Novel Lanthanide(III) Porphyrin-Based Metal-Organic Frameworks: Structure, Gas Adsorption, and Magnetic Properties
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34604646
PubMed Central
PMC8482518
DOI
10.1021/acsomega.1c03327
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
The present work focuses on the hydrothermal synthesis and properties of porous coordination polymers of metal-porphyrin framework (MPF) type, namely, {[Pr4(H2TPPS)3]·11H2O} n (UPJS-10), {[Eu/Sm(H2TPPS)]·H3O+·16H2O} n (UPJS-11), and {[Ce4(H2TPPS)3]·11H2O} n (UPJS-12) (H2TPPS = 4,4',4″,4‴-(porphyrin-5,10,15,20-tetrayl)tetrakisbenzenesulfonate(4-)). The compounds were characterized using several analytical techniques: infrared spectroscopy, thermogravimetric measurements, elemental analysis, gas adsorption measurements, and single-crystal structure analysis (SXRD). The results of SXRD revealed a three-dimensional open porous framework containing crossing cavities propagating along all crystallographic axes. Coordination of H2TPPS4- ligands with Ln(III) ions leads to the formation of 1D polymeric chains propagating along the c crystallographic axis. Argon sorption measurements at -186 °C show that the activated MPFs have apparent BET surface areas of 260 m2 g-1 (UPJS-10) and 230 m2 g-1 (UPJS-12). Carbon dioxide adsorption isotherms at 0 °C show adsorption capacities up to 1 bar of 9.8 wt % for UPJS-10 and 8.6 wt % for UPJS-12. At a temperature of 20 °C, the respective CO2 adsorption capacities decreased to 6.95 and 5.99 wt %, respectively. The magnetic properties of UPJS-10 are characterized by the presence of a close-lying nonmagnetic ground singlet and excited doublet states in the electronic spectrum of Pr(III) ions. A much larger energy difference was suggested between the two lowest Kramers doublets of Ce(III) ions in UPJS-12. Finally, the analysis of X-band EPR spectra revealed the presence of radical spins, which were tentatively assigned to be originating from the porphyrin ligands.
Zobrazit více v PubMed
Ahmed A.; Seth S.; Purewal J.; Wong-Foy A. G.; Veenstra M.; Matzger A. J.; Siegel D. J. Exceptional Hydrogen Storage Achieved by Screening Nearly Half a Million Metal-Organic Frameworks. Nat. Commun. 2019, 10, 1568.10.1038/s41467-019-09365-w. PubMed DOI PMC
Haddad S.; Abánades Lázaro I.; Fantham M.; Mishra A.; Silvestre-Albero J.; Osterrieth J. W.; Kaminski Schierle G. S.; Kaminski C. F.; Forgan R. S.; Fairen-Jimenez D. Design of a Functionalized Metal–Organic Framework System for Enhanced Targeted Delivery to Mitochondria. J. Am. Chem. Soc. 2020, 142, 6661–6674. 10.1021/jacs.0c00188. PubMed DOI PMC
Schoedel A.; Ji Z.; Yaghi O. M. The Role of Metal–Organic Frameworks in a Carbon-Neutral Energy Cycle. Nat. Energy 2016, 1, 16034.10.1038/nenergy.2016.34. DOI
