Conversion of a microwave synthesized alkali-metal MOF to a carbonaceous anode for Li-ion batteries
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35492969
PubMed Central
PMC9051547
DOI
10.1039/d0ra01997f
PII: d0ra01997f
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Hierarchical carbon-rich materials have shown immense potential for various electrochemical applications. Metal-organic frameworks (MOFs) are well suited precursors for obtaining such templated carbon matrices. Usually these conversions are carried out by energy intensive processes and lead to the presence of toxic transition metal residues. Herein, we demonstrate the green, scalable, microwave-assisted synthesis of a three-dimensional s-block metal based MOF and its efficient transformation into a carbonaceous material. The MOF-derived solid functions as a negative electrode for lithium-ion batteries having moderate low-rate capacities and cycling stability.
Zobrazit více v PubMed
Larcher D. Tarascon J.-M. Nat. Chem. 2015;7:19–29. doi: 10.1038/nchem.2085. PubMed DOI
Gür T. M. Energy Environ. Sci. 2018;11:2696–2767. doi: 10.1039/C8EE01419A. DOI
Liu J. Zhang J.-G. Yang Z. Lemmon J. P. Imhoff C. Graff G. L. Li L. Hu J. Wang C. Xiao J. Xia G. Viswanathan V. V. Baskaran S. Sprenkle V. Li X. Shao Y. Schwenzer B. Adv. Funct. Mater. 2013;23:929–946. doi: 10.1002/adfm.201200690. DOI
Goodenough J. B. Park K.-S. J. Am. Chem. Soc. 2013;135:1167–1176. doi: 10.1021/ja3091438. PubMed DOI
Li M. Lu J. Chen Z. Amine K. Adv. Mater. 2018;30:1800561. doi: 10.1002/adma.201800561. PubMed DOI
Kim T. Song W. Son D.-Y. Ono L. K. Qi Y. J. Mater. Chem. A. 2019;7:2942–2964. doi: 10.1039/C8TA10513H. DOI
Xin S. Guo Y.-G. Wan L.-J. Acc. Chem. Res. 2012;45:1759–1769. doi: 10.1021/ar300094m. PubMed DOI
Long W. Fang B. Ignaszak A. Wu Z. Wang Y.-J. Wilkinson D. Chem. Soc. Rev. 2017;46:7176–7190. doi: 10.1039/C6CS00639F. PubMed DOI
Nishihara H. Kyotani T. Adv. Mater. 2012;24:4473–4498. doi: 10.1002/adma.201201715. PubMed DOI
Goriparti S. Miele E. De Angelis F. Di Fabrizio E. Zaccaria R. P. Capiglia C. J. Power Sources. 2014;257:421–443. doi: 10.1016/j.jpowsour.2013.11.103. DOI
Zhang X. Cheng X. Zhang Q. J. Energy Chem. 2016;25:967–984. doi: 10.1016/j.jechem.2016.11.003. DOI
Sun H. Zhu J. Baumann D. Peng L. Xu Y. Shakir I. Huang Y. Duan X. Nat. Rev. Mater. 2019;4:45–60. doi: 10.1038/s41578-018-0069-9. DOI
Wu H. B. Lou X. W. Sci. Adv. 2017;3:eaap9252. doi: 10.1126/sciadv.aap9252. PubMed DOI PMC
Zhang H. Liu X. Wu Y. Guan C. Cheetham A. K. Wang J. Chem. Commun. 2018;54:5268–5288. doi: 10.1039/C8CC00789F. PubMed DOI
Baumann A. E. Burns D. A. Liu B. Thoi V. S. Commun. Chem. 2019;2:86. doi: 10.1038/s42004-019-0184-6. DOI
Shi Q. Fu S. Zhu C. Song J. Du D. Lin Y. Mater. Horiz. 2019;6:684–702. doi: 10.1039/C8MH01397G. DOI
Zhang X. Dong P. Song M.-K. Batteries Supercaps. 2019;2:591–626. doi: 10.1002/batt.201900012. DOI
Wang J. Wang Y. Hu H. Yang Q. Cai J. Nanoscale. 2020;12:4238–4268. doi: 10.1039/C9NR09697C. PubMed DOI
Yang S. J. Nam S. Kim T. Im J. H. Jung H. Kang J. H. Wi S. Park B. Park C. R. J. Am. Chem. Soc. 2013;135:7394–7397. doi: 10.1021/ja311550t. PubMed DOI
Zhong S. Zhan C. Cao D. Carbon. 2015;85:51–59. doi: 10.1016/j.carbon.2014.12.064. DOI
Pachfule P. Shinde D. Majumder M. Xu Q. Nat. Chem. 2016;8:718–724. doi: 10.1038/nchem.2515. PubMed DOI
Dang S. Zhu Q.-L. Xu Q. Nat. Rev. Mater. 2017;3:17075. doi: 10.1038/natrevmats.2017.75. DOI
