi: 10.1021/ic1009169. PubMed DOI
Wen L., Cheng P., Lin W. Mixed-Motif Interpenetration and Cross-Linking of High-Connectivity Networks Led to Robust and Porous Metal–Organic Frameworks with High Gas Uptake Capacities. Chem. Sci. 2012;3:2288. doi: 10.1039/c2sc20172k. DOI
Wen L., Cheng P., Lin W. Solvent-Induced Single-Crystal to Single-Crystal Transformation of a 2D Coordination Network to a 3D Metal–Organic Framework Greatly Enhances Porosity and Hydrogen Uptake. Chem. Commun. 2012;48:2846. doi: 10.1039/c2cc17298d. PubMed DOI
Zhang M., Chen Y.-P., Bosch M., Gentle T., Wang K., Feng D., Wang Z.U., Zhou H.-C. Symmetry-Guided Synthesis of Highly Porous Metal-Organic Frameworks with Fluorite Topology. Angew. Chem. Int. Ed. 2013;53:815–818. doi: 10.1002/anie.201307340. PubMed DOI
Tan C., Yang S., Champness N.R., Lin X., Blake A.J., Lewis W., Schröder M. High Capacity Gas Storage by a 4,8-Connected Metal–Organic Polyhedral Framework. Chem. Commun. 2011;47:4487. doi: 10.1039/c1cc10378d. PubMed DOI
Liu D., Wu H., Wang S., Xie Z., Li J., Lin W. A High Connectivity Metal–Organic Framework with Exceptional Hydrogen and Methane Uptake Capacities. Chem. Sci. 2012;3:3032. doi: 10.1039/c2sc20601c. DOI
Si X., Jiao C., Li F., Zhang J., Wang S., Liu S., Li Z., Sun L., Xu F., Gabelica Z., et al. High and Selective CO2 Uptake, H2 Storage and Methanol Sensing on the Amine-Decorated 12-Connected Mof Cau-1. Energy Environ. Sci. 2011;4:4522. doi: 10.1039/c1ee01380g. DOI
Lee Y.-G., Moon H.R., Cheon Y.E., Suh M.P. A Comparison of the H2 Sorption Capacities of Isostructural Metal-Organic Frameworks with and without Accessible Metal Sites: [{Zn2(ABTC)(DMF)2}3] and [{Cu2(ABTC)(DDMF)2}3] versus [{Cu2(ABTC)}3] Angew. Chem. Int. Ed. 2008;47:7741–7745. doi: 10.1002/anie.200801488. PubMed DOI
Kim T.K., Suh M.P. Selective CO2 Adsorption in a Flexible Non-Interpenetrated Metal–Organic Framework. Chem. Commun. 2011;47:4258. doi: 10.1039/c0cc05199c. PubMed DOI
Patel H.A., Hyun Je S., Park J., Chen D.P., Jung Y., Yavuz C.T., Coskun A. Unprecedented High-Temperature CO2 Selectivity in N2-Phobic Nanoporous Covalent Organic Polymers. Nat. Commun. 2013;4:1357. doi: 10.1038/ncomms2359. PubMed DOI
Poater J., Gimferrer M., Poater A. Covalent and Ionic Capacity of MOFs To Sorb Small Gas Molecules. Inorg. Chem. 2018;57:6981–6990. doi: 10.1021/acs.inorgchem.8b00670. PubMed DOI
Myers A.L., Prausnitz J.M. Thermodynamics of Mixed-Gas Adsorption. AIChE J. 1965;11:121–127. doi: 10.1002/aic.690110125. DOI
Langmuir I. The Adsorption of Gases on Plane Surfaces of Glass, Mica and Platinum. J. Am. Chem. Soc. 1918;40:1361–1403. doi: 10.1021/ja02242a004. DOI
Hay P.J., Wadt W.R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals. J. Chem. Phys. 1985;82:299–310. doi: 10.1063/1.448975. DOI
Simmons J.M., Wu H., Zhou W., Yildirim T. Carbon Capture in Metal–Organic Frameworks—A Comparative Study. Energy Environ. Sci. 2011;4:2177. doi: 10.1039/c0ee00700e. DOI
Sumida K., Rogow D.L., Mason J.A., McDonald T.M., Bloch E.D., Herm Z.R., Bae T.-H., Long J.R. Carbon Dioxide Capture in Metal–Organic Frameworks. Chem. Rev. 2011;112:724–781. doi: 10.1021/cr2003272. PubMed DOI
Saha D., Van Bramer S.E., Orkoulas G., Ho H.-C., Chen J., Henley D.K. CO2 Capture in Lignin-Derived and Nitrogen-Doped Hierarchical Porous Carbons. Carbon. 2017;121:257–266. doi: 10.1016/j.carbon.2017.05.088. DOI
