The influence of HKUST-1 and MOF-76 hand grinding/mechanical activation on stability, particle size, textural properties and carbon dioxide sorption

. 2024 Jul 04 ; 14 (1) : 15386. [epub] 20240704

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38965298

Grantová podpora
LUASK22049 INTER-EXCELLENCE II, MŠMT
SGS09/PŘF/2024 Ostravská Univerzita v Ostravě
2/0112/22 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
SK-CZ-RD-21-0068 Agentúra na Podporu Výskumu a Vývoja

Odkazy

PubMed 38965298
PubMed Central PMC11224341
DOI 10.1038/s41598-024-66432-z
PII: 10.1038/s41598-024-66432-z
Knihovny.cz E-zdroje

In this study, we explore the mechanical treatment of two metal-organic frameworks (MOFs), HKUST-1 and MOF-76, applying various milling methods to assess their impact on stability, porosity, and CO2 adsorption capacity. The effects of different mechanical grinding techniques, such as high-energy ball milling and hand grinding, on these MOFs were compared. The impact of milling time, milling speed and ball size during high-energy ball milling was assessed via the Design of Experiments methodology, namely using a 33 Taguchi orthogonal array. The results highlight a marked improvement in CO2 adsorption capacity for HKUST-1 through hand milling, increasing from an initial 25.70 wt.% (5.84 mmol g-1) to 41.37 wt.% (9.40 mmol g-1), marking a significant 38% increase. In contrast, high-energy ball milling seems to worsen this property, diminishing the CO2 adsorption abilities of the materials. Notably, MOF-76 shows resistance to hand grinding, closely resembling the original sample's performance. Hand grinding also proved to be well reproducible. These findings clarify the complex effects of mechanical milling on MOF materials, emphasising the necessity of choosing the proper processing techniques to enhance their stability, texture, and performance in CO2 capture and storage applications.

Zobrazit více v PubMed

Ding M, Cai X, Jiang H. Improving MOF stability: Approaches and applications. Chem. Sci. 2019;10(44):10209–10230. doi: 10.1039/c9sc03916c. PubMed DOI PMC

Yusuf VF, Malek NI, Kailasa SK. Review on Metal-Organic Framework classification, synthetic approaches, and influencing factors: Applications in energy, drug delivery, and wastewater treatment. ACS Omega. 2022;7(49):44507–44531. doi: 10.1021/acsomega.2c05310. PubMed DOI PMC

Fan W, Zhang X, Kang Z, Liu X, Sun D. Isoreticular chemistry within metal–organic frameworks for gas storage and separation. Coord. Chem. Rev. 2021;443:213968. doi: 10.1016/j.ccr.2021.213968. DOI

Li H, Li L, Lin R, Zhou W, Zhang Z, Xiang S, Chen B. Porous metal-organic frameworks for gas storage and separation: Status and challenges. EnergyChem. 2019;1(1):100006. doi: 10.1016/j.enchem.2019.100006. PubMed DOI PMC

Liu D, Gu W, Zhou L, Wang L, Zhang J, Liu Y, Lei J. Recent advances in MOF-derived carbon-based nanomaterials for environmental applications in adsorption and catalytic degradation. Chem. Eng. J. 2022;427:131503. doi: 10.1016/j.cej.2021.131503. DOI

Király N, Capková D, Gyepes R, Vargová N, Kazda T, Bednarčík J, Yudina D, Zelenka T, Čudek P, Zeleňák V, Sharma A, Meynen V, Hornebecq V, Fedorková AS, Almáši M. Sr(II) and Br(II) alkaline earth metal-organic frameworks (AE-MOFs) for selective gas adsorption, energy storage, and environmental application. Nanomaterials. 2023;13(2):234. doi: 10.3390/nano13020234. PubMed DOI PMC

Kang D, Lee JS. Challenges in developing MOF-based membranes for gas separation. Langmuir. 2023;39(8):2871–2880. doi: 10.1021/acs.langmuir.2c03458. PubMed DOI

Sadakiyo M. Support effects of metal–organic frameworks in heterogeneous catalysis. Nanoscale. 2022;14(9):3398–3406. doi: 10.1039/d1nr07659k. PubMed DOI

Ahmad A, Khan S, Tariq S, Luque R, Verpoort F. Self-sacrifice MOFs for heterogeneous catalysis: Synthesis mechanisms and future perspectives. Mater. Today. 2022;55:137–169. doi: 10.1016/j.mattod.2022.04.002. DOI

Pal TK, De D, Bharadwaj PK. Metal-organic frameworks as heterogeneous catalysts for the chemical conversion of carbon dioxide. Fuel. 2022;320:123904. doi: 10.1016/j.fuel.2022.123904. DOI

Mallakpour S, Nikkhoo E, Hussain CM. Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coord. Chem. Rev. 2022;451:214262. doi: 10.1016/j.ccr.2021.214262. DOI

Moharramnejad M, Ehsani A, Shahi M, Gharanli S, Saremi H, Malekshah RE, Basmenj ZS, Salmani S, Mohammadi MR. MOF as nanoscale drug delivery devices: Synthesis and recent progress in biomedical applications. J. Drug Deliv. Sci. Technol. 2023;81:104285. doi: 10.1016/j.jddst.2023.104285. DOI