Wang T. Kim H.-K. Liu Y. Li W. Griffiths J. T. Wu Y. Laha S. Fong K. D. Podjaski F. Yun C. Kumar R. V. Lotsch B. V. Cheetham A. K. Smoukov S. K. J. Am. Chem. Soc. 2018;140:6130–6136. doi: 10.1021/jacs.8b02411. PubMed DOI PMC
Indra A. Song T. Paik U. Adv. Mater. 2018;30:1705146. doi: 10.1002/adma.201705146. PubMed DOI
Hong H. Liu J. Huang H. Etogo C. A. Yang X. Guan B. Zhang L. J. Am. Chem. Soc. 2019;141:14764–14771. doi: 10.1021/jacs.9b06957. PubMed DOI
Dubal D. P. Jayaramulu K. Sunil J. Kment Š. Gomez-Romero P. Narayana C. Zbořil R. Fischer R. A. Adv. Funct. Mater. 2019;29:1900532. doi: 10.1002/adfm.201900532. DOI
Banerjee D. Parise J. B. Cryst. Growth Des. 2011;11:4704–4720. doi: 10.1021/cg2008304. DOI
Armand M. Grugeon S. Vezin H. Laruelle S. Ribière P. Poizot P. Tarascon J.-M. Nat. Mater. 2009;8:120–125. doi: 10.1038/nmat2372. PubMed DOI
Fédèle L. Sauvage F. Gottis S. Davoisne C. Salager E. Chotard J.-N. Becuwe M. Chem. Mater. 2017;29:546–554. doi: 10.1021/acs.chemmater.6b03524. DOI
Luo C. Borodin O. Ji X. Hou S. Gaskell K. J. Fan X. Chen J. Deng T. Wang R. Jiang J. Wang C. Proc. Natl. Acad. Sci. U. S. A. 2018;115:2004–2009. doi: 10.1073/pnas.1717892115. PubMed DOI PMC
Cabañero Jr. J. M. Pimenta V. Cannon K. C. Morris R. E. Armstrong A. R. ChemSusChem. 2019;12:4522–4528. doi: 10.1002/cssc.201901626. PubMed DOI
Reinsch H. Eur. J. Inorg. Chem. 2016;2016:4290–4299. doi: 10.1002/ejic.201600286. DOI
Julien P. A. Mottillo C. Friščić T. Green Chem. 2017;19:2729–2747. doi: 10.1039/C7GC01078H. DOI
Rubio-Martinez M. Avci-Camur C. Thornton A. W. Imaz I. Maspoch D. Hill M. R. Chem. Soc. Rev. 2017;46:3453–3480. doi: 10.1039/C7CS00109F. PubMed DOI
Laybourn A. Katrib J. Ferrari-John R. S. Morris C. G. Yang S. Uoudo O. Easun T. L. Dodds C. Champness N. R. Kingman S. W. Schröder M. J. Mater. Chem. A. 2017;5:7333–7338. doi: 10.1039/C7TA01493G. DOI
Thomas-Hillman I. Laybourn A. Dodds C. Kingman S. W. J. Mater. Chem. A. 2018;6:11564–11581. doi: 10.1039/C8TA02919A. DOI
DeSantis D. Mason J. A. James B. D. Houchins C. Long J. R. Veenstra M. Energy Fuels. 2017;31:2024–2032. doi: 10.1021/acs.energyfuels.6b02510. DOI
Wenger M. Armbruster T. Eur. J. Mineral. 1991;3:387–399. doi: 10.1127/ejm/3/2/0387. DOI
Verduzco J. M. Chung H. Hu C. Choe W. Inorg. Chem. 2009;48:9060–9062. doi: 10.1021/ic9009916. PubMed DOI
Smaldone R. A. Forgan R. S. Furukawa H. Gassensmith J. J. Slawin A. M. Z. Yaghi O. M. Fraser Stoddart J. Angew. Chem., Int. Ed. 2010;49:8630–8634. doi: 10.1002/anie.201002343. PubMed DOI
Siman P. Trickett C. A. Furukawa H. Yaghi O. M. Chem. Commun. 2015;51:17463–17466. doi: 10.1039/C5CC07578E. PubMed DOI
Hocking R. K. Hambley T. W. Dalton Trans. 2005:969–978. doi: 10.1039/B411434E. PubMed DOI
Dodson R. A. Wong-Foy A. G. Matzger A. J. Chem. Mater. 2018;30:6559–6565. doi: 10.1021/acs.chemmater.8b03378. DOI
Kimyonok A. B. E. Ulutürk M. J. Energ. Mater. 2016;34:113–122. doi: 10.1080/07370652.2015.1005773. DOI
Winter M. Besenhard J. O. Spahr M. E. Novák P. Adv. Mater. 1998;10:725. doi: 10.1002/(SICI)1521-4095(199807)10:10<725::AID-ADMA725>3.0.CO;2-Z. DOI
Ordonez J. Gago E. J. Girard A. Renewable Sustainable Energy Rev. 2016;60:195–205. doi: 10.1016/j.rser.2015.12.363. DOI
Schmuch R. Wagner R. Hörpel G. Placke T. Winter M. Nat. Energy. 2018;3:267–278. doi: 10.1038/s41560-018-0107-2. DOI
Zhang H. Zhao H. Khan M. A. Zou W. Xu J. Zhang L. Zhang J. J. Mater. Chem. A. 2018;6:20564–20620. doi: 10.1039/C8TA05336G. DOI
Lu Y. Chen J. Nat. Rev. Chem. 2020;4:127–142. doi: 10.1038/s41570-020-0160-9. PubMed DOI
Qi W. Shapter J. G. Wu Q. Yin T. Gao G. Cui D. J. Mater. Chem. A. 2017;5:19521–19540. doi: 10.1039/C7TA05283A. DOI