Transformation of Cellulose via Two-Step Carbonization to Conducting Carbonaceous Particles and Their Outstanding Electrorheological Performance

. 2022 May 13 ; 23 (10) : . [epub] 20220513

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35628288

Grantová podpora
RP/CPS/2022/003 Ministry of Education Youth and Sports

In this study, cellulose was carbonized in two-steps using hydrothermal and thermal carbonization in sequence, leading to a novel carbonaceous material prepared from a renewable source using a sustainable method without any chemicals and, moreover, giving high yields after a treatment at 600 °C in an inert atmosphere. During this treatment, cellulose was transformed to uniform microspheres with increased specific surface area and, more importantly, conductivity increased by about 7 orders of magnitude. The successful transition of cellulose to conducting carbonaceous microspheres was confirmed through SEM, FTIR, X-ray diffraction and Raman spectroscopy. Prepared samples were further used as a dispersed phase in electrorheological fluids, exhibiting outstanding electrorheological effects with yield stress over 100 Pa at an electric field strength 1.5 kV mm-1 and a particle concentration of only 5 wt%, significantly overcoming recent state-of-the-art findings. Impedance spectroscopy analysis showed clear interfacial polarization of this ER fluid with high dielectric relaxation strength and short relaxation time, which corresponded to increased conductivity of the particles when compared to pure cellulose. These novel carbonaceous particles prepared from renewable cellulose have further potential to be utilized in many other applications that demand conducting carbonaceous structures with high specific surface area (adsorption, catalyst, filtration, energy storage).

Zobrazit více v PubMed

Bober P., Kovarova J., Pfleger J., Stejskal J., Trchova M., Novak I., Berek D. Twin carbons: The carbonization of cellulose or carbonized cellulose coated with a conducting polymer, polyaniline. Carbon. 2016;109:836–842. doi: 10.1016/j.carbon.2016.08.061. DOI

Gericke M., Trygg J., Fardim P. Functional Cellulose Beads: Preparation, Characterization, and Applications. Chem. Rev. 2013;113:4812–4836. doi: 10.1021/cr300242j. PubMed DOI

Feng Z.X., Odelius K., Rajarao G.K., Hakkarainen M. Microwave carbonized cellulose for trace pharmaceutical adsorption. Chem. Eng. J. 2018;346:557–566. doi: 10.1016/j.cej.2018.04.014. DOI

Sheng K.C., Zhang S., Liu J.L., Shuang E., Jin C.D., Xu Z.H., Zhang X.M. Hydrothermal carbonization of cellulose and xylan into hydrochars and application on glucose isomerization. J. Clean. Prod. 2019;237:117831. doi: 10.1016/j.jclepro.2019.117831. DOI

Sevilla M., Fuertes A.B. The production of carbon materials by hydrothermal carbonization of cellulose. Carbon. 2009;47:2281–2289. doi: 10.1016/j.carbon.2009.04.026. DOI

Kang S.M., Li X.H., Fan J., Chang J. Characterization of hydrochars produced by hydrothermal carbonization of lignin, cellulose, d-xylose, and wood meal. Ind. Eng. Chem. Res. 2012;51:9023–9031. doi: 10.1021/ie300565d. DOI

Fakkaew K., Koottatep T., Polprasert C. Effects of hydrolysis and carbonization reactions on hydrochar production. Bioresour. Technol. 2015;192:328–334. doi: 10.1016/j.biortech.2015.05.091. PubMed DOI

Rejon L., Ramirez A., Paz F., Goycoolea F.M., Valdez M.A. Response time and electrorheology of semidiluted gellan, xanthan and cellulose suspensions. Carbohydr. Polym. 2002;48:413–421. doi: 10.1016/S0144-8617(01)00291-0. DOI

Ramos-Tejada M.M., Arroyo F.J., Delgado A.V. Negative electrorheological behavior in suspensions of inorganic particles. Langmuir. 2010;26:16833–16840. doi: 10.1021/la1029036. PubMed DOI