Wang X. K.; Liu J.; Zhang L.; Dong L.-Z.; Li S.-L.; Kan Y. H.; Li D. S.; Lan Y. Q. Monometallic Catalytic Models Hosted in Stable Metal–Organic Frameworks for Tunable CO2 Photoreduction. ACS Catal. 2019, 9, 1726–1732. 10.1021/acscatal.8b04887. DOI
Zhou W.; Huang D.-D.; Wu Y.-P.; Zhao J.; Wu T.; Zhang J.; Li D.-S.; Sun C.; Feng P.; Bu X. Stable Hierarchical Bimetal–Organic Nanostructures as High– Performance Electrocatalysts for the Oxygen Evolution Reaction. Angew. Chem., Int. Ed. 2019, 58, 4227–4231. 10.1002/anie.201813634. PubMed DOI
Hu Z.; Deibert B. J.; Li J. Luminescent Metal–Organic Frameworks for Chemical Sensing and Explosive Detection. Chem. Soc. Rev. 2014, 43, 5815–5840. 10.1039/C4CS00010B. PubMed DOI
Batten S. R.; Champness N. R.; Chen X.-M.; Garcia-Martinez J.; Kitagawa S.; Öhrström L.; O’Keeffe M.; Paik Suh M.; Reedijk J. Terminology of Metal–Organic Frameworks and Coordination Polymers (IUPAC Recommendations 2013). Pure Appl. Chem. 2013, 85, 1715–1724. 10.1351/PAC-REC-12-11-20. DOI
Cook T. R.; Zheng Y.-R.; Stang P. J. Metal-Organic Frameworks and Self-Assembled Supramolecular Coordination Complexes: Comparing and Contrasting the Design, Synthesis and Functionality of Metal-Organic Materials. Chem. Rev. 2013, 113, 734–777. 10.1021/cr3002824. PubMed DOI PMC
Chen T.-H.; Popov I.; Kaveevivitchai W.; Miljanić O. Š. Metal–Organic Frameworks: Rise of the Ligands. Chem. Mater. 2014, 26, 4322–4325. 10.1021/cm501657d. DOI
Lin K. J. SMTP-1: The First Functionalized Metalloporphyrin Molecular Sieves with Large Channels. Angew. Chem., Int. Ed. Engl. 1999, 38, 2730–2732. 10.1002/(SICI)1521-3773(19990917)38:18<2730::AID-ANIE2730>3.0.CO;2-9. PubMed DOI
Kosal M. E.; Chou J.-H.; Wilson S. R.; Suslick K. S. A Functional Zeolite Analogue Assembled from Metalloporphyrins. Nat. Mater. 2002, 1, 118–121. 10.1038/nmat730. PubMed DOI
Suslick K. S.; Bhyrappa P.; Chou J.-H.; Kosal M. E.; Nakagaki S.; Smithenry D. W.; Wilson S. R. Microporous Porphyrin Solids. Acc. Chem. Res. 2005, 38, 283–291. 10.1021/ar040173j. PubMed DOI
Gao W.-Y.; Chrzanowski M.; Ma S. Metal–Metalloporphyrin Frameworks: a Resurging Class of Functional Materials. Chem. Soc. Rev. 2014, 43, 5841–5866. 10.1039/C4CS00001C. PubMed DOI
Chen J.; Zhu Y.; Kaskel S. Porphyrin-Based Metal–Organic Frameworks for Biomedical Applications. Angew. Chem., Int. Ed. 2021, 60, 5010–5035. 10.1002/anie.201909880. PubMed DOI PMC
De S.; Devic T.; Fateeva A. Porphyrin and Phthalocyanine-Based Metal Organic Frameworks Beyond Metal-Carboxylates. Dalton Trans. 2021, 50, 1166–1188. 10.1039/D0DT03903A. PubMed DOI
Almáši M.; Zeleňák V.; Gyepes R.; Zukal A.; Čejka J. Synthesis, Characterization and Sorption Properties of Zinc(II) Metal–Organic Framework Containing Methanetetrabenzoate Ligand. Colloids Surf., A 2013, 437, 101–107. 10.1016/j.colsurfa.2012.11.067. DOI
