Conversion of a microwave synthesized alkali-metal MOF to a carbonaceous anode for Li-ion batteries

. 2020 Apr 01 ; 10 (23) : 13732-13736. [epub] 20200403

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35492969

Hierarchical carbon-rich materials have shown immense potential for various electrochemical applications. Metal-organic frameworks (MOFs) are well suited precursors for obtaining such templated carbon matrices. Usually these conversions are carried out by energy intensive processes and lead to the presence of toxic transition metal residues. Herein, we demonstrate the green, scalable, microwave-assisted synthesis of a three-dimensional s-block metal based MOF and its efficient transformation into a carbonaceous material. The MOF-derived solid functions as a negative electrode for lithium-ion batteries having moderate low-rate capacities and cycling stability.

Zobrazit více v PubMed

Larcher D. Tarascon J.-M. Nat. Chem. 2015;7:19–29. doi: 10.1038/nchem.2085. PubMed DOI

Gür T. M. Energy Environ. Sci. 2018;11:2696–2767. doi: 10.1039/C8EE01419A. DOI

Liu J. Zhang J.-G. Yang Z. Lemmon J. P. Imhoff C. Graff G. L. Li L. Hu J. Wang C. Xiao J. Xia G. Viswanathan V. V. Baskaran S. Sprenkle V. Li X. Shao Y. Schwenzer B. Adv. Funct. Mater. 2013;23:929–946. doi: 10.1002/adfm.201200690. DOI

Goodenough J. B. Park K.-S. J. Am. Chem. Soc. 2013;135:1167–1176. doi: 10.1021/ja3091438. PubMed DOI

Li M. Lu J. Chen Z. Amine K. Adv. Mater. 2018;30:1800561. doi: 10.1002/adma.201800561. PubMed DOI

Kim T. Song W. Son D.-Y. Ono L. K. Qi Y. J. Mater. Chem. A. 2019;7:2942–2964. doi: 10.1039/C8TA10513H. DOI

Xin S. Guo Y.-G. Wan L.-J. Acc. Chem. Res. 2012;45:1759–1769. doi: 10.1021/ar300094m. PubMed DOI

Long W. Fang B. Ignaszak A. Wu Z. Wang Y.-J. Wilkinson D. Chem. Soc. Rev. 2017;46:7176–7190. doi: 10.1039/C6CS00639F. PubMed DOI

Nishihara H. Kyotani T. Adv. Mater. 2012;24:4473–4498. doi: 10.1002/adma.201201715. PubMed DOI

Goriparti S. Miele E. De Angelis F. Di Fabrizio E. Zaccaria R. P. Capiglia C. J. Power Sources. 2014;257:421–443. doi: 10.1016/j.jpowsour.2013.11.103. DOI

Zhang X. Cheng X. Zhang Q. J. Energy Chem. 2016;25:967–984. doi: 10.1016/j.jechem.2016.11.003. DOI

Sun H. Zhu J. Baumann D. Peng L. Xu Y. Shakir I. Huang Y. Duan X. Nat. Rev. Mater. 2019;4:45–60. doi: 10.1038/s41578-018-0069-9. DOI

Wu H. B. Lou X. W. Sci. Adv. 2017;3:eaap9252. doi: 10.1126/sciadv.aap9252. PubMed DOI PMC

Zhang H. Liu X. Wu Y. Guan C. Cheetham A. K. Wang J. Chem. Commun. 2018;54:5268–5288. doi: 10.1039/C8CC00789F. PubMed DOI

Baumann A. E. Burns D. A. Liu B. Thoi V. S. Commun. Chem. 2019;2:86. doi: 10.1038/s42004-019-0184-6. DOI

Shi Q. Fu S. Zhu C. Song J. Du D. Lin Y. Mater. Horiz. 2019;6:684–702. doi: 10.1039/C8MH01397G. DOI

Zhang X. Dong P. Song M.-K. Batteries Supercaps. 2019;2:591–626. doi: 10.1002/batt.201900012. DOI

Wang J. Wang Y. Hu H. Yang Q. Cai J. Nanoscale. 2020;12:4238–4268. doi: 10.1039/C9NR09697C. PubMed DOI

Yang S. J. Nam S. Kim T. Im J. H. Jung H. Kang J. H. Wi S. Park B. Park C. R. J. Am. Chem. Soc. 2013;135:7394–7397. doi: 10.1021/ja311550t. PubMed DOI

Zhong S. Zhan C. Cao D. Carbon. 2015;85:51–59. doi: 10.1016/j.carbon.2014.12.064. DOI

Pachfule P. Shinde D. Majumder M. Xu Q. Nat. Chem. 2016;8:718–724. doi: 10.1038/nchem.2515. PubMed DOI

Dang S. Zhu Q.-L. Xu Q. Nat. Rev. Mater. 2017;3:17075. doi: 10.1038/natrevmats.2017.75. DOI

Wang T. Kim H.-K. Liu Y. Li W. Griffiths J. T. Wu Y. Laha S. Fong K. D. Podjaski F. Yun C. Kumar R. V. Lotsch B. V. Cheetham A. K. Smoukov S. K. J. Am. Chem. Soc. 2018;140:6130–6136. doi: 10.1021/jacs.8b02411. PubMed DOI PMC