Tilki T., Yavuz M., Karabacak C., Cabuk M., Uluturk M. Investigation of electrorheological properties of biodegradable modified cellulose/corn oil suspensions. Carbohydr. Res. 2010;345:672–679. doi: 10.1016/j.carres.2009.12.025. PubMed DOI

Kuznetsov N.M., Zagoskin Y.D., Bakirov A.V., Vdovichenko A.Y., Malakhov S.N., Istomina A.P., Chvalun S.N. Is chitosan the promising candidate for filler in nature-friendly electrorheological fluids? Acs Sustain. Chem. Eng. 2021;9:3795–3803. doi: 10.1021/acssuschemeng.0c08793. DOI

Gao C.Y., Kim M.H., Jin H.J., Choi H.J. Synthesis and Electrorheological Response of Graphene Oxide/Polydiphenylamine Microsheet Composite Particles. Polymers. 2020;12:1984. doi: 10.3390/polym12091984. PubMed DOI PMC

Delgado-Canto M.A., Fernandez-Silva S.D., Roman C., Garcia-Morales M. On the electro-active control of nanocellulose-based functional biolubricants. ACS Appl. Mater. Interfaces. 2020;12:46490–46500. doi: 10.1021/acsami.0c12244. PubMed DOI

Kordonsky V.I., Korobko E.V., Lazareva T.G. Electrorheological polymer-based suspensions. J. Rheol. 1991;35:1427–1439. doi: 10.1122/1.550240. DOI

Ahn B.G., Choi U.S., Kwon O.K. Electro-rheological properties of anhydrous ER suspensions based on phosphoric ester cellulose particles. Polym. Int. 2000;49:567–573. doi: 10.1002/1097-0126(200006)49:6<567::AID-PI416>3.0.CO;2-T. DOI

Kim S.G., Kim J.W., Jang W.H., Choi H.J., Jhon M.S. Electrorheological characteristics of phosphate cellulose-based suspensions. Polymer. 2001;42:5005–5012. doi: 10.1016/S0032-3861(00)00887-9. DOI

Gan S., Piao S.H., Choi H.J., Zakaria S., Chia C.H. Synthesis of kenaf cellulose carbamate and its smart electric stimuli-response. Carbohydr. Polym. 2016;137:693–700. doi: 10.1016/j.carbpol.2015.11.035. PubMed DOI

Choi K., Gao C.Y., Nam J.D., Choi H.J. Cellulose-based smart fluids under applied electric fields. Materials. 2017;10:1060. doi: 10.3390/ma10091060. PubMed DOI PMC

Kawai A., Uchida K., Kamiya K., Gotoh A., Yoda S., Urabe K., Ikazaki F. Effect of dielectric property of hydrous dispersoid on electrorheology. Int. J. Mod. Phys. B. 1996;10:2849–2855. doi: 10.1142/S021797929600129X. DOI

Ikazaki F., Kawai A., Uchida K., Kawakami T., Edamura K., Sakurai K., Anzai H., Asako Y. Mechanisms of electrorheology: The effect of the dielectric property. J. Phys. D-Appl. Phys. 1998;31:336–347. doi: 10.1088/0022-3727/31/3/014. DOI

Zhang S., Winter W.T., Stipanovic A.J. Water-activated cellulose-based electrorheological fluids. Cellulose. 2005;12:135–144. doi: 10.1007/s10570-004-0345-2. DOI

Liu Z., Zhao Z.J., Jin X., Wang L.M., Liu Y.D. Preparation of cellulose/laponite composite particles and their enhanced electrorheological responses. Molecules. 2021;26:1482. doi: 10.3390/molecules26051482. PubMed DOI PMC

Liu Z., Chen P.P., Jin X., Wang L.M., Liu Y.D., Choi H.J. Enhanced electrorheological response of cellulose: A double effect of modification by urea-terminated silane. Polymers. 2018;10:867. doi: 10.3390/polym10080867. PubMed DOI PMC

Choi K., Nam J.D., Kwon S.H., Choi H.J., Islam M.S., Kao N. Microfibrillated Cellulose Suspension and Its Electrorheology. Polymers. 2019;11:2119. doi: 10.3390/polym11122119. PubMed DOI PMC