Almáši M.; Zeleňák V.; Zukal A.; Kuchár J.; Čejka J. A Novel Zinc(Ii) Metal–Organic Framework with a Diamond-like Structure: Synthesis, Study of Thermal Robustness and Gas Adsorption Properties. Dalton Trans. 2016, 45, 1233–1242. 10.1039/C5DT02437D. PubMed DOI
Almáši M.; Zeleňák V.; Gyepes R.; Bourrelly S.; Opanasenko M. V.; Llewellyn P. L.; Čejka J. Microporous Lead–Organic Framework for Selective CO2 Adsorption and Heterogeneous Catalysis. Inorg. Chem. 2018, 57, 1774–1786. 10.1021/acs.inorgchem.7b02491. PubMed DOI
Almáši M.; Zeleňák V.; Opanasenko M. V.; Čejka J. Efficient and Reusable Pb(II) Metal–Organic Framework for Knoevenagel Condensation. Catal. Lett. 2018, 148, 2263–2273. 10.1007/s10562-018-2471-8. DOI
Almáši M.; Zeleňák V.; Gyepes R.; Zauška L’.; Bourrelly S. A Series of Four Novel Alkaline Earth Metal–Organic Frameworks Constructed of Ca(II), Sr(II), Ba(II) Ions and Tetrahedral MTB Linker: Structural Diversity, Stability Study and Low/High-Pressure Gas Adsorption Properties. RSC Adv. 2020, 10, 32323–32334. 10.1039/D0RA05145D. PubMed DOI PMC
Binnemans K. Lanthanide-Based Luminescent Hybrid Materials. Chem. Rev. 2009, 109, 4283–4374. 10.1021/cr8003983. PubMed DOI
Bhattacharya S.; Bala S.; Mondal R. Ln-MOFs Using a Compartmental Ligand with a Unique Combination of Hard–Soft Terminals and Their Magnetic, Gas Adsorption and Luminescence Properties. CrystEngComm 2019, 21, 5665–5672. 10.1039/C9CE01026B. DOI
Zhang C.; Ma X.; Cen P.; Jin X.; Yang J.; Zhang Y.-Q.; Ferrando-Soria J.; Pardo E.; Liu X. A Series of Lanthanide(III) Metal–Organic Frameworks Derived from a Pyridyl-Dicarboxylate Ligand: Single-Molecule Magnet Behaviour and Luminescence Properties. Dalton Trans. 2020, 49, 14123–14132. 10.1039/D0DT02736G. PubMed DOI
Yi X.-G.; Huang J.-G.; Hu R.-H.; Luo Z.-G.; Pei Y.-P.; Chen W.-T. A Series of Thermal Stable Lanthanide Porphyrins with a Condensed Three-Dimensional Porous Open Framework: Gas Adsorption and Magnetic Properties. J. Porphyrins Phthalocyanines 2015, 19, 1072–1079. 10.1142/S1088424615500820. DOI
Chen W.-T.; Luo Q.-Y.; Xu Y.-P.; Dai Y.-K.; Huang S.-L.; Guo P.-Y. Hydrothermal Synthesis, Crystal Structure and Properties of a Thermally Stable Dysprosium Porphyrin with a Three-Dimensional Porous Open Framework. Inorg. Chem. Commun. 2014, 49, 16–18. 10.1016/j.inoche.2014.09.012. DOI
Chen W.-T.; Hu R.-H.; Chen H.-L.; Zhang X.; Fu H.-R. Synthesis, Characterization and Properties of a Gadolinium Tetra(4-Sulfonatophenyl)Porphyrin. J. Iran. Chem. Soc. 2014, 12, 277–282. 10.1007/s13738-014-0482-y. DOI
Hu R.-H.; Yi C.; Li Y.; Zhang Z.-X.; Lin L.-Z.; Chen W.-T. A Neodymium Tetra(4-Sulfonatophenyl)Porphyrin with a Flexible Three-Dimensional Framework. J. Porphyrins Phthalocyanines 2018, 22, 325–330. 10.1142/S1088424618500244. DOI