Almáši M. A review on state of art and perspectives of Metal-Organic frameworks (MOFs) in the fight against coronavirus SARS-CoV-2. J. Coord. Chem. 2021;74(13):2111–2127. doi: 10.1080/00958972.2021.1965130. DOI

Stavila V, Talin AA, Allendorf MD. MOF-based electronic and opto-electronic devices. Chem. Soc. Rev. 2014;43(16):5994–6010. doi: 10.1039/c4cs00096j. PubMed DOI

Chui SS, Lo SMF, Charmant JPH, Orpen AG, Williams ID. A Chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science. 1999;283(5405):1148–1150. doi: 10.1126/science.283.5405.1148. PubMed DOI

Volkringer C, Popov D, Loiseau T, Férey G, Burghammer M, Riekel C, Haouas M, Taulèlle F. Synthesis, single-crystal X-ray microdiffraction, and NMR characterisations of the Giant pore Metal-organic framework aluminum trimesate MIL-100. Chem. Mater. 2009;21(24):5695–5697. doi: 10.1021/cm901983a. DOI

Rosi NL, Kim J, Eddaoudi M, Chen B, O’Keeffe M, Yaghi OM. Rod packings and metal−organic frameworks constructed from rod-shaped secondary building units. J. Am. Chem. Soc. 2005;127(5):1504–1518. doi: 10.1021/ja045123o. PubMed DOI

Zheng B, Yun R, Bai J, Lu Z, Du L, Li Y. Expanded porous MOF-505 analogue exhibiting large hydrogen storage capacity and selective carbon dioxide adsorption. Inorg. Chem. 2013;52(6):2823–2829. doi: 10.1021/ic301598n. PubMed DOI

Furukawa H, Gándara F, Zhang Y, Jiang J, Queen WL, Hudson MR, Yaghi OM. Water adsorption in porous metal-organic frameworks and related materials. J. Am. Chem. Soc. 2014;136(11):4369–4381. doi: 10.1021/ja500330a. PubMed DOI

Mohideen MIH, Xiao B, Wheatley P, McKinlay AC, Li Y, Slawin AMZ, Aldous DW, Cessford NF, Düren T, Zhao X, Gill R, Thomas KM, Griffin JM, Ashbrook SE, Morris RE. Protecting group and switchable pore-discriminating adsorption properties of a hydrophilic–hydrophobic metal–organic framework. Nature Chem. 2011;3(4):304–310. doi: 10.1038/nchem.1003. PubMed DOI

Niščáková V, Almáši M, Capková D, Kazda T, Čech O, Čudek P, Petruš O, Volavka D, Oriňaková R, Fedorková AS. Novel Cu(II)-based metal–organic framework STAM-1 as a sulfur host for Li–S batteries. Sci. Rep. 2024;14(1):9232. doi: 10.1038/s41598-024-59600-8. PubMed DOI PMC

Groom CR, Bruno I, Lightfoot MP, Ward SC. The Cambridge Structural Database. Acta Crystallograph. Sect. B Struct. Sci. Crystal Eng. Mater. 2016;72(2):171–179. doi: 10.1107/s2052520616003954. PubMed DOI PMC

Li B, Lin J, Lee J, Kwon EE, Bui X, Duan X, Chen HH, Yang H, Lin KA. Size-controlled nanoscale octahedral HKUST-1 as an enhanced catalyst for oxidative conversion of vanillic alcohol: The mediating effect of polyvinylpyrrolidone. Coll. Surf. A Physicochem. Eng. Aspects. 2021;631:127639. doi: 10.1016/j.colsurfa.2021.127639. DOI

Yu J, Liu S, Mu X, Yang G, Luo X, Lester E, Wu T. Cu-ZrO2 catalysts with highly dispersed Cu nanoclusters derived from ZrO2@HKUST-1 composites for the enhanced CO2 hydrogenation to methanol. Chem. Eng. J. 2021;419:129656. doi: 10.1016/j.cej.2021.129656. DOI

Yu F, Chen L, Li X, Shen X, Zhao H, Duan C, Chen Q. CU Nanocluster-Loaded TiO2 nanosheets for highly efficient generation of CO-Free hydrogen by selective photocatalytic dehydrogenation of methanol to formaldehyde. ACS Appl. Mater Interfaces. 2021;13(16):18619–18626. doi: 10.1021/acsami.0c20116. PubMed DOI

Van D, Do Nam H, Nguyen NK, Lê TA, Le TM, Van Phuc B, Le TS, Ngo QA, Nguyen HM, Hung TQ, Dang TT. Efficient synthesis of 5-aryl-5H-pyrido[2′,1′:2,3]imidazo[4,5-b]indoles by double C N coupling reactions using HKUST-1 as recyclable heterogeneous catalyst under air. Tetrahedron Letters. 2023;122:154504. doi: 10.1016/j.tetlet.2023.154504. DOI

Bagheri M, Melillo A, Ferrer B, Masoomi MY, García H. Enhanced catalytic performance of Quasi-HKUST-1 for the tandem Imine formation. Chem. Eur. J. 2021;27(57):14273–14281. doi: 10.1002/chem.202102405. PubMed DOI