Sim B., Bae D.H., Choi H.J., Choi K., Islam M.S., Kao N. Fabrication and stimuli response of rice husk-based microcrystalline cellulose particle suspension under electric fields. Cellulose. 2016;23:185–197. doi: 10.1007/s10570-015-0836-3. DOI

Chun Y., Ko Y.G., Do T., Jung Y., Kim S.W., Choi U.S. Spent coffee grounds: Massively supplied carbohydrate polymer applicable to electrorheology. Colloid Surf. A-Physicochem. Eng. Asp. 2019;562:392–401. doi: 10.1016/j.colsurfa.2018.11.005. DOI

Bae D.H., Choi H.J., Choi K., Nam D.J., Islam M.S., Kao N. Fabrication of phosphate microcrystalline rice husk based cellulose particles and their electrorheological response. Carbohydr. Polym. 2017;165:247–254. doi: 10.1016/j.carbpol.2017.02.037. PubMed DOI

Yin J.B., Wang X.X., Zhao X.P. Silicone-grafted carbonaceous nanotubes with enhanced dispersion stability and electrorheological efficiency. Nanotechnology. 2015;26:065704. doi: 10.1088/0957-4484/26/6/065704. PubMed DOI

Lin C., Shan J.W. Electrically tunable viscosity of dilute suspensions of carbon nanotubes. Phys. Fluids. 2007;19:121702. doi: 10.1063/1.2824398. DOI

Yin J.B., Shui Y.J., Chang R.T., Zhao X.P. Graphene-supported carbonaceous dielectric sheets and their electrorheology. Carbon. 2012;50:5247–5255. doi: 10.1016/j.carbon.2012.06.062. DOI

Yin J.B., Xia X.A., Xiang L.Q., Zhao X.P. Conductivity and polarization of carbonaceous nanotubes derived from polyaniline nanotubes and their electrorheology when dispersed in silicone oil. Carbon. 2010;48:2958–2967. doi: 10.1016/j.carbon.2010.04.035. DOI

Sedlacik M., Pavlinek V., Mrlik M., Moravkova Z., Hajna M., Trchova M., Stejskal J. Electrorheology of polyaniline, carbonized polyaniline, and their core-shell composites. Mater. Lett. 2013;101:90–92. doi: 10.1016/j.matlet.2013.03.084. DOI

Plachy T., Sedlacik M., Pavlinek V., Trchová M., Morávková Z., Stejskal J. Carbonization of aniline oligomers to electrically polarizable particles and their use in electrorheology. Chem. Eng. J. 2014;256:398–406. doi: 10.1016/j.cej.2014.07.010. DOI

Plachy T., Sedlacik M., Pavlinek V., Moravkova Z., Hajna M., Stejskal J. An effect of carbonization on the electrorheology of poly(p-phenylenediamine) Carbon. 2013;63:187–195. doi: 10.1016/j.carbon.2013.06.070. DOI

Yin J.B., Xia X.A., Xiang L.Q., Zhao X.P. Temperature effect of electrorheological fluids based on polyaniline derived carbonaceous nanotubes. Smart Mater. Struct. 2011;20:015002. doi: 10.1088/0964-1726/20/1/015002. DOI

Qiao Y.P., Zhao X. Electrorheological effect of carbonaceous materials with hierarchical porous structures. Colloid Surf. A-Physicochem. Eng. Asp. 2009;340:33–39. doi: 10.1016/j.colsurfa.2009.02.036. DOI

Prekob A., Hajdu V., Muranszky G., Fiser B., Sycheva A., Ferenczi T., Viskolcz B., Vanyorek L. Application of carbonized cellulose-based catalyst in nitrobenzene hydrogenation. Mater. Today Chem. 2020;17:100337. doi: 10.1016/j.mtchem.2020.100337. DOI

Ruan C.Q., Wang Z.H., Lindh J., Stromme M. Carbonized cellulose beads for efficient capacitive energy storage. Cellulose. 2018;25:3545–3556. doi: 10.1007/s10570-018-1811-6. DOI