Duan F., Liu X., Qu D., Li B., Wu L. Polyoxometalate-Based Ionic Frameworks for Highly Selective CO2 Capture and Separation. CCS Chem. 2021;3:2676–2687. doi: 10.31635/ccschem.020.202000498. DOI
Yang Z., Zhang G., Guo X., Xu Y. Designing a Novel N-Doped Adsorbent with Ultrahigh Selectivity for CO2: Waste Biomass Pyrolysis and Two-Step Activation. Biomass Convers. Biorefin. 2020;11:2843–2854. doi: 10.1007/s13399-020-00633-0. DOI
Li H., Feng X., Ma D., Zhang M., Zhang Y., Liu Y., Zhang J., Wang B. Stable Aluminum Metal–Organic Frameworks (Al-MOFs) for Balanced CO2 and Water Selectivity. ACS Appl. Mater. Interfaces. 2018;10:3160–3163. doi: 10.1021/acsami.7b17026. PubMed DOI
Li N., Chang Z., Huang H., Feng R., He W.W., Zhong M., Madden D.G., Zaworotko M.J., Bu X.H. CO2 Capture: Specific K+ Binding Sites as CO2 Traps in a Porous MOF for Enhenced CO2 Selective Sorption. Small. 2019;15:1970118. doi: 10.1002/smll.201970118. PubMed DOI
Li T., Chen D.-L., Sullivan J.E., Kozlowski M.T., Johnson J.K., Rosi N.L. Systematic Modulation and Enhancement of CO2: N2 Selectivity and Water Stability in an Isoreticular Series of Bio-MOF-11 Analogues. Chem. Sci. 2013;4:1746. doi: 10.1039/c3sc22207a. DOI
Hong L., Ju S., Liu X., Zhuang Q., Zhan G., Yu X. Highly Selective CO2 Uptake in Novel Fishnet-like Polybenzoxazine-Based Porous Carbon. Energy Fuels. 2019;33:11454–11464. doi: 10.1021/acs.energyfuels.9b02631. DOI
Li G., Qin L., Yao C., Xu Y. Controlled Synthesis of Conjugated Polycarbazole Polymers via Structure Tuning for Gas Storage and Separation Applications. Sci. Rep. 2017;7:15394. doi: 10.1038/s41598-017-10372-4. PubMed DOI PMC
Idriss H., Scott M., Subramani V. Compendium of Hydrogen Energy. Woodhead Publishing; Sawston, UK: 2015. Introduction to Hydrogen and Its Properties; pp. 3–19.
Garg A., Almáši M., Rattan Paul D., Poonia E., Luthra J.R., Sharma A. Metal-Organic Framework MOF-76(Nd): Synthesis, Characterization, and Study of Hydrogen Storage and Humidity Sensing. Front. Energy Res. 2021;8:604735. doi: 10.3389/fenrg.2020.604735. DOI
Dhawa T., Chattopadhyay S., De G., Mahanty S. In Situ Mg/MgO-Embedded Mesoporous Carbon Derived from Magnesium 1,4-Benzenedicarboxylate Metal Organic Framework as Sustainable Li–S Battery Cathode Support. ACS Omega. 2017;2:6481–6491. doi: 10.1021/acsomega.7b01156. PubMed DOI PMC
Zhou J., Li R., Fan X., Chen Y., Han R., Li W., Zheng J., Wang B., Li X. Rational Design of a Metal–Organic Framework Host for Sulfur Storage in Fast, Long-Cycle Li–S Batteries. Energy Environ. Sci. 2014;7:2715. doi: 10.1039/C4EE01382D. DOI
Xi K., Cao S., Peng X., Ducati C., Vasant Kumar R., Cheetham A.K. Carbon with Hierarchical Pores from Carbonized Metal–Organic Frameworks for Lithium Sulphur Batteries. Chem. Commun. 2013;49:2192. doi: 10.1039/c3cc38009b. PubMed DOI
Chen X., Zhang M., Zhu J., Wang J., Jiao Z., Li Y. Boosting Electrochemical Performance of Li-S Batteries by Cerium-Based MOFs Coated with Polypyrrole. J. Alloys Compd. 2022;901:163649. doi: 10.1016/j.jallcom.2022.163649. DOI
Bao W., Zhang Z., Zhou C., Lai Y., Li J. Multi-Walled Carbon Nanotubes @ Mesoporous Carbon Hybrid Nanocomposites from Carbonized Mitli-Walled Carbon Nanotubes @ Metal-Organic Framework for Lithium Sulphur Battery. J. Power Sources. 2014;248:570. doi: 10.1016/j.jpowsour.2013.09.132. DOI
Novel Cu(II)-based metal-organic framework STAM-1 as a sulfur host for Li-S batteries