Naskar K, Maity S, Maity HS, Sinha C. A reusable efficient green catalyst of 2D CU-MOF for the click and Knoevenagel reaction. Molecules. 2021;26(17):5296. doi: 10.3390/molecules26175296. PubMed DOI PMC

Opanasenko M, Shamzhy M, Lamač M, Čejka J. The effect of substrate size in the Beckmann rearrangement: MOFs vs. zeolites. Catalysis Today. 2013;204:94–100. doi: 10.1016/j.cattod.2012.09.008. DOI

Anbu N, Dhakshinamoorthy A. Cu3(BTC)2 as a viable heterogeneous solid catalyst for Friedel-Crafts alkylation of indoles with nitroalkenes. J. Coll. Interface Sci. 2017;494:282–289. doi: 10.1016/j.jcis.2017.01.091. PubMed DOI

Sharma D, Rasaily S, Pradhan S, Baruah K, Tamang S, Pariyar A. HKUST-1 metal organic framework as an efficient dual-function catalyst: Aziridination and one-pot ring-opening transformation for formation of β-aryl sulfonamides with C-C, C–N, C–S, and C–O bonds. Inorg. Chem. 2021;60(11):7794–7802. doi: 10.1021/acs.inorgchem.1c00201. PubMed DOI

Kim EJ, Siegelman RL, Jiang HZH, Forse AC, Lee J, Martell JD, Milner PJ, Falkowski JM, Neaton JB, Reimer JA, Weston SC, Long JR. Cooperative carbon capture and steam regeneration with tetraamine-appended metal–organic frameworks. Science. 2020;369(6502):392–396. doi: 10.1126/science.abb3976. PubMed DOI PMC

Lin K, Adhikari AK, Ku C, Chiang C, Kuo H. Synthesis and characterisation of porous HKUST-1 metal organic frameworks for hydrogen storage. Int. J. Hydrogen Energy. 2012;37(18):13865–13871. doi: 10.1016/j.ijhydene.2012.04.105. DOI

Madden DG, O’Nolan D, Rampal N, Babu R, Çamur C, Shakhs ANA, Zhang S, Rance GA, Perez JVD, Casati N, Cuadrado-Collados C, O’Sullivan D, Rice N, Gennett T, Parilla PA, Shulda S, Hurst KE, Stavila V, Allendorf MD, Silvestre-Alberto J, Forse AC, Champness NR, Chapman KW, Fairen-Jimenez D. Densified HKUST-1 monoliths as a route to high volumetric and gravimetric hydrogen storage capacity. J. Am. Chem. Soc. 2022;144(30):13729–13739. doi: 10.1021/jacs.2c04608. PubMed DOI PMC

Spanopoulos I, Tsangarakis C, Klontzas E, Tylianakis E, Froudakis GE, Adil K, Belmabkhout Y, Eddaoudi M, Trikalitis PN. Reticular Synthesis of HKUST-like tbo-MOFs with enhanced CH4 Storage. J. Am. Chem. Soc. 2016;138(5):1568–1574. doi: 10.1021/jacs.5b11079. PubMed DOI

Denning S, Majid AAA, Crawford JM, Wells JD, Carreón MA, Koh CA. Methane storage scale-up using hydrates & metal organic framework HKUST-1 in a packed column. Fuel. 2022;325:124920. doi: 10.1016/j.fuel.2022.124920. DOI

Peikert K, McCormick LJ, Cattaneo D, Duncan MJ, Hoffmann F, Khan AH, Bertmer M, Morris RE, Fröba M. Tuning the nitric oxide release behavior of amino functionalised HKUST-1. Microporous Mesoporous Mater. 2015;216:118–126. doi: 10.1016/j.micromeso.2015.06.020. DOI

Borfecchia E, Maurelli S, Gianolio D, Groppo E, Chiesa M, Bonino F, Lamberti C. Insights into adsorption of NH3 on HKUST-1 metal-organic framework: A multitechnique approach. J. Phys. Chem. C. 2012;116(37):19839–19850. doi: 10.1021/jp305756k. DOI

Wang Z, Ge L, Li M, Lin R, Wang H, Zhu Z. Orientated growth of copper-based MOF for acetylene storage. Chem. Eng. J. 2019;357:320–327. doi: 10.1016/j.cej.2018.09.148. DOI

Gautam S, Singhal JP, Lee H, Chae KH. Drug delivery of paracetamol by metal-organic frameworks (HKUST-1): improvised synthesis and investigations. Mater. Today Chem. 2022;23:100647. doi: 10.1016/j.mtchem.2021.100647. DOI

Chen Q, Chen Q, Zhuang C, Tang P, Lin N, Wei L. Controlled release of drug molecules in metal–organic framework material HKUST-1. Inorg. Chem. Commun. 2017;79:78–81. doi: 10.1016/j.inoche.2017.03.027. DOI

Liang Y, Yao Y, Liu Y, Liu Y, Xu C, Fu L, Lin B. Curcumin-loaded HKUST-1@ carboxymethyl starch-based composites with moisture-responsive release properties and synergistic antibacterial effect for perishable fruits. Int. J. Biol. Macromol. 2022;214:181–191. doi: 10.1016/j.ijbiomac.2022.06.022. PubMed DOI