Indra A. Song T. Paik U. Adv. Mater. 2018;30:1705146. doi: 10.1002/adma.201705146. PubMed DOI

Hong H. Liu J. Huang H. Etogo C. A. Yang X. Guan B. Zhang L. J. Am. Chem. Soc. 2019;141:14764–14771. doi: 10.1021/jacs.9b06957. PubMed DOI

Dubal D. P. Jayaramulu K. Sunil J. Kment Š. Gomez-Romero P. Narayana C. Zbořil R. Fischer R. A. Adv. Funct. Mater. 2019;29:1900532. doi: 10.1002/adfm.201900532. DOI

Banerjee D. Parise J. B. Cryst. Growth Des. 2011;11:4704–4720. doi: 10.1021/cg2008304. DOI

Armand M. Grugeon S. Vezin H. Laruelle S. Ribière P. Poizot P. Tarascon J.-M. Nat. Mater. 2009;8:120–125. doi: 10.1038/nmat2372. PubMed DOI

Fédèle L. Sauvage F. Gottis S. Davoisne C. Salager E. Chotard J.-N. Becuwe M. Chem. Mater. 2017;29:546–554. doi: 10.1021/acs.chemmater.6b03524. DOI

Luo C. Borodin O. Ji X. Hou S. Gaskell K. J. Fan X. Chen J. Deng T. Wang R. Jiang J. Wang C. Proc. Natl. Acad. Sci. U. S. A. 2018;115:2004–2009. doi: 10.1073/pnas.1717892115. PubMed DOI PMC

Cabañero Jr. J. M. Pimenta V. Cannon K. C. Morris R. E. Armstrong A. R. ChemSusChem. 2019;12:4522–4528. doi: 10.1002/cssc.201901626. PubMed DOI

Reinsch H. Eur. J. Inorg. Chem. 2016;2016:4290–4299. doi: 10.1002/ejic.201600286. DOI

Julien P. A. Mottillo C. Friščić T. Green Chem. 2017;19:2729–2747. doi: 10.1039/C7GC01078H. DOI

Rubio-Martinez M. Avci-Camur C. Thornton A. W. Imaz I. Maspoch D. Hill M. R. Chem. Soc. Rev. 2017;46:3453–3480. doi: 10.1039/C7CS00109F. PubMed DOI

Laybourn A. Katrib J. Ferrari-John R. S. Morris C. G. Yang S. Uoudo O. Easun T. L. Dodds C. Champness N. R. Kingman S. W. Schröder M. J. Mater. Chem. A. 2017;5:7333–7338. doi: 10.1039/C7TA01493G. DOI

Thomas-Hillman I. Laybourn A. Dodds C. Kingman S. W. J. Mater. Chem. A. 2018;6:11564–11581. doi: 10.1039/C8TA02919A. DOI

DeSantis D. Mason J. A. James B. D. Houchins C. Long J. R. Veenstra M. Energy Fuels. 2017;31:2024–2032. doi: 10.1021/acs.energyfuels.6b02510. DOI

Wenger M. Armbruster T. Eur. J. Mineral. 1991;3:387–399. doi: 10.1127/ejm/3/2/0387. DOI

Verduzco J. M. Chung H. Hu C. Choe W. Inorg. Chem. 2009;48:9060–9062. doi: 10.1021/ic9009916. PubMed DOI

Smaldone R. A. Forgan R. S. Furukawa H. Gassensmith J. J. Slawin A. M. Z. Yaghi O. M. Fraser Stoddart J. Angew. Chem., Int. Ed. 2010;49:8630–8634. doi: 10.1002/anie.201002343. PubMed DOI

Siman P. Trickett C. A. Furukawa H. Yaghi O. M. Chem. Commun. 2015;51:17463–17466. doi: 10.1039/C5CC07578E. PubMed DOI

Hocking R. K. Hambley T. W. Dalton Trans. 2005:969–978. doi: 10.1039/B411434E. PubMed DOI

Dodson R. A. Wong-Foy A. G. Matzger A. J. Chem. Mater. 2018;30:6559–6565. doi: 10.1021/acs.chemmater.8b03378. DOI

Kimyonok A. B. E. Ulutürk M. J. Energ. Mater. 2016;34:113–122. doi: 10.1080/07370652.2015.1005773. DOI

Winter M. Besenhard J. O. Spahr M. E. Novák P. Adv. Mater. 1998;10:725. doi: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z. DOI

Ordonez J. Gago E. J. Girard A. Renewable Sustainable Energy Rev. 2016;60:195–205. doi: 10.1016/j.rser.2015.12.363. DOI

Schmuch R. Wagner R. Hörpel G. Placke T. Winter M. Nat. Energy. 2018;3:267–278. doi: 10.1038/s41560-018-0107-2. DOI

Zhang H. Zhao H. Khan M. A. Zou W. Xu J. Zhang L. Zhang J. J. Mater. Chem. A. 2018;6:20564–20620. doi: 10.1039/C8TA05336G. DOI

Lu Y. Chen J. Nat. Rev. Chem. 2020;4:127–142. doi: 10.1038/s41570-020-0160-9. PubMed DOI

Qi W. Shapter J. G. Wu Q. Yin T. Gao G. Cui D. J. Mater. Chem. A. 2017;5:19521–19540. doi: 10.1039/C7TA05283A. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...