Diskin-Posner Y.; Goldberg I. Porphyrin Sieves. Designing Open Networks of Tetra(Carboxyphenyl)Porphyrins by Extended Coordination through Sodium Ion Auxiliaries. New J. Chem. 2001, 25, 899–904. 10.1039/b100580b. DOI
Delgado-Lima A.; Fonseca A. M.; Machado A. V. Novel Iridium-Pentafluorophenyl Porphyrin Complex. Mater. Lett. 2017, 200, 6–9. 10.1016/j.matlet.2017.03.177. DOI
Zhang W.; Jiang P.; Wang Y.; Zhang J.; Zhang P. Synthesis of Two Metal-Porphyrin Frameworks Assembled from Porphyrin Building Motifs, 5,10,15,20-Tetrapyridylporphyrin and Their Base Catalyzed Property. Inorg. Chem. Commun. 2015, 61, 100–104. 10.1016/j.inoche.2015.09.002. DOI
Blatov V. A.; Shevchenko A. P.; Proserpio D. M. Applied Topological Analysis of Crystal Structures with the Program Package ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586. 10.1021/cg500498k. DOI
O’Keeffe M.; Peskov M. A.; Ramsden S. J.; Yaghi O. M. The Reticular Chemistry Structure Resource (RCSR) Database of, and Symbols for, Crystal Nets. Acc. Chem. Res. 2008, 41, 1782–1789. 10.1021/ar800124u. PubMed DOI
Alexandrov E. V.; Shevchenko A. P.; Blatov V. A. Topological Databases: Why Do We Need Them for Design of Coordination Polymers?. Cryst. Growth Des. 2019, 19, 2604–2614. 10.1021/acs.cgd.8b01721. DOI
Chen W. T.; Hu R. H.; Xu Y. P.; Luo Q. Y.; Dai Y. K.; Huang S. L.; Guo P. Y. Photophysical and Electrochemical Properties of a Novel Lanthanide Tetra(4-Sulfonatophenyl)Porphyrin. J. Iran. Chem. Soc. 2015, 12, 937–942. 10.1007/s13738-014-0556-x. DOI
Chen W. T.; Hu R. H.; Luo Z. G.; Chen H. L.; Liu J. A New 3-D Lanthanide Porphyrin: Synthesis, Structure and Photophysical Properties. Chin. J. Struct. Chem. 2015, 34, 279–284.
Demel J.; Kubát P.; Millange F.; Marrot J.; Císařová I.; Lang K. Lanthanide-Porphyrin Hybrids: from Layered Structures to Metal–Organic Frameworks with Photophysical Properties. Inorg. Chem. 2013, 52, 2779–2786. 10.1021/ic400182u. PubMed DOI
Ogilby P. R. Singlet Oxygen: There Is Indeed Something New under the Sun. Chem. Soc. Rev. 2010, 39, 3181.10.1039/b926014p. PubMed DOI
Bregnhøj M.; Westberg M.; Jensen F.; Ogilby P. R. Solvent-Dependent Singlet Oxygen Lifetimes: Temperature Effects Implicate Tunneling and Charge-Transfer Interactions. Phys. Chem. Chem. Phys. 2016, 18, 22946–22961. 10.1039/C6CP01635A. PubMed DOI
Couck S.; Denayer J. F.; Baron G. V.; Tom R.; Gascon J.; Kapteijn F. An Amine-Functionalized MIL-53 Metal–Organic Framework with Large Separation Power for CO2/CH4. J. Am. Chem. Soc. 2009, 131, 6326–6327. 10.1021/ja900555r. PubMed DOI
Gupta S. K.; Shanmugan S.; Rajeshkumar T.; Borah A.; Damjanović M.; Schulze M.; Wernsdorfer W.; Rajaraman G.; Murugavel R. A Single-Ion Single-Electron Cerrous Magnet. Dalton Trans. 2019, 48, 15928–15935. 10.1039/C9DT03052B. PubMed DOI
Aguilà D.; Barrios L. A.; Velasco V.; Roubeau O.; Repollés A.; Alonso P. J.; Sesé J.; Teat S. J.; Luis F.; Aromí G. Heterodimetallic [LnLn′] Lanthanide Complexes: Toward a Chemical Design of Two-Qubit Molecular Spin Quantum Gates. J. Am. Chem. Soc. 2014, 136, 14215–14222. 10.1021/ja507809w. PubMed DOI PMC
Hino S.; Maeda M.; Yamashita K.; Kataoka Y.; Nakano M.; Yamamura T.; Nojiri H.; Kofu M.; Yamamuro O.; Kajiwara T. Linear Trinuclear Zn(II)–Ce(III)–Zn(II) Complex Which Behaves as a Single-Molecule Magnet. Dalton Trans. 2013, 42, 2683–2686. 10.1039/c2dt32812g. PubMed DOI
Xu M.-X.; Meng Y.-S.; Xiong J.; Wang B.-W.; Jiang S.-D.; Gao S. Magnetic Anisotropy Investigation on Light Lanthanide Complexes. Dalton Trans. 2018, 47, 1966–1971. 10.1039/C7DT04351A. PubMed DOI
Singh S. K.; Gupta T.; Ungur L.; Rajaraman G. Magnetic Relaxation in Single-Electron Single-Ion Cerium(III) Magnets: Insights from Ab Initio Calculations. Chem. – Eur. J. 2015, 21, 13812–13819. 10.1002/chem.201501330. PubMed DOI
García-Palacios J. L.; Gong J. B.; Luis F. Equilibrium Susceptibilities of Superparamagnets: Longitudinal and Transverse, Quantum and Classical. J. Phys.: Condens. Matter 2009, 21, 456006.10.1088/0953-8984/21/45/456006. PubMed DOI
Carlin R. L.Magnetochemistry; 1st ed.; Springer-Verlag Berlin Heidelberg: Berlin, Germany, 2013.
Bartolomé E.; Alonso P. J.; Arauzo A.; Luzón J.; Bartolomé J.; Racles C.; Turta C. Magnetic Properties of the Seven-Coordinated Nanoporous Framework Material Co(Bpy)1.5(NO3)2 (Bpy = 4,4′-Bipyridine). Dalton Trans. 2012, 41, 10382–10389. 10.1039/C2DT31135F. PubMed DOI
Aguilà D.; Barrios L. A.; Velasco V.; Arnedo L.; Aliaga-Alcalde N.; Menelaou M.; Teat S. J.; Roubeau O.; Luis F.; Aromí G. Lanthanide Contraction within a Series of Asymmetric Dinuclear [Ln2] Complexes. Chem. – Eur. J. 2013, 19, 5881–5891. 10.1002/chem.201204451. PubMed DOI
Giansiracusa M. J.; Al-Badran S.; Kostopoulos A. K.; Whitehead G. F. S.; McInnes E. J. L.; Collison D.; Winpenny R. E. P.; Chilton N. F. Magnetic Exchange Interactions in Symmetric Lanthanide Dimetallics. Inorg. Chem. Front. 2020, 7, 3909–3918. 10.1039/D0QI00854K. DOI
Maniaki D.; Perlepe P. S.; Pilichos E.; Christodoulou S.; Rouzières M.; Dechambenoit P.; Clérac R.; Perlepes S. P. Asymmetric Dinuclear Lanthanide(III) Complexes from the Use of a Ligand Derived from 2-Acetylpyridine and Picolinoylhydrazide: Synthetic, Structural and Magnetic Studies. Molecules 2020, 25, 3153.10.3390/molecules25143153. PubMed DOI PMC
Aguilà D.; Velasco V.; Barrios L. A.; González-Fabra J.; Bo C.; Teat S. J.; Roubeau O.; Aromí G. Selective Lanthanide Distribution within a Comprehensive Series of Heterometallic [LnPr] Complexes. Inorg. Chem. 2018, 57, 8429–8439. 10.1021/acs.inorgchem.8b01112. PubMed DOI
Layfield R. A.; Murugesu M.. Lanthanides and Actinides in Molecular Magnetism; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2015, pp. 154–184.
Stoll S.; Schweiger A. EasySpin, a Comprehensive Software Package for Spectral Simulation and Analysis in EPR. J. Magn. Reson. 2006, 178, 42–55. 10.1016/j.jmr.2005.08.013. PubMed DOI
Ikezaki A.; Takahashi M.; Nakamura M. Equilibrium between Fe(IV) Porphyrin and Fe(III) Porphyrin Radical Cation: New Insight into the Electronic Structure of High-Valent Iron Porphyrin Complexes. Chem. Commun. 2013, 49, 3098.10.1039/c3cc40319j. PubMed DOI
Bolzonello L.; Albertini M.; Collini E.; Di Valentin M. Delocalized Triplet State in Porphyrin J-Aggregates Revealed by EPR Spectroscopy. Phys. Chem. Chem. Phys. 2017, 19, 27173–27177. 10.1039/C7CP02968C. PubMed DOI
Shimizu D.; Osuka A. Porphyrinoids as a Platform of Stable Radicals. Chem. Sci. 2018, 9, 1408–1423. 10.1039/C7SC05210C. PubMed DOI PMC
Mautner F. A.; Bierbaumer F.; Fischer R. C.; Vicente R.; Tubau À.; Ferran A.; Massoud S. S. Structural Characterization, Magnetic and Luminescent Properties of Praseodymium(III)-4,4,4-Trifluoro-1-(2-Naphthyl)Butane-1,3-Dionato(1-) Complexes. Crystals 2021, 11, 179.10.3390/cryst11020179. DOI
Kobets M. I.; Khats’ko E. N.; Dergachev K. G.; Kalinin P. S. Electronic Paramagnetic Resonance or Rare-Earth Ions Yb3+, Pr3+, Dy3+, and Nd3+ in Double Molybdates and Tungstenates. Low Temp. Phys. 2010, 36, 611–617. 10.1063/1.3482018. DOI
Király N.; Zeleňák V.; Zeleňáková A.; Berkutova A.; Almáši M.; Gyepes R.; Čižmár E. Magnetic Properties of Praseodynium-Organic Framework Containing H2TPPS Ligand. Acta Phys. Pol., A 2020, 137, 770–772. 10.12693/APhysPolA.137.770. DOI
Stevens K. W. Matrix Elements and Operator Equivalents Connected with the Magnetic Properties of Rare Earth Ions. Proc. Phys. Soc., Sect. A 1952, 65, 209–215. 10.1088/0370-1298/65/3/308. DOI
Bleaney B.; Stevens K. W. H. Paramagnetic Resonance. Rep. Prog. Phys. 1953, 16, 108.10.1088/0034-4885/16/1/304. DOI
Chilton N. F.; Anderson R. P.; Turner L. D.; Soncini A.; Murray K. S. PHI: A Powerful New Program for the Analysis of Anisotropic Monomeric and Exchange-Coupled Polynuclear d- And f-Block Complexes. J. Comput. Chem. 2013, 34, 1164–1175. 10.1002/jcc.23234. PubMed DOI
Eaton S. S.; Eaton G. R. Magnetic Susceptibility of Porphyrins. Inorg. Chem. 1980, 19, 1095–1096. 10.1021/ic50206a073. DOI
Datta S.; Hovan A.; Jutková A.; Kruglik S. G.; Jancura D.; Miskovsky P.; Bánó G. Phosphorescence Kinetics of Singlet Oxygen Produced by Photosensitization in Spherical Nanoparticles. Part II. The Case of Hypericin-Loaded Low-Density Lipoprotein Particles. J. Phys. Chem. B 2018, 122, 5154–5160. 10.1021/acs.jpcb.8b00659. PubMed DOI
Sheldrick G. M. Crystal Structure Refinement With SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, 71, 3–8. 10.1107/S2053229614024218. PubMed DOI PMC
Spek A. L. Structure Validation in Chemical Crystallography. Acta Crystallogr., Sect. D: Struct. Biol. 2009, 65, 148–155. 10.1107/S090744490804362X. PubMed DOI PMC
Brandenburg K.DIAMOND 3.2e; Crystal Impact GbR: Bonn, Germany: 2010.