Ismail AH, Yaacob MH, Mahdi MA, Sulaiman Y. Influence of HKUST-1 and emeraldine based on the long-term stability of emeraldine salt-coated SP-POF for room temperature optical NH3 gas sensing. Sensors Act. A Phys. 2022;335:113395. doi: 10.1016/j.sna.2022.113395. DOI

Lee JE, Kim DY, Lee H, Park HJ, Ma A, Choi S, Lee D. Sonochemical synthesis of HKUST-1-based CuO decorated with Pt nanoparticles for formaldehyde gas-sensor applications. Sensors Act. B Chem. 2019;292:289–296. doi: 10.1016/j.snb.2019.04.062. DOI

Liu X, Chen L, Gao Y, Li J, Sun J, Gan T. Molecularly imprinted polymer capped Au@HKUST−1 nanocapsules-based electrochemical sensing platform for monitoring isoproturon herbicide in water at sub−nanomole level. J. Environ. Chem. Eng. 2022;10(3):107661. doi: 10.1016/j.jece.2022.107661. DOI

Chen S, Zhang M, Zhang H, Yan X, Xie J, Qi J, Sun X. Dicyandiamide-assisted HKUST-1 derived Cu/N-doped porous carbon nanoarchitecture for electrochemical detection of acetaminophen. Environ. Res. 2021;201:111500. doi: 10.1016/j.envres.2021.111500. PubMed DOI

Liang Y, Jiang H, Lin H, Wang C, Yu K, Wang C, Lv J, Zhou B. Preparation of Single-Ni atom active points by anchoring Anderson polyoxometalate in HKUST-1 for efficient Symmetric/ Asymmetric device energy storage and electrocatalytic overall water splitting. Chem. Eng. J. 2023;466:143220. doi: 10.1016/j.cej.2023.143220. DOI

Gu C, Wang Q, Zhang L, Yang P, Fei J, Fei J. Ultrasensitive non-enzymatic pesticide electrochemical sensor based on HKUST-1-derived copper oxide @ mesoporous carbon composite. Sensors Act. B Chem. 2020;305:127478. doi: 10.1016/j.snb.2019.127478. DOI

Mohanadas D, Abdah MAAM, Azman NHN, Ravoof TBSA, Sulaiman Y. Facile synthesis of PEDOT-rGO/HKUST-1 for high performance symmetrical supercapacitor device. Sci. Rep. 2021 doi: 10.1038/s41598-021-91100-x. PubMed DOI PMC

De Haro J, Benítez A, Caballero Á, Morales J. Revisiting the HKUST-1/S composite as an electrode for Li-S batteries: inherent problems that hinder its performance. Eur. J. Inorg. Chem. 2020;2021(2):177–185. doi: 10.1002/ejic.202000837. DOI

Almáši M, Zeleňák V, Opanasenko M, Císařová, I. Ce(III) and Lu(III) metal–organic frameworks with Lewis acid metal sites: Preparation, sorption properties and catalytic activity in Knoevenagel condensation. Catalysis Today. 2015;243:184–194. doi: 10.1016/j.cattod.2014.07.028. DOI

Santos PFD, Luz PP. Synthesis of a Ce-Based MOF-76 with high yield: A study of reaction parameters based on a factorial design. J. Brazil. Chem. Soc. 2020 doi: 10.21577/0103-5053.20190218. DOI

Zhang C, Xu Y, Lv C, Zhou X, Wang Y, Xing W, Meng Q, Kong Y, Chen G. Mimicking π Backdonation in Ce-MOFs for Solar-Driven Ammonia Synthesis. ACS Appl. Mater. Interfaces. 2019;11(33):29917–29923. doi: 10.1021/acsami.9b08682. PubMed DOI

Ethiraj J, Bonino F, Vitillo JG, Lomachenko KA, Lamberti C, Reinsch H, Lillerud KP, Bordiga S. Solvent-driven gate opening in MOF-76-Ce: Effect on CO2 adsorption. ChemSusChem. 2016;9(7):713–719. doi: 10.1002/cssc.201501574. PubMed DOI

Santos PFD, Ribeiro J, Luz PP. Physicochemical and electrochemical characterisation of Ce/carbonaceous matrices-based composites. Solid State Sci. 2020;110:106479. doi: 10.1016/j.solidstatesciences.2020.106479. DOI

Chevinly AS, Mobtaker HG, Yousefi T, Shirani AS, Aghayan H. [Ce(BTC)(H2O)]·DMF n metal organic framework as a new adsorbent for removal of neodymium ions. Inorg. Chimica Acta. 2017;455:34–40. doi: 10.1016/j.ica.2016.09.046. DOI

Garg A, Almáši M, Paul DR, Poonia E, Luthra JR, Sharma A. Metal-organic framework MOF-76(Nd): Synthesis, characterisation, and study of hydrogen storage and humidity sensing. Front. Energy Res. 2021 doi: 10.3389/fenrg.2020.604735. DOI

Gustafsson M, Bartoszewicz A, Martín-Matute B, Sun J, Grîns J, Zhao T, Li Z, Zhu G, Zou X. A family of highly stable lanthanide metal−organic frameworks: structural evolution and catalytic activity. Chem. Mater. 2010;22(11):3316–3322. doi: 10.1021/cm100503q. DOI