Kotia A., Yadav A., Raj T.R., Keischgens M.G., Rathore H., Sarris I.E. Carbon nanoparticles as sources for a cost-effective water purification method: A comprehensive review. Fluids. 2020;5:230. doi: 10.3390/fluids5040230. DOI

Wang W., Zhou J.H., Wang Z.P., Zhao L.Y., Li P.H., Yang Y., Yang C., Huang H.X., Guo S.J. Short-range order in mesoporous carbon boosts potassium-ion battery performance. Adv. Energy Mater. 2018;8:1701648. doi: 10.1002/aenm.201701648. DOI

Lee J., Choi Y.C. Pore Structure Characteristics of Foam Composite with Active Carbon. Materials. 2020;13:4038. doi: 10.3390/ma13184038. PubMed DOI PMC

Plachy T., Sedlacik M., Pavlinek V., Stejskal J., Graca M.P., Costa L.C. Temperature-dependent electrorheological effect and its description with respect to dielectric spectra. J. Intell. Mater. Syst. Struct. 2016;27:880–886. doi: 10.1177/1045389X15600801. DOI

Saabome S.M., Park Y.S., Ko Y.G. Designing particle size of aminated polyacrylonitrile spheres to enhance electrorheological performances of their suspensions. Powder Technol. 2021;394:986–995. doi: 10.1016/j.powtec.2021.08.096. DOI

Li L.Z., Gao S.J. Polyaniline (PANI) and BaTiO3 composite nanotube with high suspension performance in electrorheological fluid. Mater. Today Commun. 2020;24:100993. doi: 10.1016/j.mtcomm.2020.100993. DOI

Davis L.C. Polarization forces and conductivity effects in electrorheological fluids. J. Appl. Phys. 1992;72:1334–1340. doi: 10.1063/1.351743. DOI

Mrlik M., Sedlacik M., Pavlinek V., Bober P., Trchova M., Stejskal J., Saha P. Electrorheology of aniline oligomers. Colloid Polym. Sci. 2013;291:2079–2086. doi: 10.1007/s00396-013-2947-4. DOI

Zhao J., Lei Q., He F., Zheng C., Liu Y., Zhao X.P., Yin J.B. Interfacial polarization and electroresponsive electrorheological effect of anionic and cationic poly(ionic liquids) Acs Appl. Polym. Mater. 2019;1:2862–2874. doi: 10.1021/acsapm.9b00565. DOI

Stenicka M., Pavlinek V., Saha P., Blinova N.V., Stejskal J., Quadrat O. The electrorheological efficiency of polyaniline particles with various conductivities suspended in silicone oil. Colloid Polym. Sci. 2009;287:403–412. doi: 10.1007/s00396-008-1977-9. DOI

Egorysheva A.V., Kraev A.S., Gajtko O.M., Kusova T.V., Baranchikov A.E., Agafonov A.V., Ivriov V.K. High electrorheological effect in Bi1.8Fe1.2SbO7 suspensions. Powder Technol. 2020;360:96–103. doi: 10.1016/j.powtec.2019.10.027. DOI

Havriliak S., Negami S. A complex plane analysis of alpha-dispersions in some polymer systems. J. Polym. Sci. Part C Polym. Symp. 1966;14:99–117. doi: 10.1002/polc.5070140111. DOI

Hao T. Electrorheological suspensions. Adv. Colloid Interface Sci. 2002;97:1–35. doi: 10.1016/S0001-8686(01)00045-8. PubMed DOI

He L., Xin L.P., Chai X.S., Li J. A novel method for rapid determination of alpha-cellulose content in dissolving pulps by visible spectroscopy. Cellulose. 2015;22:2149–2156. doi: 10.1007/s10570-015-0652-9. DOI

Bu D.Q., Hu X.Z., Yang Z.J., Yang X., Wei W., Jiang M., Zhou Z.W., Zaman A. Elucidation of the Relationship between Intrinsic Viscosity and Molecular Weight of Cellulose Dissolved in Tetra-N-Butyl Ammonium Hydroxide/Dimethyl Sulfoxide. Polymers. 2019;11:1605. doi: 10.3390/polym11101605. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace