A New Member of the Metal-Porphyrin Frameworks Family: Structure, Physicochemical Properties, Hydrogen and Carbon Dioxide Adsorption
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
1/0865/21
Scientific Grant Agency of the Slovak Republic (VEGA)
006TUKE-4/2021
Cultural and Educational Grant Agency of Ministry of Education, Science, Research and Sport of the Slovak Republic (KEGA)
APVV-20-0512
Slovak Research and Development Agency under Contract
VVGS-2023-2723
P. J. Šafárik University
Laboratory of Adsorption & Catalysis (LADCA)
Ministry of Education, Science, Research and Sport of the Slovak Republic
Accreditation commission
PubMed
37943029
PubMed Central
PMC10853072
DOI
10.1002/open.202300100
Knihovny.cz E-zdroje
- Klíčová slova
- carbon dioxide adsorption, hydrogen adsorption, isosteric heats, metal-organic frameworks, metal-porphyrin frameworks,
- Publikační typ
- časopisecké články MeSH
A novel holmium-based porous metal-porphyrin framework, {(H3 O+ )[Ho(H2 TPPS)]- ⋅ 4H2 O}n (denoted as UPJS-17), was synthesised by hydrothermal reaction. Structural analysis reveals, that UPJS-17 has a three-dimensional open framework. The framework is negatively charged and the negative charge is compensated by hydronium cation. The compound showed no N2 adsorption but the Ar, CO2 and H2 . From the argon adsorption, the surface area of ~150 m2 g-1 was determined. Carbon dioxide adsorption was measured at various temperatures (0, 10, 20, 30 and 40 °C) and the compound showed the highest adsorption capacity (at 0 °C) of 7.0 wt % of CO2 . From the carbon dioxide adsorption isotherms the isosteric heat of 56,5 kJ mol-1 was determined. Hydrogen adsorption was studied at -196 °C with hydrogen uptake of 2.1 wt % at 1 bar.
Department of Chemistry University of Ostrava 30 Dubna 22 702 00 Ostrava Czech Republic
Department of Inorganic Chemistry P J Šafárik University Moyzesova 11 041 01 Košice Slovak Republic
Zobrazit více v PubMed
Zhang X., Wasson M. C., Shayan M., Berdichevsky E. K., Ricardo-Noordberg J., Singh Z., Papazyan E. K., Castro A. J., Marino P., Ajoyan Z., Chen Z., Islamoglu T., Howarth A. J., Liu Y., Majewski M. B., Katz M. J., Mondloch J. E., Farha O. K., Coord. Chem. Rev. 2021, 429, 213615. PubMed PMC
Gao W.-Y., Chrzanowski M., Ma S., Chem. Soc. Rev. 2014, 43, 5841–5866. PubMed
Goldberg I., CrystEngComm 2008, 10, 637.
Jiang D., Huang C., Zhu J., Wang P., Liu Z., Fang D., Coord. Chem. Rev. 2021, 444, 214064.
Dai F., Fan W., Bi J., Jiang P., Liu D., Zhang X., Lin H., Gong C., Wang R., Zhang L., Sun D., Dalton Trans. 2016, 45, 61–65. PubMed
Shee N. K., Lee C. J., Kim H. J., Bull. Korean Chem. Soc. 2021, 43, 103–109.
Zhang L., Feng Y., He H., Liu Y., Weng J., Zhang P., Huang W., Catal. Today 2021, 374, 38–43.
Feng L., Wang K.-Y., Joseph E., Zhou H.-C., Trends Chem. 2020, 2, 555–568.
Zhang X. D., Hou S. Z., Wu J. X., Gu Z. Y., Chem. Eur. J. 2020, 26, 1604–1611. PubMed
Rajasree S. S., Li X., Deria P., Comm. Chem. 2021, 4, 47. PubMed PMC
Chen J., Zhu Y., Kaskel S., Angew. Chem. Int. Ed. 2020, 60, 5010–5035. PubMed PMC
Banerjee S., Lollar C. T., Xiao Z., Fang Y., Zhou H.-C., Trends Chem. 2020, 2, 467–479.
Tay H. M., Goddard E. J., Hua C., CrystEngComm 2022, 24, 7277–7282.
Huh S., Kim S.-J., Kim Y., CrystEngComm 2016, 18, 345–368.
Jeoung S., Kim S., Kim M., Moon H. R., Coord. Chem. Rev. 2020, 420, 213377.
Maares M., Ayhan M. M., Yu K. B., Yazaydin A. O., Harmandar K., Haase H., Beckmann J., Zorlu Y., Yücesan G., Chem. Eur. J. 2019, 25, 11214–11217. PubMed
De S., Devic T., Fateeva A., Dalton Trans. 2021, 50, 1166–1188. PubMed
Spek A. L., Acta Crystallogr. Sect. D 2009, 65, 148–155. PubMed PMC
Shevchenko A. P., Blatov V. A., Struct. Chem. 2021. 32, 507–519.
Király N., Zeleňák V., Lenártová N., Zeleňáková A., Čižmár E., Almáši M., Meynen V., Hovan A., Gyepes R., ACS Omega 2021, 6, 24637–24649. PubMed PMC
Yi X.-G., Huang J.-G., Hu R.-H., Luo Z.-G., Pei Y.-P., Chen W.-T., J. Porphyrins Phthalocyanines 2015, 19, 1072–1079.
Nuhnen A., Janiak C., Dalton Trans. 2020, 49, 10295–10307. PubMed
Suresh R., Vijayakumar S., Phys. E 2021, 126, 114448.
Zeleňák V., Skřínska M., Zukal A., Čejka J., Chem. Eng. J. 2018, 348, 327–337.
Forse A. C., Milner P. J., Lee J.-H., Redfearn H. N., Oktawiec J., Siegelman R. L., Martell J. D., Dinakar B., Porter-Zasada L. B., Gonzalez M. I., Neaton J. B., Long J. R., Reimer J. A., J. Am. Chem. Soc. 2018, 140, 18016–18031. PubMed PMC
Marshall R. J., Forgan R. S., Eur. J. Inorg. Chem. 2016, 27, 4310–4331.
Zhang T., Lin S., Yan T., Li B., Liang Y., Li D., He Y., Inorg. Chem. 2023, 62, 5593–5601. PubMed
Yue L., Wang X., Guo R., Lv Y., Zhang T., Li B., Lin S., Liang Y., Chen D.-L., He Y., Inorg. Chem. 2023, 62, 2415–2424. PubMed
Sheldrick G. M., Acta Crystallogr. Sect. C 2015, 71, 3–8. PubMed PMC
K. Brandenburg, Crystal Impact GbR: Bonn, Germany 2010.