Lian X, Yan B. A lanthanide metal–organic framework (MOF-76) for adsorbing dyes and fluorescence detecting aromatic pollutants. RSC Adv. 2016;6(14):11570–11576. doi: 10.1039/c5ra23681a. DOI

Yang Y, Zhao L, Sun M, Wei P, Li G, Li Y. Highly sensitive luminescent detection toward polytypic antibiotics by a water-stable and white-light-emitting MOF-76 derivative. Dyes and Pigments. 2020;180:108444. doi: 10.1016/j.dyepig.2020.108444. DOI

Wu D, Zhang Z, Chen X, Meng L, Li C, Li G, Chen X, Shi Z, Feng S. A non-luminescent Eu-MOF-based “turn-on” sensor towards an anthrax biomarker through single-crystal to single-crystal phase transition. Chem. Commun. 2019;55(99):14918–14921. doi: 10.1039/c9cc08206a. PubMed DOI

Chen B, Yang Y, Zapata F, Lin G, Qian G, Lobkovsky E. Luminescent open metal sites within a metal-organic framework for sensing small molecules. Adv. Mater. 2007;19(13):1693–1696. doi: 10.1002/adma.200601838. DOI

Yang J, Yue Q, Li G, Cao J, Li G, Chen J. Structures, photoluminescence, up-conversion, and magnetism of 2D and 3D rare-earth coordination polymers with multicarboxylate linkages. Inorg. Chem. 2006;45(7):2857–2865. doi: 10.1021/ic051557o. PubMed DOI

Almáši M, Zeleňák V, Zeleňáková A. Magnetic and structural studies into the effect of solvent exchange process in metal-organic Framework MOF-76(Gd) Acta Physica Polonica A. 2017;131(4):991–993. doi: 10.12693/aphyspola.131.991. DOI

Zeleňák V, Almáši M, Zeleňáková A, Hrubovčák P, Tarasenko R, Bourelly S, Llewellyn P. Large and tunable magnetocaloric effect in gadolinium-organic framework: Tuning by solvent exchange. Sci. Rep. 2019 doi: 10.1038/s41598-019-51590-2. PubMed DOI PMC

Xie L, Wang Y, Liu X, Lin J, Zhang J, Chen X. Crystallographic studies into the role of exposed rare earth metal ion for guest sorption. CrystEngComm. 2011;13(19):5849. doi: 10.1039/c1ce05468f. DOI

Liu S, Li X, Zhang H. Synergistic effects of MOF-76 on layered double hydroxides with superior activity for extractive catalytic oxidative desulfurisation. New J. Chem. 2020;44(16):6269–6276. doi: 10.1039/d0nj00612b. DOI

Kajiwara T, Higuchi M, Watanabe D, Higashimura H, Yamada T, Kitagawa H. A systematic study on the stability of porous coordination polymers against ammonia. Chem. Eur. J. 2014;20(47):15611–15617. doi: 10.1002/chem.201403542. PubMed DOI

Fonseca RR, Di Lázaro Gaspar R, Raimundo IM, Luz PP. Photoluminescent Tb3+-based metal-organic framework as a sensor for detection of methanol in ethanol fuel. J. Rare Earths. 2019;37(3):225–231. doi: 10.1016/j.jre.2018.07.006. DOI

Eskandari H, Amirzehni M, Asadollahzadeh H, Hassanzadeh J, Eslami PA. MIP-capped terbium MOF-76 for the selective fluorometric detection of cefixime after its preconcentration with magnetic graphene oxide. Sensors Act. B Chem. 2018;275:145–154. doi: 10.1016/j.snb.2018.08.050. DOI

Li J, Yuan X, Wu Y, Ma X, Li F, Zhang B, Wang Y, Lei Z, Zhang Z. From powder to cloth: Facile fabrication of dense MOF-76(Tb) coating onto natural silk fiber for feasible detection of copper ions. Chem. Eng. J. 2018;350:637–644. doi: 10.1016/j.cej.2018.05.144. DOI

Lee T, Lee HL, Tsai MH, Cheng S, Lee SW, Hu J, Chen LT. A biomimetic tongue by photoluminescent metal–organic frameworks. Biosensors Bioelectron. 2013;43:56–62. doi: 10.1016/j.bios.2012.11.014. PubMed DOI

Yang W, Bai Z, Shi W, Yuan L, Tian T, Chai Z, Wang H, Sun Z. MOF-76: from a luminescent probe to highly efficient UVI sorption material. Chem. Commun. 2013;49(88):10415–10417. doi: 10.1039/c3cc44983a. PubMed DOI

Yang W, Feng J, Song S, Zhang H. Microwave-assisted modular fabrication of nanoscale luminescent metal-organic framework for molecular sensing. ChemPhysChem. 2012;13(11):2734–2738. doi: 10.1002/cphc.201200265. PubMed DOI

Eskandari H, Amirzehni M, Hassanzadeh J, Vahid B. Mesoporous MIP-capped luminescent MOF as specific and sensitive analytical probe: Application for chlorpyrifos. Mikrochimica Acta. 2020 doi: 10.1007/s00604-020-04654-4. PubMed DOI

Chen B, Wang L, Zapata F, Qian G, Lobkovsky E. A luminescent microporous Metal−Organic framework for the recognition and sensing of anions. J. Am. Chem. Soc. 2008;130(21):6718–6719. doi: 10.1021/ja802035e. PubMed DOI

Garg A, Almáši M, Saini R, Paul DR, Sharma A, Jain A, Jain I. A highly stable terbium(III) metal-organic framework MOF-76(Tb) for hydrogen storage and humidity sensing. Environ. Sci. Pollut. Res. 2022;30(44):98548–98562. doi: 10.1007/s11356-022-21290-y. PubMed DOI

Guo X, Zhu G, Li Z, Sun F, Yang Z, Qiu S. A lanthanide metal–organic framework with high thermal stability and available Lewis-acid metal sites. Chem. Commun. 2006;30:3172–3174. doi: 10.1039/b605428e. PubMed DOI

Zhou Q, Fu Y, Xin B, Zeng G, Zhou X, Liu K, Ma D, Li G, Shi Z, Feng S. Reversible switching of slow magnetic relaxation in a classic lanthanide metal–organic framework system. Chem. Commun. 2013;49(74):8244. doi: 10.1039/c3cc43747g. PubMed DOI

Almáši M, Zeleňák V, Kuchár J, Bourrelly S, Llewellyn P. New members of MOF-76 family containing Ho(III) and Tm(III) ions: Characterisation, stability and gas adsorption properties. Coll. Surf. A Phys. Chem. Eng. Aspects. 2016;496:114–124. doi: 10.1016/j.colsurfa.2015.10.048. DOI

Kiyonaga T, Higuchi M, Kajiwara T, Takashima Y, Duan J, Nagashima K, Kitagawa S. Dependence of crystal size on the catalytic performance of a porous coordination polymer. Chem. Commun. 2015;51(13):2728–2730. doi: 10.1039/c4cc07562e. PubMed DOI

Singh KP, Kukkar D, Singh RP, Kukkar P, Bajaj NK, Singh J, Rawat M, Kumar A, Kim K. In situ green synthesis of Au/Ag nanostructures on a metal-organic framework surface for photocatalytic reduction of p-nitrophenol. J. Ind. Eng. Chem. 2020;81:196–205. doi: 10.1016/j.jiec.2019.09.008. DOI

Li Z, Liu K. Crystal structure of aqua(benzene-1,3,5-tricarboxylato)-lutetium(III), Lu(H2O)(C9H3O6) Zeitschrift Fur Kristallographie-new Crystal Structures. 2012 doi: 10.1524/ncrs.2012.0041. DOI

Bano S, Tariq SR, Ilyas A, Aslam M, Bilad MR, Nizami A, Khan AL. Synergistic solution of CO2 capture by novel lanthanide-based MOF-76 yttrium nanocrystals in mixed-matrix membranes. Energy & Environment. 2019;31(4):692–712. doi: 10.1177/0958305x19882413. DOI

Duan T, Yan B. Hybrids based on lanthanide ions activated yttrium metal–organic frameworks: functional assembly, polymer film preparation and luminescence tuning. J. Mater. Chem. C. 2014;2(26):5098–5104. doi: 10.1039/c4tc00414k. DOI

Kalaj M, Bentz KC, Ayala S, Palomba JM, Barcus K, Katayama Y, Cohen SM. MOF-polymer hybrid materials: From simple composites to tailored architectures. Chem. Reviews. 2020;120(16):8267–8302. doi: 10.1021/acs.chemrev.9b00575. PubMed DOI

Liu K, Sharifzadeh Z, Rouhani F, Ghorbanloo M, Morsali A. Metal-organic framework composites as green/sustainable catalysts. Coord. Chem. Reviews. 2021;436:213827. doi: 10.1016/j.ccr.2021.213827. DOI

Peng Y, Xu J, Xu J, Ma J, Bai Y, Cao S, Zhang S, Pang H. Metal-organic framework (MOF) composites as promising materials for energy storage applications. Adv. Coll. Interface Sci. 2022;307:102732. doi: 10.1016/j.cis.2022.102732. PubMed DOI

Cai X, Xie Z, Li D, Kassymova M, Zang S, Jiang H. Nano-sized metal-organic frameworks: Synthesis and applications. Coord. Chem. Reviews. 2020;417:213366. doi: 10.1016/j.ccr.2020.213366. DOI

Chalati T, Horcajada P, Gref R, Couvreur P, Serre C. Optimisation of the synthesis of MOF nanoparticles made of flexible porous iron fumarate MIL-88A. J. of Mater. Chem. 2011;21(7):2220–2227. doi: 10.1039/c0jm03563g. DOI

Hermes S, Witte T, Hikov T, Zacher D, Bahnmüller S, Langstein G, Huber K, Fischer RA. Trapping metal-organic framework nanocrystals: An in-situ time-resolved light scattering study on the crystal growth of MOF-5 in solution. J. Am. Chem. Soc. 2007;129(17):5324–5325. doi: 10.1021/ja068835i. PubMed DOI

Cravillon J, Münzer S, Lohmeier SJ, Feldhoff A, Huber K, Wiebcke M. Rapid room-temperature synthesis and characterisation of nanocrystals of a prototypical zeolitic imidazolate framework. Chem. Mater. 2009;21(8):1410–1412. doi: 10.1021/cm900166h. DOI

Horcajada P, Serre C, Grosso D, Boissière C, Perruchas S, Sánchez C, Férey G. Colloidal route for preparing optical thin films of nanoporous Metal-Organic frameworks. Adv. Mater. 2009;21(19):1931–1935. doi: 10.1002/adma.200801851. DOI

Tsuruoka T, Furukawa S, Takashima Y, Yoshida K, Isoda S, Kitagawa S. Nanoporous nanorods fabricated by coordination modulation and oriented attachment growth. Angewandte Chemie Int. Edition. 2009;48(26):4739–4743. doi: 10.1002/anie.200901177. PubMed DOI

Morris W, Wang S, Cho D, Auyeung E, Li P, Farha OK, Mirkin CA. Role of modulators in controlling the colloidal stability and polydispersity of the UIO-66 metal-organic framework. ACS Appl. Mater. Interfaces. 2017;9(39):33413–33418. doi: 10.1021/acsami.7b01040. PubMed DOI

Cai X, Xie Z, Pang M. Controllable synthesis of highly uniform nanosized HKUST-1 crystals by Liquid–Solid–Solution Method. Crystal Growth Design. 2019;19(2):556–561. doi: 10.1021/acs.cgd.8b01695. DOI

Cai X, Deng X, Xie Z, Shi Y, Pang M. Controllable synthesis of highly monodispersed nanoscale Fe-soc-MOF and the construction of Fe-soc-MOF@polypyrrole core-shell nanohybrids for cancer therapy. Chem. Eng. J. 2019;358:369–378. doi: 10.1016/j.cej.2018.10.044. DOI

Zheng W, Hao X, Zhao L, Sun W. Controllable preparation of nanoscale Metal-Organic frameworks by ionic liquid microemulsions. Ind. Eng. Chem. Res. 2017;56(20):5899–5905. doi: 10.1021/acs.iecr.7b00694. DOI

Zarekarizi F, Morsali A. Ultrasonic-assisted synthesis of nano-sized metal-organic framework; a simple method to explore selective and fast Congo Red adsorption. Ultrasonics Sonochem. 2020;69:105246. doi: 10.1016/j.ultsonch.2020.105246. PubMed DOI

Li P, Maeda Y, Xu Q. Top-down fabrication of crystalline metal–organic framework nanosheets. Chem. Commun. 2011;47(29):8436. doi: 10.1039/c1cc12510a. PubMed DOI

Huang H, Li J, Wang K, Han T, Tong M, Liangsha L, Xie Y, Yang Q, Liu D, Zhong C. An in situ self-assembly template strategy for the preparation of hierarchical-pore metal-organic frameworks. Nature Commun. 2015 doi: 10.1038/ncomms9847. PubMed DOI PMC

Karimi Z, Morsali A. Modulated formation of metal-organic frameworks by oriented growth over mesoporous silica. J. Mater. Chem. A Mater. Energy Sustain. 2013;1(9):3047. doi: 10.1039/c2ta01565j. DOI

Shrivastav V, Sundriyal S, Tiwari U, Kim K, Deep A. Metal-organic framework derived zirconium oxide/carbon composite as an improved supercapacitor electrode. Energy. 2021;235:121351. doi: 10.1016/j.energy.2021.121351. DOI

Kundu T, Mitra S, Patra P, Goswami A, Díaz DD, Banerjee R. Mechanical downsizing of a Gadolinium(III)-based Metal-Organic framework for anticancer drug delivery. Chem. European J. 2014;20(33):10514–10518. doi: 10.1002/chem.201402244. PubMed DOI

Li R, Ren X, Zhao J, Feng X, Jiang X, Fan X, Lin Z, Li X, Hu C, Wang B. Polyoxometallates trapped in a zeolitic imidazolate framework leading to high uptake and selectivity of bioactive molecules. J. Mater. Chem. A Mater. Energy Sustain. 2014;2(7):2168–2173. doi: 10.1039/c3ta14267a. DOI

Cheng P, Hu YH. Acetylene adsorption on defected MIL-53. Int. J. Energy Res. 2016;40(6):846–852. doi: 10.1002/er.3492. DOI

Baláž M. Environmental mechanochemistry. In Springer eBooks. 2021 doi: 10.1007/978-3-030-75224-8. DOI

Zelenka T, Simanova K, Saini R, Zelenková G, Nehra S, Sharma A, Almáši M. Carbon dioxide and hydrogen adsorption study on surface-modified HKUST-1 with diamine/triamine. Sci. Rep. 2022 doi: 10.1038/s41598-022-22273-2. PubMed DOI PMC

Liu J, Culp JT, Natesakhawat S, Bockrath B, Zande B, Sankar SG, Garberoglio G, Johnson JK. Experimental and theoretical studies of gas adsorption in CU3(BTC)2: An effective activation procedure. J. Phys. Chem. C. 2007;111(26):9305–9313. doi: 10.1021/jp071449i. DOI

Garg A, Almáši M, BednarčíK J, Sharma R, Rao VS, Panchal P, Jain A, Sharma A. Gd(III) metal-organic framework as an effective humidity sensor and its hydrogen adsorption properties. Chemosphere. 2022;305:135467. doi: 10.1016/j.chemosphere.2022.135467. PubMed DOI

Capková D, Kazda T, Čech O, Király N, Zelenka T, Čudek P, Sharma A, Hornebecq V, Fedorková AS, Almáši M. Influence of metal-organic framework MOF-76(Gd) activation/carbonisation on the cycle performance stability in Li-S battery. J. Energy Stor. 2022;51:104419. doi: 10.1016/j.est.2022.104419. DOI

Taguchi G, Jugulum R, Taguchi S. Computer-based Robust Engineering: Essentials for DFSS. Milwaukee: ASQ Quality Press; 2004. p. 217.

Almáši M, Sharma A, Zelenka T. Anionic zinc(II) metal-organic framework post-synthetically modified by alkali-ion exchange: Synthesis, characterisation and hydrogen adsorption properties. Inorg. Chimica Acta. 2021;526:120505. doi: 10.1016/j.ica.2021.120505. DOI

Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquérol J, Sing KSW. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) Pure Appl. Chem. 2015;87(9–10):1051–1069. doi: 10.1515/pac-2014-1117. DOI

Liu P, Zhao T, Cai K, Chen P, Liu F, Tao D. Rapid mechanochemical construction of HKUST-1 with enhancing water stability by hybrid ligands assembly strategy for efficient adsorption of SF6. Chem. Eng. J. 2022;437:135364. doi: 10.1016/j.cej.2022.135364. DOI

Maia RA, Louis B, Baudron SA. HKUST-1 MOF in reline deep eutectic solvent: Synthesis and phase transformation. Dalton Trans. 2021;50(12):4145–4151. doi: 10.1039/d1dt00377a. PubMed DOI

Bennett TD, Todorova TK, Baxter EF, Reid DG, Gervais C, Bueken B, Van De Voorde B, De Vos D, Keen DA, Mellot-Draznieks C. Connecting defects and amorphization in UiO-66 and MIL-140 metal–organic frameworks: A combined experimental and computational study. Physical Chem. Chem. Physics. 2016;18(3):2192–2201. doi: 10.1039/c5cp06798g. PubMed DOI

Užarević K, Ferdelji N, Mrla T, Julien PA, Halasz B, Friščić T, Halasz I. Enthalpy vs. friction: Heat flow modelling of unexpected temperature profiles in mechanochemistry of metal–organic frameworks. Chem. Sci. 2018;9(9):2525–2532. doi: 10.1039/c7sc05312f. PubMed DOI PMC

Pearson RG. Hard and soft acids and bases. J. Am. Chem. Soc. 1963;85(22):3533–3539. doi: 10.1021/ja00905a001. DOI

Peng C, Hu YH. Acetylene adsorption on defected MIL-53. Int. J. Energy Res. 2016;40(6):846–852. doi: 10.1002/er.3492. DOI

Shearier ER, Peng C, Zhu Z, Bao J, Hu YH, Zhao F. Surface defection reduces cytotoxicity of Zn(2-methylimidazole)2 (ZIF-8) without compromising its drug delivery capacity. RSC Adv. 2016;6(5):4128–4135. doi: 10.1039/c5ra24336j. PubMed DOI PMC

Tao C, Wang J. Synthesis of metal organic frameworks by ball-milling. Crystals. 2020;11(1):15. doi: 10.3390/cryst11010015. DOI

Liu D, Zou D, Zhu H, Zhang J. Mesoporous metal-organic frameworks: Synthetic strategies and emerging applications. Small. 2018 doi: 10.1002/smll.201801454. PubMed DOI

Zelenka T, Horikawa T. Artifacts and misinterpretations in gas physisorption measurements and characterisation of porous solids. Adv. Coll. Interface Sci. 2023;311:102831. doi: 10.1016/j.cis.2022.102831. PubMed DOI

Zelenková G, Zelenka T, Almáši M, Soldánová M. Graphene as a promising additive to hierarchically porous carbon monoliths for enhanced H2 and CO2 sorption. J. CO2 Util. 2023;68:102371. doi: 10.1016/j.jcou.2022.102371. DOI

Almáši M, Zeleňák V, Gyepes R, Zukal A, Čejka J. Synthesis, characterisation and sorption properties of zinc(II) metal–organic framework containing methanetetrabenzoate ligand. Coll Surf. A Physicochem. Eng. Aspects. 2013;437:101–107. doi: 10.1016/j.colsurfa.2012.11.067. DOI

Almáši M, Király N, Zeleňák V, Vilková M, Bourrelly S. Zinc(II) and cadmium(II) amorphous metal–organic frameworks (aMOFs): study of activation process and high-pressure adsorption of greenhouse gases. RSC Adv. 2021;11(33):20137–20150. doi: 10.1039/d1ra02938j. PubMed DOI PMC

Király N, Zeleňák V, Zelenka T, Almáši M, Kuchár J. A new member of the Metal-Porphyrin Frameworks family: structure, physicochemical properties, hydrogen and carbon dioxide adsorption. ChemistryOpen. 2023 doi: 10.1002/open.202300100. PubMed DOI PMC

Yan X, Komarneni S, Zhang Z, Zhang Y. Extremely enhanced CO2 uptake by HKUST-1 metal–organic framework via a simple chemical treatment. Microporous Mesoporous Mater. 2014;183:69–73. doi: 10.1016/j.micromeso.2013.09.009. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...